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A B S T R A C T

Electroconvulsive therapy (ECT) is considered a treatment option in patients with drug-resistant schizophrenia
(SZ). However, approximately one-third of patients do not benefit from ECT in the clinic. Thus, it is critical to
investigate differences between ECT responders and non-responders. Accumulated evidence has indicated that
one region of ECT action is the hippocampus, which also plays an important role in SZ pathophysiology. To date,
no studies have investigated differences in ECT effects in the hippocampus between treatment responders and
non-responders. This study recruited twenty-one SZ patients treated for four weeks with ECT (MSZ, n=21) and
twenty-one SZ patients who received pharmaceutical therapy (DSZ, n=21). The MSZ group was further cate-
gorized into responders (MSR, n=10) or non-responders (MNR, n=11) based on treatment outcomes by the
criterion of a 50% reduction in the Positive and Negative Syndrome Scale total scores. Using structural and
resting-state functional MRI, we measured the hippocampal volume and functional connectivity (FC) in all SZ
patients (before and after treatment) and 23 healthy controls. In contrast to pharmaceutical therapy, ECT in-
duced bilateral hippocampal volume increases in the MSZ. Both the MSR and MNR exhibited hippocampal
expansion after ECT, whereas a lower baseline volume in one of hippocampal subfield (hippocampus-amygdala
transition area) was found in the MNR. After ECT, increased FC between the hippocampus and brain networks
associated with cognitive function was only observed in the MSR. The mechanism of action of ECT in schizo-
phrenia is complex. A combination of baseline impairment level, ECT-introduced morphological changes and
post-ECT FC increases in the hippocampus may jointly contribute to the post-ECT symptom improvements in
patients with SZ.

1. Introduction

Schizophrenia (SZ) is a serious mental disorder mainly character-
ized by multidimensional psychotic syndrome, such as positive and
negative symptoms, as well as cognitive and affective impairments
(van der Meer et al., 2010). In SZ, electroconvulsive therapy (ECT) is
considered a treatment option, particularly in patients with drug-re-
sistant symptoms or to resolve acute symptoms (Pompili et al., 2013).

Although ECT has been a conventional technique in clinical treatment,
its mechanisms of action on the brain have not been fully clarified.

Since ECT was introduced to clinical practice, several hypotheses,
including monoamine neurotransmitter, neuroendocrine and antic-
onvulsant theories (Kellner et al., 2012), have been provided to inter-
pret possible mechanisms of action. ECT-related neuroplasticity is one
of the potential mechanisms, especially neuroplasticity occurring in the
hippocampus (Bouckaert et al., 2016a; Oltedal et al., 2017;
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Redlich et al., 2016). Several studies found reproducible results that
electroconvulsive shock induced neurogenesis in the dentate gyrus of
the hippocampus in an animal model (Madsen et al., 2000; Perera et al.,
2007). In humans, accumulated evidence has also indicated that ECT
induced volume increases in the hippocampus (Abbott et al., 2014;
Bouckaert et al., 2016a; Cano et al., 2017). More recently, Takamiy and
colleagues systematically reviewed MRI studies investigating structural
changes due to ECT in patients with depression and quantitatively
analysed whether ECT induced hippocampal and other brain region
structural changes through a meta-analytic approach (Takamiya et al.,
2018). They found that both right and left hippocampal and amygdalar
volumes increased after ECT. In addition, our previous study applied a
data-driven method (voxel-based morphometry, VBM) to detect ECT-
induced grey-matter alterations across the whole brain and found sig-
nificant grey matter increases within the hippocampus (Wang et al.,
2019). Although some studies have also reported ECT-induced changes
in other regions, such as the striatum (Wade et al., 2016), cingulate
cortex (Argyelan et al., 2016) and insula (Bouckaert et al., 2016a), the
current hypothesis-driven study focused on ECT-induced hippocampal
plasticity, compared hippocampal volume and FC between ECT re-
sponders and non-responders to link ECT-related hippocampal plasti-
city with clinical outcomes in SZ.

The hippocampus anatomically connects brain regions that mediate
emotional and cognitive regulation, which supports the hippocampus as
having a key role in SZ-related circuitry (Chen et al., 2017; Price and
Drevets, 2010). In addition, structural and functional disruptions in the
hippocampus have been implicated in the pathophysiology of SZ. On
the one hand, hippocampal volume reduction has been widely reported
in previous SZ studies (Adriano et al., 2012; Dietsche et al., 2017;
Jiang et al., 2018b). However, several structural MRI studies have re-
ported contrasting results with no differences in hippocampal volume
between SZ and healthy subjects (Adriano et al., 2012; Niemann et al.,
2000). These inconsistencies might be explained by illness duration or
treatment strategy (Adriano et al., 2012). As there are these incon-
sistent results regarding the hippocampal volume reductions in SZ, it is
meaningful for clinical research to clarify the relationship between the
levels of hippocampal volume reduction and clinical responses to ECT.
A substantial number of studies have indicated that there are FC al-
terations in the hippocampus in patients with SZ (Kraguljac et al., 2014;
Schmitt et al., 2011). Moreover, studies have found associations be-
tween hippocampal FC changes and clinical symptoms in SZ patients
(Duan et al., 2015a; Kraguljac et al., 2016). These findings not only
suggest that hippocampal FC is highly relevant to the symptoms and
pathobiology of SZ but also imply that clinical treatment outcomes
(e.g., symptom remission) may be directly reflected in FC changes.
However, to date, no study has investigated whether ECT causes dif-
ferential FC changes in the hippocampus between responders and non-
responders and assessed the relationship between FC changes and
symptom remission.

Clinically, approximately one-third of patients do not benefit from
ECT (Lally et al., 2016); thus, it is of high clinical significance to in-
vestigate differences between ECT responders and non-responders.
Taking into account these issues, in this observational study, which was
designed in a similar manner as a previous study (Redlich et al., 2016),
we systematically assessed ECT effects on hippocampal structure and
function in patients with SZ. Our specific aims were to clarify (1)
whether the hippocampal volume changes induced by ECT were dif-
ferent than those treated with drug treatment alone. We hypothesized
that the hippocampal volume would be increased after ECT treatment
but would not change after drug treatment alone; (2) whether the
hippocampal volume increase is an ECT effect common to both clinical
responders and non-responders. We hypothesized that both responders
and non-responders would show increased hippocampal volume after
ECT; (3) whether the hippocampal FC changes are ECT effects that are
specific to either the responders or non-responders. We hypothesized
that ECT would increase hippocampal FC in the responders but

decreased FC in the non-responders; and (4) whether there were hip-
pocampal volume and FC differences between ECT responders and non-
responders at baseline.

2. Materials and methods

2.1. Participants

In the present study, forty-two patients with acute SZ were divided
into two groups according to treatment strategy. One group received a
four-week ECT series in addition to antipsychotic drugs (MSZ group,
n=21); the other group received only antipsychotic drugs (DSZ group,
n=21). All inpatients were recruited from the Shanghai Mental Health
Centre (SMHC) from October 2013 to January 2015. The patients were
diagnosed with SZ by trained clinical psychiatrists using the SCID-I/P
(Structural Clinical Interview for DSM-IV-TR, Patient edition) and met
the indications for ECT. In addition, the patients had no history of ECT
within the previous six months. Psychiatric symptom severity was as-
sessed by the Positive and Negative Syndrome Scale (PANSS), and the
total PANSS scores of all patients were greater than 60. All patients
received antipsychotic medications, and the daily antipsychotic medi-
cation dosage was converted to chlorpromazine equivalents (mg/d)
(Andreasen et al., 2010). Additional details regarding the antipsychotic
medication for each patient are provided in Supplementary Information
1. A sample of healthy controls (HC, n=23), which was matched to the
patient groups by age, sex and education level (Table 1), was also re-
cruited from the faculty in SMHC. All healthy controls did not have a
lifetime psychiatric disorder or family history of psychosis in their first-
degree relatives. Potential participants were excluded if they had brain
injuries, organic mental disorders, neurological abnormalities, other
serious physical illnesses, dementia, substance abuse or dependence, or
contraindications to MRI. The Ethics Committee of SMHC approved the
study protocol. Written informed consent was obtained from all sub-
jects prior to study participation.

2.2. Electroconvulsive therapy

Using a therapeutic apparatus Thymatron System IV (Somatics, Lake
Bluff, IL, USA), ECT was administered 3 times weekly for 4 weeks and
12 sessions. Before ECT, succinylcholine chloride (1.0 mg/kg) was used
to relax muscles, atropine (0.5 mg) was applied to reduce airway se-
cretion, etomidate (0.21–0.3 mg/kg) and propofol (1.82–2.44mg/kg)
were conducted to keep anaesthesia. Two electrodes were placed at
bilateral temporal scalps. The main parameters of ECT were similar for
all patients (frequency, 10–70 Hz; maximum charge delivered, 504 mC;
output current, 0.9 A; pulse width, 1.0 ms; maximum stimulus duration,
8 s). During ECT, we monitored motor convulsions and induced ta-
chycardia, and also recorded electroencephalogram and electro-
myogram (when necessary). The antipsychotic therapy remained stable
during ECT period except for the discontinuation of pharmacotherapy
in the morning before ECT.

2.3. Symptom assessments

At pre- and post-treatment, we measured the positive (PANSS-P),
negative (PANSS-N), general psychopathology (PANSS-G) subscales
and total scores (PANSS-T). The PANSS reductive ratio was defined as
percentage PANSS changes as: △PANSS-T%= (PANSS-Tt1−PANSS-
Tt2)× 100 /(PANSS-Tt1−30). PANSS-Tt1−30 was used as baseline
value instead of PANSS-Tt1 as 30 was the lowest possible value for
PANSS total score (Hasan et al., 2017). Similarly, △PANSS-P%,
△PANSS-N%, △PANSS-G% were also calculated. After ECT, the MSZ
group was further classified as the ECT responder (MSR group, n=10)
and non-responder (MNR group, n=11) groups, with the criterion of
less than 50% individual symptom relief for non-response according to
the PANSS total reductive ratio (Boter et al., 2009). Similarly, the DSZ
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group was also grouped to the drug responder (DR, n=12) and non-
responder groups (DNR, n=9). The responders and non-responders did
not differ in terms of gender, age, education, illness duration and
baseline PANSS scores (Table 1).

2.4. Data acquisition

Whole-brain imaging data were acquired using a 3-T Siemens
Magnetom veriosyngo MR B17 scanner. Functional MRI data were ob-
tained by a gradient echo planar imaging (EPI) sequence (TR 2000 ms;
TE, 30ms; flip angle, 90°; FOV, 220mm×220mm; matrix, 64×64;
slice thickness, 4 mm; 30 slices; voxel size, 3.4× 3.4× 3.4mm; 180
vol). In addition, high-resolution T1-weighted structural images were
collected using a magnetization-prepared rapid acquisition gradient
echo (MPRAGE) sequence (TR, 2530ms, TE, 2.56ms, flip angle, 7°,
inversion time, 1100ms, FOV, 256mm×256mm, matrix, 256×256,
224 slices, slice thickness, 1 mm; voxel size, 1.0× 1.0×1.0mm). The
patients were scanned twice before (baseline) and after 4-week therapy.
The HC underwent scanning only at baseline. The first MRI scan of
patients was obtained within 24 h before the first ECT, and the final
MRI scan was collected 24–48 h after the last session of ECT.
Participants were instructed to keep their eyes closed, relax, but not to
fall sleep.

2.5. Data processing

2.5.1. Hippocampal structural analysis
A longitudinal segmentation of hippocampal substructures was

performed using FreeSurfer (version 6.0, http://surfer.nmr.mgh.
harvard.edu/). Specifically, a longitudinal processing stream
(Reuter et al., 2012) including skull stripping, tissue segmentation,
surface reconstruction, registration and parcellation, was applied to all
subjects' T1 images in Freesurfer. This stream created an unbiased
within-subject template space by using robust, inverse consistent re-
gistration across scanning images (Reuter and Fischl, 2011). A long-
itudinal segmentation of hippocampal subfields tool in Freesurfer was

also applied to segmented hippocampal regions to obtain twelve hip-
pocampal subfields for each hemisphere (Iglesias et al., 2016). The
longitudinal algorithm uses a subject-specific atlas and treats all scan-
ning time points the same way to avoid processing bias, and thus in-
creases the robustness of segmentation (Iglesias et al., 2016). Whole
hippocampal volume and twelve subfields volumes were measured for
each hemisphere, including the hippocampal tail, subiculum, pre-
subiculum, parasubiculum, cornu ammonis area 1 (CA1), CA3, CA4,
hippocampal fissure, granular cells layer of the dentate gyrus (GC-ML-
DG), molecular layer, hippocampus-amygdala transition area (HATA)
and fimbria. Illustrations of hippocampal subfield segmentation for
each subject are provided in Supplementary Information 2.

2.5.2. Hippocampal resting-state functional connectivity analysis
Resting-state fMRI processing was performed in SPM12 (http://

www.fil.ion.ucl.ac.uk/spm) and DPABI (http://rfmri.org/dpabi) soft-
ware. The fMRI data preprocessing pipeline was similar with previous
study (Gong et al., 2019; Huang et al., 2018; Jiang et al., 2018a) and
was only briefly described here. Firstly, the first 10 time points were
removed for signal equilibrium and to allow the subjects’ adaptation to
the scanning noise; secondly, we did the slice-timing correction, rea-
lignment correction, normalization and resampling to 3×3×3mm3;
thirdly, the nuisance covariates including 24 motion parameters, white
matter and cerebrospinal fluid signals and linear trending were re-
gressed out; then, we performed temporally scrubbing (Power et al.,
2015) and temporal filtering (0.01–0.1 Hz); finally, the data was
smoothed (FWHM= 6mm). Following the preprocessing, seed-based
FC analysis was used to evaluate the hippocampal FC. Four regions of
bilateral rostral hippocampus (RosHIP) and caudal hippocampus
(CauHIP) were defined as the seed ROIs according to the Human
Brainnetome Atlas (Fan et al., 2016). Pearson's correlation coefficients
between the time series of each seed and that of the other voxels in the
whole brain were calculated and then Fisher's z-transformed to z-scores.
For each subject and each seed, a FC z-score map was obtained and used
for following statistical analysis.

Table 1
Demographic and clinical data of participants.

Characteristic MSZ: Mean (SD) DSZ: Mean (SD) HC (n=23)
MSR (n=10) MNR (n=11) P valuea DR (n=12) DNR (n=9) P valuea Mean (SD)

Gender (M/F) 5/5 5/6 0.835b 3/9 6/3 0.056b 11/12
Age (years) 30.4(7.7) 28.1(6.7) 0.472 31.0(6.6) 30.2(9.5) 0.827 31.2(5.9)
Education (years) 13.8(3.5) 10.9(2.9) 0.052 12.9(3.3) 12.1(2.5) 0.546 13.5(2.5)
Handness (left/right) 0/10 0/11 – 0/12 0/9 – 0/23
Chinese Han nationality 10 11 – 12 9 – 23
Married/unmarried/divorced 2/7/1 3/8/0 – 4/7/1 1/7/1 – 13/10/0
Smoking/nonsmoking 2/8 1/10 – 2/10 1/8 – 7/16
Drinking/nondrinking 0/10 0/11 – 0/12 0/9 – 3/20
Family history of schizophrenia (yes/no) 3/7 5/6 – 4/8 2/7 – 0/23
Illness duration (months) 70.3(53.8) 88.4(56.1) 0.462 51.3(76.7) 115.3(75.0) 0.071 –
Chlopromazine equivalents (mg/d) 333.8(218.5) 850.8(675.9) 0.032 406.2(420.5) 701.1(482.4) 0.151 –
Baseline PANSS score
Total 70.4(6.4) 73.4(10.1) 0.435 68.8(7.7) 73.3(11.8) 0.303 –
Positive 21.8(1.9) 19.6(2.7) 0.051 18.4(3.6) 20.0(3.4) 0.322 –
Negative 17.1(6.3) 21.4(8.0) 0.196 17.3(3.8) 17.6(6.8) 0.925 –
General 31.5(3.7) 32.4(4.0) 0.612 33.0(4.4) 35.8(7.0) 0.277 –
4-weeks PANSS score
Total 41.6(5.9) 57.1(5.2) <0.001 42.0(5.3) 61.9(10.3) <0.001 –
Positive 9.3(1.9) 12.3(3.1) 0.017 8.5(1.4) 16.6(3.4) <0.001 –
Negative 10.8(3.4) 18.0(6.1) 0.004 12.6(4.0) 16.0(6.4) 0.152 –
General 21.5(2.0) 26.8(1.9) <0.001 20.9(1.7) 29.2(4.9) <0.001 –

Abbreviations: MSZ, schizophrenia patients treated by ECT; DSZ, schizophrenia patients treated by antipsychotic drugs; MSR, schizophrenia patients with symptom
remission after ECT; MNR, schizophrenia patients without symptom remission after ECT; DR, schizophrenia patients with symptom remission after antipsychotic
medications; DNR, schizophrenia patients without symptom remission after antipsychotic medications; HC, healthy controls; PANSS, Positive and Negative Syndrome
Scale.

a P values were obtained from the two sample t-test except where noted.
b P values were obtained using the chi-square test.
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2.6. Statistical analysis

2.6.1. Hippocampal volume comparisons
To determine whether the hippocampal volume changes were a

specific effect induced by ECT rather than drug, repeated measured
two-way ANOVA was performed on the volumes of the whole hippo-
campus and each subfield with the between-subject factor (treatment
strategy: MSZ vs. DSZ) and the within-subject factor (time: t1 vs. t2).
Post-hoc paired t-tests were performed in the MSZ and DSZ groups to
indentify longitudinal changes after controlling for the overall in-
tracranial volume.

To further examine whether hippocampal volume changes were
different between the ECT responders and non-responders, repeated
measured two-way ANOVA was conducted with the between-subject
factor (MSR vs. MNR) and the within-subject factor (time: t1 vs. t2). Two
post-hoc paired t-tests were separately performed in the MSR and MNR
groups to characterize the longitudinal changes in hippocampal volume
after the ECT when controlling the effect of the overall intracranial
volume.

Additionally, ANOVA and post-hoc tests were used to compare the
baseline differences among the MSR, MNR and HC groups.

2.6.2. Hippocampal FC comparisons
To verify the hypothesis that ECT induced specific changes in hip-

pocampal FC in the ECT responders, repeated measured two-way
ANOVA was conducted with the between-subject factor (outcome: MSR
vs. MNR) and the within-subject factor (time: t1 vs. t2); the interaction
effect of outcome and time was used to investigate the specific changes
observed in the ECT responders. Two post-hoc paired t-tests were se-
parately performed in the MSR and MNR groups to detect the long-
itudinal changes in hippocampal FC after the ECT. In addition, ANOVA
and post-hoc tests were applied to the comparisons amongststststst the
MSR, MNR and HC groups at the baseline. For these analyses on the
voxel-wise FC z-score maps, a multiple comparison correction was
performed using a height threshold (z > 2.7) for individual voxels and
a cluster size based on the Gaussian random field theory, which cor-
responds to p < 0.05 after correction (Huang et al., 2018).

2.7. . Relationship between hippocampal changes and symptom
improvements

The hippocampal volume and FC values that exhibited significant
longitudinal changes were extracted. The hippocampal volume change
was defined as the difference in volume (Volumet2 - Volumet1).

Similarly, the FC changes were computed as difference values (FCt2 -
FCt1). As these values did not conform to a normal distribution ac-
cording to the Kolmogorov-Smirnov tests, Spearman rank correlations
were used to assess the relationships between the hippocampal volume
or FC changes and the reductive ratios of the symptoms (△PANSS-P%,
△PANSS-N%, △PANSS-G%, and △PANSS-T%) in the MSR group.

2.8. Power analysis on the longitudinal changes in hippocampal volume and
FC

Finally, to estimate the statistical power for these longitudinal
changes in hippocampal volume and functional connectivity in the MSR
and MNR groups, power analyses were conducted using the G*Power
3.1.9.2 (http://www.gpower.hhu.de/).

2.9. Additional analysis

2.9.1. Baseline comparisons between MSZ and DSZ
To investigate the differences in hippocampal volume and FC be-

tween the MSZ and DSZ groups at baseline, we performed two-sample t-
tests to compare the differences between the MSZ and DSZ in the vo-
lume of each hippocampal subfield and FC.

2.9.2. Comparisons between responders and non-responders
In addition, we divided all the SZ patients into responders (SZR

group: N=22; 14 female; 30.72±7.38 years of age) and non-re-
sponders (SZNR group: N=20; 9 female; 29.05± 7.24 years of age) to
further compare the baseline volume and FC across groups and the
group-by-time interactions using repeated measured ANOVA.

2.9.3. FC changes in the DR and DNR groups
To further investigate the FC changes due to pharmacological

treatment, paired t-tests were used to separately compare the differ-
ences between t1 and t2 in the DR and DNR groups.

3. Results

3.1. Hippocampal volume changes

Repeated measured ANOVA showed a significant interaction effect
between the treatment strategy (MSZ vs. DSZ) and the time (t1 vs. t2) in
bilateral hippocampal volumes (left hippocampus, F=12.76,
p<0.001; right hippocampus, F=23.70, p<0.001) and certain sub-
fields (Fig. 1). Post-hoc paired t-test analysis showed significant

Fig. 1. Different changes of hippocampus volume between MSZ group and DSZ group. * represents that repeated measured ANOVA showed a significant interaction
effect between the treatment strategy (MSZ vs. DSZ) and the time (t1 vs. t2) in bilateral hippocampal whole volumes and certain subfields. Abbreviation: MSZ,
schizophrenia patients treated by ECT; DSZ, schizophrenia patients treated by antipsychotic drugs; CA, cornu ammonis area; GC-ML-DG, granular cells layer of the
dentate gyrus; HATA, hippocampus-amygdala transition area.
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increases in bilateral whole hippocampal volumes in the MSZ group
when controlling for the effect of overall intracranial volume (left,
t=3.97, p<0.001; right, t=4.53, p<0.001). However, a volume in-
crease was not observed in the DSZ group. Details of changes in all
hippocampal subfields are shown in Supplementary Information 3.

According to their remission status, patients in the MSZ group were
divided into MSR and MNR groups. Repeated measured ANOVA (Group
effect: MSR vs. MNR; Time effect: t2 vs. t1) showed a significant time
effect in bilateral hippocampal volumes (left, F=17.65, p<0.001;
right, F=29.57, p<0.001). Further paired t-tests showed that ECT
induced significant volume increases in the bilateral hippocampus and
certain subfields for both the MSR group and MNR group even after
controlling for the overall intracranial volume (Fig. 2 and Supplemen-
tary Information 4). Moreover, a power analysis exhibited a high sta-
tistical power (> 0.8) for these longitudinal changes (Supplementary
Information 5).

Baseline comparisons showed significant group differences
amongststststst the MSR, MNR and HC groups in the left CA1, left CA3,
left molecular_layer, bilateral fissure, GC-ML-DG, CA4 and HATA (Fig. 3
and Supplementary Information 6). However, after multiple compar-
ison corrections by Bonferroni correction, only the bilateral HATA (left,
F=8.26, p<0.001; right, F=10.88, p<0.001) and CA4 (left,
F=9.19, p<0.001; right, F=8.23, p=0.001) remained significant.
Post-hoc tests showed that in the left HATA, the MNR group had lower
volume than the MSR and HC groups; in the right HATA, both the MNR
and MSR groups showed lower volumes than the HC group; in the bi-
lateral CA4, the MSR group showed higher volumes than the HC group
(Fig. 3 and Supplementary Information 6).

3.2. Hippocampal FC changes

Paired t-tests showed that after ECT, the MSR exhibited significantly
increased FC between the hippocampus and prefrontal cortex as well as
between the hippocampus and regions in default mode network (DMN).
No decreases in FC were observed in the MSR group. However, in the
MNR group, the post-ECT patients showed decreased FC in the hippo-
campus and primary sensory network. No increases in FC were ob-
served in the MNR group. Detailed information is provided in Fig. 4 and
Supplementary Information 7. Moreover, a power analysis exhibited a
high statistical power (> 0.8) for these longitudinal changes (Supple-
mentary Information 5).

Consistent with the above findings, significant interaction effects
between the outcomes (MSR vs. MNR) and time (t1 vs. t2) were ob-
served for FC between the hippocampus and DMN as well as between
the hippocampus and primary sensory network. Detailed information is
shown in Supplementary Information 8.

In addition, baseline comparisons among the MSR, MNR and HC
groups found significant group differences in FC between the left
cauHIP and the right middle frontal gyrus (MFG), between the right
cauHIP and the right MFG, and between the left rosHIP and right pu-
tamen (Supplementary Information 9).

3.3. Relationship between hippocampal changes and symptom
improvements

In the MSR group, a significant association was observed between
the left CA4 increase and the general psychopathology reduction ratio
(Rho= 0.697, p=0.025). In addition, a significant correlation was
observed between the change in FC (left cauHIP and right angular
gyrus) and the general psychopathology reduction ratio (Rho=0.721,

Fig. 2. Longitudinal changes of hippocampus and subfields volumes in MSR and MNR after ECT. * represents that paired t-tests indicate a significant increased
volume in bilateral hippocampus and certain subfields in the MSR group and MNR group. Abbreviation: MSR, schizophrenia patients with symptom remission after
ECT; MNR, schizophrenia patients without symptom remission after ECT; CA, cornu ammonis area; GC-ML-DG, granular cells layer of the dentate gyrus; HATA,
hippocampus-amygdala transition area. The || represents that outliers (>mean±2*SD) dots were removed when performing the statistical analyses.
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p=0.019).

3.4. Additional analysis results

3.4.1. Baseline comparisons between MSZ and DSZ
The baseline comparisons between the MSZ and DSZ groups showed

that there was no significant difference between the two patient groups
in bilateral hippocampal volumes. The MSZ group exhibited higher FC
between the bilateral superior temporal gyrus and bilateral cauHIP than
the DSZ group. Details of baseline comparisons between the MSZ and
DSZ groups are shown in Supplementary Information 10.

3.4.2. Comparisons between responders and non-responders
By dividing all the SZ patients into SZR and SZNR, we found that at

baseline, the SZR group had higher volumes in the left CA1, left mo-
lecular layer, left GC-ML-DG, left CA3 and left CA4 than the SZNR
group. Post-hoc paired t-tests showed that in the SZR group, there were
increased volumes in the right hippocampus and subfields after treat-
ment. Details of baseline comparisons between the SZR and SZNR
groups and longitudinal changes between t1 and t2 are shown in
Supplementary Information 11.

3.4.3. FC changes in the DR and DNR groups
Paired t-tests showed that the DR group had increased FC between

the left rosHIP and right insula as well as between the left rosHIP and
right inferior frontal gyrus (IFG) after pharmacological treatment.
However, the DNR group exhibited decreased FC between the left
rosHIP and right middle frontal gyrus (MFG) and between the left
cauHIP and right MFG after pharmacological treatment. Detailed in-
formation on FC changes in the DR and DNR groups is shown in
Supplementary Information 12.

4. Discussion

To our knowledge, this is the first study investigating hippocampal
volume and FC changes between ECT responders and non-responders in
SZ. As expected, four main findings are as follows: (1) Hippocampal
volume increases were only observed in patients with SZ treated by
ECT. This suggested that the hippocampal volume increase was a spe-
cific ECT effect rather than a drug effect. (2) Both the MSR and MNR
groups exhibited increased hippocampal volume following ECT, which
further indicated that hippocampal volume increases were an inherent
effect of ECT. (3) Interestingly, in the MSR group, we found increased
FC between the hippocampus and higher-order cognitive networks;

however, in the MNR group, we observed reduced FC between the
hippocampus and primary sensory networks, including visual, sensor-
imotor and auditory networks. These findings suggested that ECT-in-
duced changes in hippocampal FC with higher-order cognitive networks
might be associated with clinical symptoms. (4) Finally, baseline
comparisons showed that compared with the HC group, the MNR group
had lower baseline volume in the HATA and higher FC between the
hippocampus and putamen, which contributed to the prediction for
ECT treatment outcomes.

Our investigation corroborated previous findings of hippocampal
volume increases following ECT in psychiatric disorders (Abbott et al.,
2014; Bouckaert et al., 2016a, 2016b; Nordanskog et al., 2010, 2014;
Thomann et al., 2017) and further compared the differences between
ECT and drug-only samples. Our study revealed increased volumes in
the bilateral hippocampus only in the ECT sample, whereas evidence
for such structural changes was absent in the drug-only sample. Fur-
thermore, the current study divided the ECT samples into MSR and
MNR groups and observed a hippocampal volume increase common to
both groups. This finding indicated that these changes in hippocampal
volume induced by ECT were not unique to patients with improved
symptoms. In this study, the ECT-related brain changes in the hippo-
campus observed in patients with SZ were similar to those observed in
patients with MDD, which is consistent with previous studies
(Thomann et al., 2017; Wolf et al., 2016). Thomann and colleagues
reported a similar pattern of brain volume changes in the hippocampus
of individuals with SZ and MDD (Thomann et al., 2017; Wolf et al.,
2016). In addition, hippocampal deficits have frequently been reported
to be robust in patients with SZ (Chen et al., 2017; Li et al., 2018), and
previous studies provided evidence that such abnormalities also exist in
those with MDD (Chen et al., 2018; Sheline et al., 2019). This suggests
that ECT modulates neural effects that are not diagnosis-specific but are
critical for both affective and non-affective psychoses.

Accumulated evidence has indicated that SZ is related to aberrant
functional interactions between large-scale brain networks and cortical-
subcortical pathways (Dong et al., 2019; Duan et al., 2015b; He et al.,
2019; Lyu et al., 2015; Ma et al., 2016). To date, several neuroimaging
studies have investigated FC changes induced by ECT using resting-
state fMRI (Abbott et al., 2014; Huang et al., 2018; Jiang et al., 2019).
Abbott reported that hippocampal FC increased after ECT in MDD pa-
tients and correlated with depressive symptom reduction (Abbott et al.,
2014). Our recent study found increased functional integration in the
DMN in patients with SZ following ECT using a data-driven FC density
analysis (Huang et al., 2018). However, very few neuroimaging studies
have addressed whether the brain FC affected by ECT differs between

Fig. 3. Baseline comparisons in hippocampal and subfields volume among MSR, MNR and HC. * represents that ANOVA and post-hoc tests indicate a significant
difference among the three groups. Abbreviation: MSR, schizophrenia patients with symptom remission after ECT; MNR, schizophrenia patients without symptom
remission after ECT; CA, cornu ammonis area; GC-ML-DG, granular cells layer of the dentate gyrus; HATA, hippocampus-amygdala transition area. The || represents
that outliers (>mean±2*SD) dots were removed when performing the statistical analyses.
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responders and non-responders. To our knowledge, only one study used
baseline resting-state FC networks to predict ECT clinical responsive-
ness, although they did not investigate the longitudinal alterations that
may have contributed to symptom improvement (van Waarde et al.,
2015). These findings supported the hypothesis that FC networks are
specifically altered in patients who respond to ECT. Interestingly, in the
current study, we found increased FC between the hippocampus and
higher-order cognitive networks, especially the default mode network
(DMN), in the MSR group. The hippocampus is a key region for memory
encoding and retrieval functions (Tamminga et al., 2010). The DMN has
been widely implicated in self-referential processes related to internal
mental states (Dong et al., 2018b; Menon, 2011). The dorsolateral
prefrontal cortex, as an important region of the central executive net-
work, is responsible for higher-order cognitive function and is crucial

for interfacing with the external environment (Liao et al., 2019;
Menon, 2011). A possible ECT mechanism could be reinforcing the
connectivity between the hippocampus and higher-order cognitive
networks to manage the information integration between the internal-
and external-based mental landscapes and thus influence the clinical
symptoms. In addition, an association between FC changes and
symptom reductions was observed, which further demonstrated the
relationship between ECT effects and clinical treatment outcomes. In
addition, we found reduced FC between the hippocampus and primary
sensory networks in the non-responders. Notably, after ECT, these so-
called "non-responders" exhibited an incomplete remission relative to
the "responders", rather than a worsening of clinical symptoms. These
FC reductions may be another ECT mechanism that weakens the con-
nectivity of the hippocampus and primary sensory networks to block

Fig. 4. Longitudinal FC changes between pre-ECT and post-ECT in MSR group and MNR group.
Abbreviations: MSR, schizophrenia patients with symptom remission after ECT; MNR, schizophrenia patients without symptom remission after ECT; RosHIP, rostral
hippocampus; CauHIP, caudal hippocampus; MTG, middle temporal gyrus; MFG, middle frontal gyrus; AG, angular gyrus; ITG, inferior temporal gyrus; STG, superior
temporal gyrus; PoC, postcentral gyrus; MOS, middle occipital cortex.
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access of the primary information and achieve mild symptom remission.
In this manner, the lack of bottom-up primary information may give
rise to abnormalities in higher-order information processing. Therefore,
these patients failed to attain complete symptom remission. However,
these interpretations are speculative; thus, future studies should test
this hypothesis by task-based fMRI.

Baseline comparisons indicated that compared with the HCs, the SZ
patients in the MSR and MNR groups showed lower hippocampal sub-
field volumes in the HATA. This finding is also consistent with previous
meta-analysis studies (Adriano et al., 2012). Furthermore, our study
found a lower baseline volume in the HATA in the MNR group. To our
knowledge, this is the first study reporting that a lower baseline hip-
pocampal subfield volume correlated with poorer ECT outcomes. In
addition, FC baseline comparisons also found higher hippocampus-pu-
tamen FC in the MNR group than in the MSR and HC groups. However,
the baseline differences between responders and non-responders may
have also been influenced by age, disease duration, episode duration,
medication and other random factors. Thus, the baseline differences
should be interpreted with caution. Despite these potential confounds,
the results from the current study suggest that pre-existing or more
serious reductions in volume in the hippocampus may have a negative
impact on clinical outcomes to ECT, which could help psychiatrists,
clinicians and patients make better treatment decisions.

Despite these encouraging findings, several limitations must be ac-
knowledged. First, the current sample size is relatively modest.
Although sufficient statistical power was provided by the power ana-
lysis in this study, a larger sample size would be more useful to increase
the reliability and sensitivity. Second, the SZ participants included
medicated and chronic patients. Antipsychotic medication and illness
duration may have confounding effects on brain structure and function
(Gong et al., 2016). Although we included a matched pharmacotherapy
group as the treatment control, the effects of concomitant anti-
psychotics during the ECT course cannot be completely ruled out.
Third, neuropsychological assessments were not evaluated; thus, we did
not assess the associations between the changes in cognitive function
and brain changes. Fourth, we assumed that the volume and function of
the normal brain would not significantly change over the course of one
month; thus, healthy controls were only scanned at baseline. Finally, as
patients were not randomized to each group, some potential bias may
have been introduced into the analyses.

In conclusion, this study demonstrated that ECT induced a hippo-
campal volume increase in patients with SZ that was common to both
responders and non-responders. However, we observed hippocampal
FC increases in the clinical responders, while we observed decreases in
non-responders. Furthermore, the FC changes correlated with symptom
improvements. These findings identified ECT-induced effects in the
hippocampus. In addition, the ECT-induced improvements in both
structure and function in the hippocampus might imply an important
mechanism of action of ECT in patients with SZ.
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