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A B S T R A C T

Resting-state functional MRI (rsfMRI) is a useful technique for investigating the functional organization of human
gray-matter in neuroscience and neuropsychiatry. Nevertheless, most studies have demonstrated the functional
connectivity and/or task-related functional activity in the gray-matter. White-matter functional networks have
been investigated in healthy subjects. Schizophrenia has been hypothesized to be a brain disorder involving
insufficient or ineffective communication associated with white-matter abnormalities. However, previous studies
have mainly examined the structural architecture of white-matter using MRI or diffusion tensor imaging and
failed to uncover any dysfunctional connectivity within the white-matter on rsfMRI. The current study used
rsfMRI to evaluate white-matter functional connectivity in a large cohort of ninety-seven schizophrenia patients
and 126 healthy controls. Ten large-scale white-matter networks were identified by a cluster analysis of voxel-
based white-matter functional connectivity and classified into superficial, middle and deep layers of networks.
Evaluation of the spontaneous oscillation of white-matter networks and the functional connectivity between them
showed that patients with schizophrenia had decreased amplitudes of low-frequency oscillation and increased
functional connectivity in the superficial perception-motor networks. Additionally, we examined the interactions
between white-matter and gray-matter networks. The superficial perception-motor white-matter network had
decreased functional connectivity with the cortical perception-motor gray-matter networks. In contrast, the
middle and deep white-matter networks had increased functional connectivity with the superficial perception-
motor white-matter network and the cortical perception-motor gray-matter network. Thus, we presumed that
the disrupted association between the gray-matter and white-matter networks in the perception-motor system
may be compensated for through the middle-deep white-matter networks, which may be the foundation of the
extensively disrupted connections in schizophrenia.
Introduction

Although traditional structural techniques, such as diffusion-tensor
imaging (DTI), can successfully explore the details of white-matter
structural architecture, they fail to uncover neural activity and relevant
functions that occur inside white-matter. Over the past two decades,
resting-state functional MRI (fMRI), which is based on blood oxygen
level-dependent (BOLD) signals, has been a useful technique for inves-
tigating the functional organization of human gray-matter in cognitive
neuroscience and clinical neuropsychiatry (Biswal et al., 1995; Meda
et al., 2014). However, it has limited use for evaluating the functional
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organization of the cerebral white-matter since white-matter has very
few postsynaptic potentials that give rise to BOLD signals (Logothetis
et al., 2001). Recently, accumulated works have found that the functional
activity in white-matter corresponds to related demands in multiple
tasks, including perceptual, language and motor tasks (Fabri and Polo-
nara, 2013; Fabri et al., 2011; Gawryluk et al., 2011, 2014). These studies
demonstrated the existence of functional brain activity in the
white-matter, and suggested that the functional information from
white-matter can be detected by fMRI.

Recently, the functional organization of white-matter in resting-state
has received greater attention (Ding et al., 2018; Ji et al., 2017;
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Marussich et al., 2017; Mezer et al., 2009). For example, Ji and col-
leagues observed the power of resting-state BOLD signals associated with
white-matter density and fractional anisotropy (Ji et al., 2017). Mar-
ussich and colleagues evaluated white-matter functional connectivity
and found that fMRI carried functional information about white-matter
activity and connectivity at rest (Marussich et al., 2017). In addition,
Peer and colleagues clustered all the white-matter voxels into several
functional networks in a cluster analysis and found a correspondence
between white-matter and gray-matter functional networks as well as
DTI tracts (Peer et al., 2017), further suggesting the intrinsic functional
organization of white-matter. Previous studies provided evidences of the
existence of white-matter functional networks, and examined their reli-
ability and reproducibility in healthy controls. However, most impor-
tantly, few study investigated white-matter functional networks in
patients with brain disorders. Many brain disorders, including schizo-
phrenia, epilepsy, Alzheimer's and Parkinson's disease, are characterized
by white-matter abnormalities (Bohnen and Albin, 2011; Caso et al.,
2015; Dong et al., 2017a; Xue et al., 2014). Therefore, it is important to
explore the altered white-matter functional networks in these disorders,
and this also contributes to the understanding of psychiatric pathological
mechanisms on neuroimage (Kressel, 2017; Lui et al., 2016).

Schizophrenia has been hypothesized to be a psychiatry disorder
involving insufficient or ineffective communication between large-scale
functional networks and cortical-subcortical pathways (Chen et al.,
2017; Dong et al., 2017b; Duan et al., 2015; Friston, 1998; Huang et al.,
2017; Jiang et al., 2017). Morphometric studies have revealed
gray-matter volume atrophy in the cortices and subcortical regions in
schizophrenia (Jiang et al., 2018). As white-matter is composed of
densely myelinated axons interconnecting gray-matter regions, abnor-
malities of white-matter have long been proposed to be possible factors in
the pathophysiology of schizophrenia (Burns et al., 2003). Accumulated
studies have frequently implicated alterations in white-matter tracts in
schizophrenia using DTI (Holleran et al., 2014; Karlsgodt et al., 2008;
Smith et al., 2006). In the functional aspect, previous PET studies showed
relatively increased glucose metabolic rate in white-matter in schizo-
phrenia (Buchsbaum et al., 2007). However, few functional study in
schizophrenia uncovered dysfunctional connectivity within the
white-matter. In this study, large-scale white-matter functional networks
were characterized by applying a cluster analysis to the resting-state
fMRI data of white-matter in a large cohort of patients with schizo-
phrenia (N¼ 97) and healthy controls (N¼ 126). We estimated the
functional connectivity within the resulting white-matter functional
networks and their relationship to the known gray-matter functional
networks. In addition, we investigated the spontaneous activity within
the white-matter functional networks. By comparing the differences in
the white-matter functional networks between patients with schizo-
phrenia and healthy controls, this study linked the white-matter func-
tional abnormalities with the pathophysiology of schizophrenia.

Material and methods

Participants

This study included ninety-seven patients with schizophrenia
(gender: 68 males and 29 females; age: 41� 11.5 years) and 126 healthy
controls (gender: 84 males and 42 females; age: 38� 14.9 years)
matched to the patient group by age and gender. According to the
Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition
(DSM-IV), each patient was diagnosed at the Clinical Hospital of Chengdu
Brain Science Institute. Subjects with a history of brain injuries,
substance-related disorders, and major medical or neurological disorders
were excluded. All schizophrenia patients were taking antipsychotics
medication. The chlorpromazine equivalent dose of the antipsychotics
was 324.5� 157.1mg/day. Positive and Negative Syndrome Scale
(PANSS) was used to assess the symptom severity. Healthy controls with
a history of psychiatric disorder in a first- or second-degree relative were
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also excluded due to the potential genetic effects. The study was
approved by the Ethics Committee of the Clinical Hospital of Chengdu
Brain Science Institute, and written informed consent was obtained from
all the subjects.
Image acquisition

Imaging data were collected using a 3-TMRI scanner (GE DISCOVERY
MR 750, USA) at the University of Electronic Science and Technology of
China. High-resolution T1-weighted images were acquired by a three-
dimensional fast spoiled gradient-echo (T1-3D FSPGR) sequence. The
main scanning parameters were as follows: repetition time (TR), 6.008
ms; echo time (TE), 1.984 ms; flip angle, 90�; field of view,
25.6 cm� 25.6 cm; matrix size, 256� 256; and slice thickness, 1mm (no
gap). Resting-state functional images were acquired using a gradient-
echo echo-planar imaging (EPI) sequence. The main scanning parame-
ters were as follows: TR, 2s; TE, 30 ms; flip angle, 90�; field of view,
24 cm� 24 cm; matrix size, 64� 64; slice thickness, 4 mm (no gap), slice
number, 35; and scanning time, 510 s (255 vol). Participants were
instructed to remain awake, close their eyes, and try not to think of
anything. All the subjects confirmed that they did not fall asleep during
scans.
Data preprocessing

T1 images were segmented into white-matter, gray-matter and cere-
brospinal fluid (CSF) using SPM8's New Segment algorithm and then
normalized to the MNI template. The functional image preprocessing
steps included the following. (1) The first five time points were removed
for signal equilibrium and to allow the participants to adapt at to the
scanning noise. (2) Slice-time correction. (3) Realignment to the mean
functional image was performed using a trilinear interpolation with de-
grees of freedom and coregistered with the anatomical image. Subjects
with maximum motion >2mm or 2� were excluded. (4) Removal of
linear trends to correct for signal drift. (5) Nuisance signal (including 24-
parameter motion correction and the mean CSF signals) was regressed
out. The 24 motion parameters included six rigid-body motion parame-
ters (x, y and z translations and rotations) and their values at the previous
time point and the 12 corresponding squared values. The white-matter
and global brain signals were not regressed out because this could have
eliminated signals of interest. (6) Temporal scrubbing using motion
“spikes” (framewise displacement (FD)> 1) as separate repressors was
performed. The scrubbing effectively censored the data at the spike
without further changing the correlation values. (7) Band-pass filtering
(0.01–0.15 Hz) was performed to reduce non-neuronal contributions to
BOLD fluctuations. (8) To avoid mixing white-matter and gray-matter
signals, spatial smoothing was performed separately on the white-
matter or gray-matter masks. In detail, the individual T1 segmentation
images were coregistered to the functional space for each participant for
the identification of white-matter or gray-matter masks (the threshold
was set at 0.5). The individual functional images were smoothed
(FWHM¼ 4mm) separately on the two masks. Finally, we used only the
smoothed data from the white-matter mask. (9) Normalization to the
standard EPI template and resampling to 3mm3 voxels were performed.
Steps 1–8 were performed on each subject's original sampling space in
order to distinguish white-matter and gray-matter signals at the indi-
vidual level. Preprocessing was performed using SPM12 (www.fil.ion.
ucl.ac.uk/spm), DPABI (http://rfmri.org/dpabi) and open MATLAB
scripts (http://mind.huji.ac.il/white-matter.aspx). After motion-
correction, 93 schizophrenia patients and 125 healthy controls were
included in this study. As a previous study reported that even slight head-
motion could lead to increased long-range connectivity, we examined
group-level head-motion differences between the schizophrenia patient
group and healthy control group using the two-sample t-test. In addition,
group-level statistical analysis showed no difference (Supplementary 1).
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Clustering white-matter networks in the white-matter mask

The analysis pipeline was similar to the original study by Peer and
colleagues (Peer et al., 2017) and is briefly described here. To obtain
unified white-matter and gray-matter masks at the group-level, we used
the T1 image segmentation results. For each subject, we identified each
voxel as white-matter, gray-matter or CSF based on its maximum prob-
ability from the segmentation results. This resulted in individual
white-matter, gray-matter and CSF masks. These masks were averaged
across all the subjects, and the percentage of subjects that were classified
as white-matter or gray-matter were obtained. For white-matter, the
voxels with a percentage >60% were identified as the group-level
white-matter mask. We also applied two stricter masks (percent-
ages> 70% and 80%) to obtain the group-level white-matter mask
(Supplementary 2). Then, the subcortical areas based on the
Harvard-Oxford Atlas (Desikan et al., 2006) were removed from the
white-matter mask to correctly classify the deep brain structures (Lorio
et al., 2016). Finally, the T1 white-matter mask was coregistered to the
functional space and resampled for functional image processing. In
addition, for gray-matter, a loose threshold of percentage>20%was used
to identify as white-matter mask containing almost all the gray-matter
voxels.

Considering the computational complexity, an interchanging grid
strategy was used to subsample 18,591 voxels in the white-matter mask
to 4,623 nodes (Craddock et al., 2012). In detail, any second voxels along
the rows and columns were taken and then shifted by 1 between the two
slices. Pearson's correlation coefficients between each white-matter voxel
and subsampled node were computed and resulted in a correlation
pattern (18,591� 4,623matrix) for each subject. An identified clustering
approach was used to determine the white-matter networks. K-means
clustering (distance metric-correlation, 10 replicates) was performed on
the averaged correlation matrices. As the clustering was performed on
the whole group of unequal numbers of patients and controls, the clus-
tering results may be more heavily weighted to the controls and lead to
bias. The correlation matrix was first averaged across each group of
subjects and then averaged again across the two groups. To obtain the
most stable number of networks, the numbers of clusters ranging from 2
to 22 and the stability were measured for each cluster number according
to previously described methods (Buckner et al., 2011). We randomly
divided the whole connectivity matrix (18,591� 4,623) into four folds
(18,591� 1,155). For each number of clusters, the same clustering
computation was performed on each fold separately. To measure the
similarity between the clustering in different folds, an adjacency matrix
was calculated and then compared using Dice's coefficient. The averaged
Dice's coefficient was used to assess the stability of the number of
clusters.

Functional connectivity of white-matter networks

To measure the functional connectivity between individual white-
matter networks, we extracted the average time courses from all ten
white-matter networks by averaging across all voxels belonging to one
network for each subject. The Pearson's correlation between the average
time courses of any two white-matter networks was computed for each
subject and transformed to the Fisher z score for the statistical analysis. In
addition, to measure the relationship between white-matter and gray-
matter networks, we also calculated the Pearson's correlation coeffi-
cient between each white-matter network and gray-matter network.
These correlation coefficients were averaged across subjects to obtain the
group-level matrix that represented the relationship between white-
matter and gray-matter networks. Considering that many studies
showed reliable and reproducible clustering results using gray-matter
signals (Power et al., 2011; Shirer et al., 2012), this study did not clus-
ter the gray-matter networks but used a previously obtained gray-matter
network atlas that was generated by the same clustering procedure for
the gray-matter voxels. The gray-matter network atlas closely
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corresponded to the cortical network subdivisions (Buckner et al., 2011;
Power et al., 2011; Yeo et al., 2011). The two-sample t-test was per-
formed on the z-score of Pearson's correlation coefficient to show the
differences between the schizophrenia and healthy control groups
(P< 0.05, Bonferroni corrected).

Spontaneous activity of white-matter networks

The spontaneous low frequency fluctuations of BOLD signal in the
resting state have been identified as biological measures of baseline
spontaneous activity (Fox and Raichle, 2007). In this study, signal am-
plitudes in each frequency were calculated using the Fourier transform
(MATLAB's FFT function) for each white-matter network of each subject
(Supplementary 3). The resulting frequency graphs were separately
averaged across subjects in the schizophrenia and healthy control groups
for each network. Considering that the spontaneous oscillatory ampli-
tudes in the different frequency bands may reflect distinct neural activ-
ities and physiological states (Meda et al., 2015; Yu et al., 2014), we
further divided the whole band (band A: 0.01–0.15 Hz) into two
sub-bands (band B: 0.08–0.15 Hz; band C: 0.01–0.08 Hz). For each
white-matter network and sub-band, the averaged amplitude was ob-
tained in each subject and then used to compare the differences between
the schizophrenia and healthy control groups using ANOVA.

Correlations between altered white-matter networks and clinical variables

We further investigated the relationships between clinical variables
(disease duration and PANSS scores) and altered functional connectivity
as well as low frequency spontaneous fluctuations. The Pearson's corre-
lation analyses were performed for the schizophrenia group controlling
for the effect of antipsychotic medications (chlorpromazine equivalent
dose of the antipsychotics). In addition, we also investigated the rela-
tionship between the effect of antipsychotic medications and white-
matter network functional indices.

Analysis for the potential influence of gray-matter signals

Although this study was cautious in its data analysis, such as
smoothing the white-matter and gray-matter separately and preprocess-
ing in individual spaces, it is still of concern whether the correlation or
clustering pattern of the white-matter fMRI signals were simply due to
the leakage of the gray-matter fMRI signal, particularly with regard to the
partial volume effect. We provided several ways to evaluate the potential
influence of gray-matter signals as much as possible and re-examined the
consistency of the results. First, a relatively stricter mask was applied to
identify white-matter voxels (Supplementary 2). Second, the correlations
between the different white-matter clusters after regressing out the gray-
matter signals were examined (Supplementary 4). Finally, we also eval-
uated the effects of spatial distance between the white-matter and gray-
matter networks (Supplementary 5).

Results

White-matter functional networks

To identify white-matter functional networks with distinct connec-
tivity profiles, we adopted a clustering approach based on white-matter
resting-state voxel-wise correlation matrices. Dice's coefficient showed
that the most stable segregation number was ten (Supplementary 6);
thus, we applied ten networks to conduct following analyses. Consistent
with the previous study (Peer et al., 2017), the K-means clustering
method identified a symmetrical, interlaced pattern of functional net-
works inside the white-matter areas that was divided into three layers
(superficial, middle and deep) (Fig. 1). The detailed information
regarding the ten networks is presented in Table 1.



Fig. 1. White-matter functional networks. 1. Occipital network; 2. Cerebellar network; 3. Anterior corona radiate network; 4. Orbitofrontal network; 5. Pre/post-
central network; 6. Posterior callosum network; 7. Tempofrontal network; 8. Deep network; 9. Superior corona radiate network; 10. Superior temporal network.

Table 1
White-matter functional networks.

Number White-matter network Layer Correlation with gray-matter
network (r value)

1 Occipital network Superficial Visual network (0.94)
2 Cerebellar network Superficial Cerebellum anterior network

(0.83)
3 Anterior corona radiate

network
Middle Dorsal attention network

(0.79)
4 Orbitofrontal network Superficial Ventral attention network

(0.61)
5 Pre/post-central

network
Superficial Sensori-motor network (0.90)

6 Posterior callosum
network

Middle Default-mode network (0.70)

7 Tempofrontal network Superficial Default-mode network (0.90)
8 Deep network Deep Cerebellum posterior network

(0.49)
9 Superior corona radiate

network
Middle Dorsal attention network

(0.62)
10 Superior temporal

network
Superficial Sensori-motor network (0.73)

Y. Jiang et al. NeuroImage 190 (2019) 172–181
Functional connectivity within white-matter networks

To investigate the relationship among individual white-matter
networks, we measured the functional connectivity between any two
white-matter networks (Fig. 2a). Two sample t-tests revealed that
compared with the healthy control group, the schizophrenia group
showed increased functional connectivity between the occipital
network and the cerebellar, anterior corona radiate, posterior cal-
losum and deep networks (Table 2 and Fig. 2b). In addition, the
schizophrenia group exhibited increased functional connectivity be-
tween the pre/post-central network and the anterior corona radiate,
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posterior callosum, superior corona radiate and deep networks
(Table 2 and Fig. 2b).
Functional connectivity between white-matter networks and gray-matter
networks

To examine the relationship between white-matter and gray-matter
networks, we also quantified the correlation using the functional con-
nectivity between each white-matter network and all the gray-matter
networks (Fig. 2c). Specific white-matter networks exhibited highly
functional connectivity (r> 0.8) with gray-matter networks (Table 1).
In particular, some superficial networks, such as the occipital, cere-
bellar, orbitofrontal, pre/post-central and tempofrontal networks, were
mostly correlated to their overlying gray-matter networks, which may
suggest a role of close-range communications within these networks.
The correlation between two distant networks was considered to be
long-range communication. In addition, the deep networks were
weakly correlated to all the gray-matter networks. Comparisons be-
tween the schizophrenia and healthy control groups showed decreased
functional connectivity between the white-matter occipital network
and the gray-matter visual network, the white-matter orbitofrontal
network and the gray-matter temporal-orbitofrontal network, and the
white-matter superior temporal network and the gray-matter ventral
attention network in the schizophrenia group (Table 3 and Fig. 2d).
There was some increase in functional connectivity between the oc-
cipital, pre/post-central and cerebellar networks in the schizophrenia
group (Table 3 and Fig. 2d).
Spontaneous activity in white-matter networks

To further investigate the spontaneous activity of white-matter



Fig. 2. Functional connectivity of white-matter networks in the resting-state. (A) Average functional connectivity strength between the different white-matter net-
works. The color bar shows the correlation coefficient (i.e., R value). (B) Differences in functional connectivity within the white-matter networks between schizo-
phrenia patients and healthy controls. The color bar shows the T value from the two-sample t-tests. * represents significant differences after Bonferroni correction. (C)
Average functional connectivity strength between white-matter networks and gray-matter networks. The color bar shows the correlation coefficient (i.e., R value). (D)
Differences in the functional connectivity of white-matter and gray-matter networks between schizophrenia patients and healthy controls. The color bar shows the T
value from the two-sample t-tests. * represents significant differences after Bonferroni correction.

Table 3
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networks, Fourier transform was performed on the signals from white-
matter networks. All the white-matter networks showed a gradual
decrease in amplitude with increased frequency, which indicated greater
Table 2
Increased functional connectivity between distinct white-matter networks in
patients with schizophrenia.

White-matter network White-matter network T value P value

Occipital network Cerebellar network 5.51 1.0� 10�7

Anterior corona radiate
network

5.11 7.1� 10�7

Posterior callosum network 4.98 1.3� 10�6

Deep network 4.59 7.4� 10�6

Pre/post-central
network

Anterior corona radiate
network

5.07 8.6� 10�7

Posterior callosum network 3.82 1.7� 10�4

Deep network 4.89 2.0� 10�6

Superior corona radiate
network

5.38 1.9� 10�7

Altered functional connectivity between white-matter and gray-matter networks
in patients with schizophrenia.

White-matter network Gray-matter network T
value

P value

Occipital network Cerebellum posterior
network

4.49 1.2� 10�5

Cerebellum anterior
network

4.09 6.0� 10�5

Visual network �3.65 3.3� 10�4

Cerebellar network Visual network 4.95 1.5� 10�6

Anterior corona radiate
network

Sensori-motor network 4.01 8.5� 10�5

Visual network 5.11 7.3� 10�7

Orbitofrontal network Temporal-orbitofrontal
network

�4.38 1.9� 10�5

Pre/post-central network Dorsal attention network 4.80 2.9� 10�6

Posterior callosum network Visual network 6.18 3.2� 10�9

Deep network Sensori-motor network 4.00 8.6� 10�5

Superior temporal network Ventral attention network �3.64 3.4� 10�4
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Fig. 3. Spontaneous activity of white-matter networks in the resting-state. Power spectral analysis was performed on signals in the white-matter networks. (A) Power-
frequency graphs for the ten white-matter networks. WM, white-matter; HC, healthy controls; SZ, schizophrenia. (B) Differences in the average amplitude in different
frequency bands between schizophrenia patients and healthy controls. Band A: 0.01–0.15 Hz; band B: 0.08–0.15 Hz; band C: 0.01–0.08 Hz * represents the significant
differences by ANOVA.
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activity at low frequencies (Fig. 3a). Our findings supported a prior
opinion that BOLD signals at low frequencies reflect spontaneous neural
activity. In addition, we found distinct spontaneous activity patterns
between the superficial and deep white-matter networks. In particular,
the superficial white-matter networks exhibited maximal activity at the
lowest frequency 0.01 Hz, whereas the deep networks showed a maximal
amplitude at 0.07 Hz (Fig. 3a).

To examine the differences in spontaneous white-matter neural activity
between the schizophrenia and healthy control groups, we did compari-
sons using ANOVA. Comparisons showed that the amplitudes at the low
frequency (band C) were decreased in white-matter 1, 5, 6, 8 and 10 in the
schizophrenia group (Fig. 3b). The amplitudes at the high frequency (band
B) were decreased in white-matter 1, 2, 3, 5 and 6 in the schizophrenia
group (Fig. 3b). The details are provided in Supplementary 7.
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Correlations between altered white-matter networks and clinical variables

Correlation analyses found that three white-matter functional
connections (white-matter networks 1 and 8, 5 and 8, and 5 and 9)
were positively associated with disease duration. Moreover, one
white-matter and gray-matter functional connection (white-matter
network 8 and gray-matter sensori-motor network) was positively
correlated with disease duration. In addition, the low frequency
spontaneous fluctuations of white-matter networks 6, 8 and 10 were
negatively associated with disease duration. The results can be seen in
Fig. 4 and Supplementary 8. In addition, the PANSS score and anti-
psychotic medications showed no association with white-matter
functional index.



Fig. 4. Correlations between altered white-matter networks and disease duration. Three white-matter functional connections (white-matter network 1 and 8, 5 and 8,
and 5 and 9) were positively associated with disease duration. One white-matter and gray-matter functional connection (white-matter network 8 and gray-matter
sensori-motor network) was positively correlated with disease duration. The low frequency spontaneous fluctuations of white-matter networks 6, 8 and 10 were
negatively associated with disease duration. The star represents that outliers (>mean � 2*SD) dots were removed from these scatter diagrams (two dots in WM6, one
dots inWM8, and three dots in WM10).

Y. Jiang et al. NeuroImage 190 (2019) 172–181
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Potential influences of gray-matter signals

To eliminate potential interference from neighboring gray-matter, we
applied two stricter masks (percentages> 70% and >80%) for white-
matter. We found that the results from 70% to 80% masks were consis-
tent with the results of the 60%mask, and the high correlation coefficient
between the results using the 60% mask and that of the stricter masks
indicated that the results remained stable even with a stricter mask
(Supplementary 2). In addition, gray-matter signal regression reduced
the correlation between white-matter clusters and induced a negative
correlation, but it did not alter the relative connectivity strength or in-
fluence the comparisons between the patients and healthy controls
(Supplementary 4). Finally, in most of the white-matter networks, the
significant correlations with the gray-matter network were not associated
with their spatial distance (Supplementary 5).

Discussion

Consistent with a previous study (Peer et al., 2017), this study showed
that distinct white-matter functional networks could be identified using
correlation analysis of resting-state fMRI signals. By evaluating the
spontaneous activities and functional connectivity within the
white-matter, schizophrenia patients illustrated the decreased amplitude
of low-frequency oscillation and increased functional connectivity in
superficial perception-motor white-matter networks, suggesting the ab-
normality of perception-motor system in schizophrenia from the
perspective of white-matter functional networks. Additionally, the su-
perficial perception-motor white-matter networks had decreased func-
tional connectivity with cortical perception-motor gray-matter networks
(close-range communication). In contrast, the middle and deep
white-matter networks had increased functional connectivity with the
superficial perception-motor white-matter networks and cortical
perception-motor gray-matter networks (long-range communication).
The disrupted association between the gray-matter and white-matter
networks in the perception-motor system might be compensated
through the middle-deep white-matter networks. This may be the foun-
dation of extensive disrupted connections among brain regions in
schizophrenia. Finally, the deep white-matter network representing the
primary fiber tracts exhibited some significant alterations that were
associated with illness duration in schizophrenia.

In general, the BOLD signals observed in the gray-matter reflect the
activity of the neurons. Task-related fMRI, however, has illustrated
activation inside the white-matter (Fabri and Polonara, 2013; Gawryluk
et al., 2014; Mazerolle et al., 2008). A recent study has reported that
using fMRI signals, white-matter voxels can be clustered into several
networks according to their functional connectivity pattern (Peer et al.,
Fig. 5. A possible compensatory mechanism in schizophrenia. The disrupted associa
perception-motor system may be compensated for through the middle-deep white-m
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2017). Here, we identified ten white-matter functional networks con-
sisting of three layers (superficial, middle and deep). Most of the super-
ficial white-matter networks were correlated with their overlying
gray-matter networks, whereas the deep network had a relatively weak
association with all the gray-matter networks. Similar to the gray-matter
networks, the major amplitudes of low frequency fluctuations in the
white-matter networks were located in the range of less than 0.1 Hz.
These features of white-matter networks can provide additional infor-
mation for investigating the differences between health and disease.

Previous studies have reported the decreased BOLD signal amplitude
at low-frequency in perception-motor gray-matter networks in schizo-
phrenia (Alonso-Solis et al., 2017; Hoptman et al., 2010; Meda et al.,
2015). The current study also observed a decreased BOLD amplitude at
low frequencies in three superficial white-matter networks (visual,
temporal and sensori-motor). In addition, previous studies have indi-
cated that a mismatch between visual and sensori-motor signals is suf-
ficient to induce self-related disturbances in patients with schizophrenia
(Ehrsson, 2007). We also observed increased functional connectivity
between the superficial white-matter networks (visual and
sensori-motor) and the middle/deep white-matter networks. This
enhanced functional connectivity may suggest an insufficient or inef-
fective communication in the white-matter and may be a possible
fundamental mechanism that explains the perception-motor processing
deficits in patients with schizophrenia. Furthermore, these increases in
functional connection were also associated with disease duration, which
provided evidence that progressive abnormality of functional in-
tegrations occurred within white-matter networks.

In addition, the informational interaction between white-matter and
gray-matter networks may have two transmission pathways: close-range
and long-range communications. Both of these are altered in schizo-
phrenia patients: close-range communication is decreased, but long-
range communication is increased. In detail, the white-matter visual,
orbitofrontal and temporal networks had decreased functional connec-
tivity with their overlying gray-matter networks (close-range communi-
cation). In contrast, the middle and deep white-matter networks had
increased functional connectivity with the visual and motor gray-matter
networks (long-range communication). Therefore, it can be hypothesized
that the disrupted association between the gray-matter and white-matter
networks in the perception-motor system may be compensated for
through the middle-deep white-matter networks (Fig. 5).

In this study, the deep white-matter network covered the major as-
sociation fiber tracts, including the superior longitudinal fasciculus and
the inferior longitudinal fasciculus, which are considered to be the
fundamental link between lobes within hemispheres. Different from the
other white-matter networks, the deep network exhibited some unique
features. Compared to the other white-matter networks, the deep
tion between cortical gray-matter and superficial white-matter networks in the
atter networks.
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network had weaker correlations with all the gray-matter networks. In
addition, it showed a maximal resting state activity at a relatively high
frequency of 0.07 Hz. To explain this phenomenon, Peer et al. suggested
that the deep network might have specific functions other than the
typical functions of gray-matter networks (Peer et al., 2017). Moreover,
compared with healthy controls, we observed decreased amplitude of
low-frequency oscillation in the deep network in schizophrenia.
Furthermore, the greater decrease in amplitude in the deep network was
linked to longer disease duration. In addition, we observed reduced
amplitude of low-frequency oscillation in the middle white-matter
network, the posterior callosum network, which is mainly composed of
posterior callosum, posterior cingulate and precuneus regions. The
reduced amplitude of low-frequency oscillations in these regions has
been widely reported (Meda et al., 2015). These findings provided
additional evidence that there is an abnormality of the primary fibers that
are part of the deep white-matter network in schizophrenia. These
changes were consistent with previous DTI studies (Dong et al., 2017a;
Lener et al., 2015; Park et al., 2004).

This study should be interpreted with caution because of several
limitations. First, there is doubt as to whether the observed white-matter
signals reflect neuron-related activity, since the white-matter had very
few postsynaptic potentials that gave rise to BOLD signals (Logothetis
et al., 2001). Previous studies put forward two possible sources for
white-matter BOLD signals: spiking-related metabolic demands and as-
trocytes and NO-producing neurons activity (Gawryluk et al., 2014). The
contribution of blood vessels across the white-matter may also be a
reason (Gawryluk et al., 2014). In addition, as white-matter tracts cross
each other, the same white-matter locations may mix signals from
different functional systems. Therefore, it is difficult to say where the
precise source of the fMRI signals is in the white-matter. Although we
cannot clarify the source of white-matter functional activity, we found
that the signals from white-matter share common and typical charac-
teristics with those of gray-matter. These signals of white-matter can add
an additional layer of information regarding differences between health
and diseases. Another issue is the possible attribution of gray-matter
signals to white-matter due to partial-volume effects. This problem can
be exacerbated by spatial smoothing. By smoothing the white-matter and
gray-matter separately and using only the voxels that were identified as
white-matter from each subject, we took measures as early as possible to
ensure that the gray-matter signals did not interfere with the
white-matter signals. These measures, together with the finding of an
association between disease duration and the amplitude of low frequency
oscillation in the deep network, might reflect an alteration related with
the white-matter in schizophrenia. However, this partial volume effect is
only partially addressed by segmentation of the white-matter and
gray-matter. The fMRI signal within a voxel is not independent from that
of its neighbors due to BOLD-image reconstruction and the underlying
physiological (vascular) and physical (MRI) effects. It is thus always of
concern whether or not the correlation or clustering pattern of
white-matter fMRI signals are simply due to the leakage of the
gray-matter fMRI signals. To our knowledge, it is difficult to eliminate
this problem by using the standard data acquisition sequence/para-
meters. In addition, some artifacts, such as respiration, head motion and
scanner noise, may contaminate the white-matter signals. In general, the
foundations of white-matter fMRI are not established at this stage, and
future work should address these methodological issues. Most of the
schizophrenia patients in this study had chronic schizophrenia and
received antipsychotic medications. Their clinical symptoms were in
stable condition and appeared to be under control, which may be the
reason why no correlation was observed between the white-matter
functional connectivity and the clinical symptoms. Thus, first-episode,
drug-naive schizophrenia patients would need to be included to further
assess the correlation between white-matter functional connectivity and
clinical symptoms in the future. In addition, neuropsychological tests and
cognitive measures were not included in this study; thus, we could not
assess the association between cognitive and brain changes. Finally, it
180
was impossible to exclude random bias in this observational study.

Conclusions

The present study demonstrated the perception-motor system
changes in schizophrenia from the viewpoint of white-matter functional
networks. In addition, this study uncovered aberrant interactions be-
tween the superficial white-matter networks and cortical gray-matter
networks. The disrupted association between the gray-matter and su-
perficial white-matter networks in perception-motor system might be
compensated for through the middle-deep white-matter networks, sug-
gesting a possible fundamental mechanism that underlies the extensive
disrupted connections among brain regions in schizophrenia. Finally, the
deep white-matter network exhibited some specific alterations that
provided additional information for understanding the abnormalities in
primary fibers in schizophrenia.
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