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A B S T R A C T

Objective: To investigate alterations in spontaneous brain activity in MRI-negative refractory temporal lobe
epilepsy patients with major depressive disorder using resting-state functional magnetic resonance imaging (RS-
fMRI).
Methods: Eighteen MRI-negative refractory temporal lobe epilepsy patients with major depressive disorder
(PDD), 17 MRI-negative refractory temporal lobe epilepsy patients without major depressive disorder (nPDD),
and 21 matched healthy controls (HC) were recruited fromWest China Hospital of SiChuan University from April
2016 to June 2017. The Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) and 17-
item Hamilton Depression Rating Scale were employed to confirm the diagnosis of major depressive disorder and
assess the severity of depression. All participants underwent RS-fMRI scans using a 3.0 T MRI system. MRI data
were compared and analyzed using the amplitude of low-frequency fluctuations (ALFF) and regional homo-
geneity (ReHo) to measure spontaneous brain activity. These two methods were both used to evaluate spon-
taneous cerebral activity.
Results: The PDD group showed significantly altered spontaneous brain activity in the bilateral mesial prefrontal
cortex, precuneus, angular gyrus, right parahippocampal gyrus, and right temporal pole. Meanwhile, compared
with HC, the nPDD group demonstrated altered spontaneous brain activity in the temporal neocortex but no
changes in mesial temporal structures.
Conclusion: The PDD group showed regional brain activity alterations in the prefrontal-limbic system and
dysfunction of the default mode network. The underlying pathophysiology of PDD may be provided for further
studies.

1. Introduction

Depression is the most common psychiatric comorbidity in epilepsy,
ranging from 24% to 50% in prevalence rates [1–3], and up to 50% to
60% in temporal lobe epilepsy [2,4]. Major depressive disorder was
predicted to be the second leading global burden by 2020 [5]. De-
pression decreases quality of life and presents a higher risk of suicide in
epilepsy patients [6–8].

Thirty percent of patients with refractory temporal lobe epilepsy
(TLE) have normal structural MRI scans upon visual inspection (MRI-
negative TLE) [9], in which there is no evidence of hippocampal
sclerosis(HS). Compared to TLE patients with HS, MRI-negative TLE
patients have special characteristics, including a later age at seizure
onset, a higher frequency of secondary seizure generalization, and less

impairment of memory function [10–14]. Seventy percent of TLE pa-
tients have a high risk of developing refractory epilepsy and are po-
tential candidates for epilepsy surgery [15]. Notably, refractory MRI-
negative TLE patients with major depressive disorder (PDD) need to
receive epilepsy surgery to improve quality of life. However, previous
studies demonstrated that the percentage of MRI-negative TLE patients
who remained seizure-free post-surgery was only 51% compared with
75% of TLE with HS patients [16]. This cause may be difficult to
identify the epileptogenic zone in MRI-negative TLE patients. However,
with improved imaging techniques, these cases may be amenable to
surgical resection. A recent RS-fMRI study suggested that MRI-negative
TLE may involve different brain networks compared with TLE with HS
[14]. Until now, there has been no research on PDD using RS-fMRI,
which may help reveal the underlying mechanisms and assist
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preoperative localization in PDD to obtain better postsurgical out-
comes.

RS-fMRI is a powerful tool for measuring intrinsic spontaneous
neural activity without task design constraints [17,18] and is used
widely to assess neuropsychiatric diseases such as Parkinson disease
[19], schizophrenia [20,21], and depression [22]. In our previous stu-
dies focused on epilepsy, RS-fMRI findings provided interesting in-
formation to understand the mechanism of epileptic activity in the
human brain [23–25]. ReHo and ALFF are two reliable algorithms used
to quantify the neural activity in RS-fMRI [26]. ALFF represents the
intensity of spontaneous neural activity in the resting state and re-
presents energy metabolism [27]. Wang et al. found that altered ALFF
in epilepsy might reflect the effects of epileptic activity [28]. ReHo
evaluates the neural synchronization of a given voxel with its neigh-
boring voxels [29]. High ReHo values in a given brain area represent
oscillation of neurons in high synchronization [29]. Jiang et al. illu-
strated increased ReHo in thalami and motor-related regions in gen-
eralized epilepsy, suggesting that an abnormal thalamocortical circuit is
related to generalized epileptic activity [30]. Another study showed
that ALFF can be supplemented with ReHo to test global spontaneous
activity and that ReHo was more powerful than ALFF in discovering
regional abnormalities [31]. Hence, the combination of the two
methods may offer more interesting information about spontaneous
brain activity in patients with epilepsy than either method alone [31].

Our study investigated spontaneous brain activity in PDD using
ReHo and ALFF. We hypothesized that significant differences in ALFF
and ReHo data would be acquired within specific brain regions com-
pared to MRI-negative temporal lobe epilepsy patients without major
depressive disorder (nPDD) and matched controls. These altered re-
gions will help better understand the underlying neurophysiology and
assist in preoperative localization in PDD.

2. Methods

2.1. Participants

This study was approved by West China Hospital Ethics committee,
and all participants signed informed consent forms. Thirty-five patients
with TLE and 21 healthy controls (HC) were recruited from the out-
patient department of West China Hospital from March 2016 to June
2017. Every patient was diagnosed separately by two senior neurolo-
gists. The Diagnostic and Statistical Manual of Mental Disorders, Fourth
Edition (DSM-IV) and 17-item Hamilton Depression Rating Scale (17-
HAMD) were employed to confirm the diagnosis of major depressive
disorder and assess the severity of depression.

The inclusion criteria included the following: 1. Patients all met the
diagnostic criteria of the International League Against Epilepsy [32,33]
and refractory epilepsy was diagnosed according to the ILAE 2010
consensus [34]; 2. All patients underwent a 3T high-resolution MRI
with oblique coronal thin sections specifically oriented perpendicular to
the hippocampal long axis in order to confirm no potentially epilepto-
genic structural abnormalities; 3. All patients had at least three in-
stances of ictal-interictal video EEG monitoring with the use of sphe-
noidal electrodes to confirm origin from the temporal lobe; 4. All
patients with major depressive disorder met the DSM-IV criteria and a
score of ≥17 on the 17-HAMD scale. The exclusion criteria included
the following: 1. A history of mood disorders; 2. Use of anti-depressive
drugs; 3. Independent left and right temporal lobe seizures. All 21
healthy controls were matched in terms of gender, age, and degree of
education.

2.2. MRI data acquisition

All participants were scanned on a 3T scanner (GE Discovery
MR750, Milwaukee, WI) at the MRI Research Center at the University of
Electronic Science and Technology of China. During the scan, all

participants were instructed to close their eyes without thinking of
anything in particular. The scan parameters were as follows: 2000/
30 ms repetition time/echo time (TR/TE), 90° flip angle; 64 × 64 ma-
trix size; 24 × 24 cm2

field of view; and 4/0.4 mm thickness/gap. A
total of 205 volumes (32 slices per volumes) were obtained over a 410-
second period. Axial anatomical T1-weighted images were also obtained
with a 3D fast-spoiled gradient echo sequence, and the parameters were
as follows: 6.008/1.984 ms TR/TE; 90° flip angle; 256 × 256 matrix
size; 25.6 × 25.6 cm2

field of view; 1 mm slice thickness (no gap).

2.3. Data processing

Preprocessing of fMRI data was conducted using the SPM8
toolbox (statistical parametric mapping, http://www.fil.ion.ucl.ac.
uk/spm) and included slice time correction, motion correction, and
spatial normalization (3 × 3 × 3 mm3) to the MNI template. The
first 10 time points from each patient's data were discarded to ensure
magnetic field stabilization. Subjects were excluded if their head
motion exceeded 3.0 mm (translation) and 3.0° (rotation) during
fMRI acquisition. In addition, we also assessed translation and ro-
tation in both groups using the following formula: head motion/
rotation = ∑ + +

− =
d d d|Δ | |Δ | |Δ |x y z

1
M 1 i 2

M 2 2 2
i i i , where M is the

length of the time course (M = 200 in this study); xi, yi and zi are
translations/rotations at the ith time point in the x, y, and z direc-
tions, respectively, Δdxi

= xi − xi − 1, and similar for yi and zi. Then,
the nuisance signals were regressed out, including white matter,
cerebrospinal fluid and global signal, and six motion parameters. The
resulting time course was detrended but no temporal filtering was
performed in consideration of the following analyses in the full fre-
quency band. Finally, these images were smoothed with a 6-mm full-
width at half maximum (FWHM) of an isotropic Gaussian filter for
the ALFF analysis. However, the smoothing step was performed for
the ReHo map, which was computed in the unsmoothed images.

2.4. ALFF analysis

The amplitude of low-frequency fluctuation maps were computed
via REST software (http://www.restfmri.net/forum/REST). First, the
time series of each voxel was transformed into a frequency domain via
fast Fourier transform and the square root of the power spectrum was
calculated. Next, the mean square root of the power across
0.01–0.08 Hz was obtained as the ALFF. Then, the ALFF of each voxel
was divided by their own mean ALFF for each subject within the brain
mask for standardization.

2.5. ReHo analysis

The values of ReHo (also named Kendall's coefficient of con-
cordance) were computed using REST software. We measured the
similarity of the ranked time series of a center voxel in a cluster
composed of 26 nearest neighbor voxels. Then, for standardization
purposes, the ReHo of each voxel was divided by its own global mean
ReHo value within the brain mask. Next, the data were smoothed
with an isotropic Gaussian kernel (6 mm full width at half
maximum).

2.6. Statistical analysis

Statistical analysis of demographic and clinical data was performed
using SPSS 19, an IBM company. A one-way ANOVA or t-test was used
for continuous variables and a Chi-square test was used for categorical
variables to assess the differences among the three groups (PDD, nPDD,
HC). A Kruskal-Wallis test was used to compare ranked variables among
different groups. The height threshold of statistical significance was set
at p < 0.05.
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To assess the ReHo and ALFF differences among the three groups, a
one-way analysis of variance (ANOVA) was performed in a voxel-wise
manner in the whole brain (p < 0.01,) using SPM8. Then, by per-
forming the results of ANOVA as a mask, post hoc t-tests were used
between each group using a threshold at p < 0.05 with FDR correction
to examine the spontaneous neuronal activity changes among the three
groups.

2.7. Correlation analyses between ALFF/ReHo and HAMD scores

To investigate the underlying linear association, Pearson's correla-
tions were used for ALFF/ReHo values and HAMD scores, controlling
for the effects of age and gender.

3. Results

3.1. Demographics and clinical data

Detailed demographics and clinical data for the PDD, nPDD and HC
groups are listed in Table 1. Age, sex, and years of education did not
differ between the three groups. Likewise, the duration of epilepsy and
localization of TLE did not differ between the PDD and nPDD groups.

The 35 epileptic patients were divided into two groups based on their
HAMD score. Patients who scored over 16 were included in the PDD
group, while those who scored below 8 were included in the nPDD
group. There were no significant differences between the two groups in
head motion and rotation.

3.2. Alterations of ALFF

To obtain the difference in ALFF among the three groups, a one-way
ANOVA was performed (p < 0.01). Fig. 1 illustrates the cerebral re-
gions with significant differences among groups, which included the
bilateral prefrontal cortex (Brodmann's area, BA 9/10), left inferior
temporal gyrus (BA37), angular gyrus (BA 39), right superior temporal
gyrus (BA22), precuneus (BA7), and parahippocampal gyrus (BA37).
Post-hoc t-tests between the three groups were performed to compare
ALFF in these areas (Table 2). Compared with the nPDD group, an in-
creased ALFF in the PDD group was observed in the bilateral prefrontal
cortex, angular gyrus, inferior temporal gyrus, as well as a decreased
ALFF in the right superior temporal gyrus, precuneus, and para-
hippocampal gyrus. Compared with the HC group, the nPDD group
mainly showed decreased ALFF values in the inferior temporal gyrus
and increased ALFF values in the superior temporal gyrus.

Table 1
Demographic and clinical characteristics of participants.

Variables PDD ± SD (N = 18) nPDD ± SD (N = 17) HC ± SD (N = 21) P value

Age (year) 30.1 ± 7.6 29.0 ± 6.7 24.9 ± 3.9 0.119

Gender
Male 5 8 8 0.499
Female 13 9 13
Education years 11.7 ± 1.8 11.6 ± 2.5 11.8 ± 2.2 0.995
HAMD score 26.7 ± 6.4 5.1 ± 1.1 < 0.001
Epilepsy duration (year) 4.4 ± 1.3 4.3 ± 1.2 0.933

Lateralization
Left 7 8 0.625
Right 11 9

PDD: Patients with major depressive disorder; nPDD: Patients without major depressive disorder; HC: Healthy controls; SD: standard deviation; HAMD:17-item Hamilton Depression
Rating Scale.

Fig. 1. The ANOVA maps of ALFF values showing significant differences among the PDD group, nPDD group, and healthy control group (P < 0.01). The significant differences included
the bilateral prefrontal cortex (Brodmann's area, BA 9/10), left inferior temporal gyrus (BA37), angular gyrus (BA 39), right superior temporal gyrus (BA22), precuneus (BA7), and
parahippocampal gyrus (BA37).
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3.3. Alterations of ReHo

Similar to the ALFF, a one-way ANOVA was performed among the
three groups to assess differences in ReHo value. Fig. 2 demonstrates
the cerebral regions with significantly different ReHo values among
groups, which included the prefrontal cortex (Brodmann's area, BA9),
left inferior temporal gyrus (BA37), angular gyrus (BA 39), right tem-
poral pole, precuneus (BA7), and right cerebellum. Post hoc t-tests
between the three groups were performed to compare ReHo values in
these areas (Table 3). Compared with the nPDD group, increased ReHo
values in the PDD group were observed in the left prefrontal cortex,

angular gyrus, and right cerebellum, and decreased ReHo values were
observed in the left inferior temporal gyrus and precuneus. Compared
with the HC group, the nPDD group mainly showed decreased ReHo
values in the angular gyrus and increased ReHo values in the pre-
cuneus.

3.4. Correlation analyses between ALFF/ReHo and HAMD scores

There was no significant correlation between altered ALFF/ReHo
values and HAMD scores in the PDD group (P > 0.05).

Table 2
The regions of ALFF value altered areas in whole brain analysis.

Location BA Peak MNI coordinate Cluster size Maximal T value P

x y z

PDD > nPDD
Left ITG 37 −45 −60 −6 30 2.36 ⁎

Left PFC 9 −24 36 42 125 3.95 ⁎

Right PFC 10 33 51 6 67 2.23 ⁎

Right AG 39 30 −60 45 42 2.87 ⁎

PDD < nPDD
Right PHG 37 24 −42 −6 84 −3.67 ⁎

Right PCU 27 −48 12 84 −3.25 ⁎

Right STG 22 63 −9 −3 24 −2.97 ⁎

PDD > HC
Right AG 39 30 −60 45 42 4.17 ⁎

nPDD > HC
Right STG 22 63 −9 −3 24 3.78 ⁎

Right PCU 7 27 −48 12 84 3.49 ⁎

Right PHG 37 24 −42 −6 84 3.38 ⁎

PDD < HC
Right PFC 9 33 18 36 26 −3.26 ⁎

nPDD < HC
Left PFC 9 −24 36 42 125 −4.64 ⁎

Left ITG 37 −45 −60 −6 30 −4.39 ⁎

Right ACC 32 15 42 42 190 −2.51 ⁎

PDD: Patients with major depressive disorder; nPDD: Patients without major depressive
disorder; HC: healthy control; BA, Brodmann area;ITG, inferior temporal gyrus; PFC,
prefrontal cortex; AG, angular gyrus; PHG, parahippocampal gyrus; PCU, precuneus; STG,
superior temporal gyrus; ACC, anterior cingulate cortex.

⁎ p < 0.05, with FDR correction.

Fig. 2. The ANOVA maps of ReHo values showing significant differences among the PDD group, nPDD group, and healthy control group (P < 0.01). The significant differences included
the prefrontal cortex (Brodmann's area, BA9), left inferior temporal gyrus (BA37), angular gyrus (BA 39), right temporal pole, precuneus (BA7), and right cerebellum.

Table 3
The regions of Reho value altered areas in whole brain analysis.

Location BA Peak MNI coordinate Cluster size Maximal T
value

P

x y z

PDD > nPDD
Left PFC 9 −36 24 51 74 5.45 ⁎

Right AG 39 51 −48 36 29 3.67 ⁎

Right cerebellum 9 −42 −42 31 3.20 ⁎

PDD < nPDD
Left ITG 37 −36 −39 −12 36 −3.48 ⁎

Right PCU 7 9 −39 57 69 −3.48 ⁎

PDD > HC
Right PCG 6 36 −12 60 115 3.96 ⁎

Left MFG 9 −36 24 51 74 2.94 ⁎

Right putamen 30 −18 54 115 3.33
nPDD > HC
Left ITG 37 −36 −39 12 36 3.82 ⁎

Right TP 57 3 −15 53 3.99 ⁎

Right PCU 37 9 −39 57 69 2.66 ⁎

PDD < HC
Left PFC 9 −36 24 51 74 −2.18 ⁎

nPDD < HC
Right AG 7 33 −66 51 34 −3.88 ⁎

PDD: Patients with major depressive disorder; nPDD: Patients without major depressive
disorder; HC: healthy control; BA, Brodmann's area; PFC, prefrontal cortex; ITG, inferior
temporal gyrus; MFG, middle frontal gyrus; AG, angular gyrus; PCU, precuneus; PCG,
precentral gyrus; TP, temporal pole.

⁎ p < 0.05, with FDR correction.
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4. Discussion

The resting-state fMRI characteristics of MRI-negative temporal lobe
epilepsy patients with major depressive disorder are unclear. This is the
first study to investigate resting-state fMRI in PDD patients. In our
study, patients with major depressive disorders showed altered ALFF
and ReHo values in several brain regions when compared with nPDD.
These regions included prefrontal cortex (PFC), inferior temporal gyrus,
precuneus, and angular gyrus. Compared with HC, the nPDD group
demonstrated altered spontaneous brain activity in the temporal neo-
cortex, but no changes in mesial temporal structures.

The regional cerebral blood flow (RCBF) and the regional metabolic
rate for glucose (RMRFG) are related to the functional activities of
neurons [35]. Many studies have found that in most brain regions,
RCBF/RMRFG and ReHo/ALFF values show a significantly positive
correlation. Therefore, high regional ReHo/ALFF values represent high
RCBF/RMRFG, and conversely, low regional ReHo/ALFF values re-
present low RCBF/RMRFG [36–38].

4.1. Functional impairment in the prefrontal-limbic system

Whole-brain voxel-based analysis of ALFF and ReHo showed that
increased ALFF values in the PDD group were located mainly in the
bilateral mesial prefrontal cortex, compared with the nPDD group.
Moreover, we also found a decreased ALFF value in right para-
hippocampal gyrus and a decreased ReHo value in right temporal pole.
Much evidence supports the notion of a common biological foundation
of depression and temporal lobe epilepsy as a comorbidity [39–41].
One brain pathway is the prefrontal-limbic system, which contains the
prefrontal cortex, amygdala, parahippocampal gyrus, hippocampal
formation and regions of the neocortex, including the temporal pole
[42,43]. This pathway regulates emotion and the epileptic pathogenic
pathways. The medial prefrontal cortex may regulate the limbic system,
especially the amygdala [44]. Functional connectivity between the
medial temporal lobe structures and the prefrontal cortex was a strong
predictive factor of depressive symptoms in patients with TLE [45].
Another study found altered ALFF value in the medial prefrontal cortex
(mPFC) in temporal lobe epilepsy patients with depressive symptoms
[42]. A recent study uncovered a significant negative correlation be-
tween Beck Depression Inventory scores and the cortical thickness of
the temporal pole in patients with a mood disorder [46]. The para-
hippocampal gyrus was considered an important epileptogenesis area in
temporal epilepsy. Some studies have reported consistent changes in
reduced ALFF, the fractional amplitude of low frequency fluctuations
value (fALFF), and ReHo in the parahippocampal gyrus in major de-
pressive disorder [47–49]. Abnormal fMRI signals have previously been
shown in the mood network between the amygdala, temporal poles,
and parahippocampal gyrus in major depressive disorder [50,51].
Therefore, our results demonstrated regional brain activity alterations
in the prefrontal-limbic system and disruption of the mood regulation
network.

4.2. Disruption of default mode network

Moreover, in the present study, changes in ALFF and ReHo values
occurred in precuneus, mPFC, angular gyrus and cerebellum that in-
volved the default mode network (DMN). The DMN includes the pos-
terior cingulate cortex (PCC)/precuneus, mPFC, lateral and inferior
parietal cortex (including angular gyrus and supramarginal gyrus) and
cerebellum [52]. The two most consistently delineated regions of the
DMN are the precuneus/PCC and the mPFC, according to their func-
tional roles. The precuneus/PCC is responsible for monitoring internal
and external environments [53], while the mPFC helps to observe in-
ternal psychological states, as well as those of others. The epileptic
deactivation of the default-mode regions, including the precuneus and
mPFC, has been reported in a few fMRI studies [54–56]. In humans, the

cerebellum may also be involved in regulating fear and pleasure re-
sponses. Both functional and structural abnormalities of the cerebellum
have been demonstrated in emotional disorders, including depression
and schizophrenia [57]. The cerebellum and its relevant neural con-
nections to prefrontal areas are integrated into pathological models of
depression [58]. Consistent with our expectations, the angular gyrus is
recognized as the core region of the DMN. Located at the junction of the
temporal, parietal, and occipital lobules, the angular gyrus is con-
sidered to be a major hub that links different subsystems [59]. Another
study demonstrated that patients with late-life depression showed sig-
nificantly decreased ReHo values in the right anterior cingulate gyrus,
right angular gyrus, bilateral prefrontal cortex, and right precuneus,
and a significantly increased ReHo value in the left cerebellum posterior
lobe compared to healthy controls [60]. Taken together, the abnormal
local activities of these areas in the PDD group implicates disruption of
default mode network.

4.3. Other findings

In our study, we found that the PDD group showed a decreased
ALFF value in the inferior temporal gyrus and an increased ALFF value
in the superior temporal gyrus, which are all related to the temporal
neocortex. Interestingly, the abnormal area did not involve any mesial
temporal structures, such as the amygdala and hippocampus. In a re-
cent study, patients with TLE with mesial temporal sclerosis (MTS)
showed decreased fALFF in the ipsilateral amygdala and hippocampus;
however, the TLE-without MTS group showed minimally decreased
fALFF value in the ipsilateral amygdala, but not the hippocampus [14].
Therefore, we speculate that MRI-negative TLE may implicate distinct
pathologic mechanisms other than TLE with MTS.

4.4. Limitations of this study

Several limitations were involved in the present study. First, the
main limitation was the relatively small number of participants in each
group. This study is preliminary, and we will continue to enlarge the
database to solve this problem. Second, this was a cross-sectional study,
which cannot provide dynamic and evolving fMRI information re-
garding the recovery of spontaneous brain activity caused by anti-
depressants or other treatments. A longitudinal study design may an-
swer these questions in the future.

4.5. Conclusion

The PDD group showed regional brain activity alterations in the
prefrontal-limbic system and dysfunction of the default mode network.
The ReHo and ALFF methods provided different perspectives on pa-
thophysiological mechanisms, and they were complementary in de-
scribing regional spontaneous neural activity. Taken together, these
two fMRI methods can help researchers better understand the under-
lying neurophysiology and compensatory mechanisms behind MRI-ne-
gative TLE and assist with preoperative localization. Furthermore, our
explorative study of PDD may facilitate the development of future
longitudinal studies.
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