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WM characteristics with EEG signals were investigated. 
These analyses demonstrated that WM pathway charac-
teristics, including the connectivity strength and the posi-
tional characteristics of WM connectivity on SM1 (defined 
by the gyrus-sulcus ratio of connectivity, GSR), have a 
significant impact on ERDs when doing MI. Interestingly, 
the high GSR of WM connections between SM1 and BG 
were linked to the better ERDs. These results therefore, 
indicated that the connectivity in the gyrus of SM1 inter-
acted with MI network which played the critical role for the 
scalp EEG signal extraction of MI to a great extent. The 
study provided the coupling mechanism between structural 
and dynamic physiological features of human brain, which 
would also contribute to understanding individual differ-
ences of EEG in MI-brain computer interface.

Keywords Diffusion MRI · Eeg · White matter 
connectivity · Motor imagery · Brain-computer interface

Introduction

The rhythm of scalp electroencephalogram (EEG) depends 
on the neuroanatomical-based parameters. For example, 
Whitford et  al. demonstrated that the EEG activity, espe-
cially in the slow-wave band, changes along with the altera-
tion of gray matter volume from 10 to 30 years (Whitford 
et al. 2006). Pedro et al. found a relationship between frac-
tional anisotropy and alpha peak, suggesting that the alpha 
frequency might be controlled by the period of cortico-
thalamocortical loop (Valdés-Hernández et  al. 2010). The 
above mentioned studies suggested that, the inter-subject 
differences of resting states EEG may associated with neu-
roanatomical characteristics. However, during performance 

Abstract The rhythm of electroencephalogram (EEG) 
depends on the neuroanatomical-based parameters such as 
white matter (WM) connectivity. However, the impacts of 
these parameters on the specific characteristics of EEG have 
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that, these parameters contribute the inter-subject differ-
ences of EEG during performance of specific task such as 
motor imagery (MI). Though researchers have worked on 
this phenomenon, the idea is yet to be understood in terms 
of the mechanism that underlies such differences. Here, to 
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ining the structural features related to scalp EEG character-
istics, which are event-related desynchronizations (ERDs), 
during MI using diffusion MRI. Twenty-four right-handed 
subjects were recruited to accomplish MI tasks and MRI 
scans. Based on the high spatial resolution of the structural 
and diffusion images, the motor-related WM links, such as 
basal ganglia (BG)-primary somatosensory cortex (SM1) 
pathway and supplementary motor area (SMA)-SM1 con-
nection, were reconstructed by using probabilistic white 
matter tractography. Subsequently, the relationships of 
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of specific tasks, such as motor imagery (MI), may produce 
special EEG signals.

Brain-computer interfaces (BCI) is an implication of 
EEG signal extraction in clinical and engineering fields. 
BCI represent a technology that provides direct com-
munication between the brain and the external world and 
have been used in an increasing number of domains, such 
as in rehabilitation and disability aids (Kubler et al. 2005; 
Daly and Wolpaw 2008; Galán et  al. 2008; Müller-Putz 
et  al. 2014), over the past decades. To achieve interac-
tion with the peripheral equipment through BCI, the key 
techniques includes an extraction of neural activity sig-
nals and a selection of a proper model to classify the sig-
nals for the interaction with the computer (Ramoser et al. 
2000). Usually, EEG, especially the motor imagery (MI) 
induced EEG, provides a non-invasive approach to detect 
the BCI features. The neurophysiological basis of MI is 
that the energy of the sensorimotor cortex in Mu and Beta 
rhythm will be reduced or elevated compared to spontane-
ous EEG, in performing MI. The changes of EEG energy 
can be measured by event-related desynchronization (ERD) 
and the event-related synchronization (ERS), respectively. 
In order to actualize the motor imagery based BCI (MI-
BCI), the detection of frequency specific changes of the 
ongoing EEG activity, including ERD and ERS, are usually 
been involved. For example, the sensory motor rhythms 
(SMR) desynchronization in the 8–30 Hz frequency serves 
as the main classification feature in MI-BCI. Nevertheless, 
although the classifying mode in BCI has been very well 
solved, there are large individual differences in the classi-
fication accuracy of each BCI system (Ahn and Jun 2015).

Recently, studies focused on the physiological mecha-
nism of MI-BCI, have become increasingly interesting. 
MI, which defines a mental rehearsal of movement without 
any actual motor output, results from interactions of many 
motor-related regions, such as the primary sensorimotor 
cortex (SM1), the supplementary motor area (SMA), and 
the basal ganglia (BG). As it has already been known, the 
loop including SMA, SM1 and BG forms the core part of 
MI (Jeannerod and Decety 1995; Decety 1996; Boecker 
et al. 1998; Munzert et al. 2009). Also, EEG and functional 
MRI (fMRI) studies have demonstrated the correlation 
between the BG–thalamus–cortex loop and MI-BCI per-
formances (Birbaumer 2006). In general, the functional and 
structural interaction among the MI related circuit, includ-
ing SM1, SMA, the thalamus and the BG (Pfurtscheller 
and Neuper 1997; Boecker et al. 2008; Kasess et al. 2008; 
Müller et  al. 2013), is important for the achievement of 
MI-BCI.

Therefore, a possible assumption accounting for the 
individual differences in MI-BCI is that, rather than the 
MI ability, the difference in extraction of EEG features of 
above-mentioned regions may influence the classification 

of BCI to a large extent. For example, MI-related ERD 
feature and MI-BCI performance has close relationship. 
The clearer ERD, the higher MI-BCI accuracy could be 
achieved. However, not all subjects’ EEG are good enough 
to extract a clear ERD when doing motor imagery. This 
assumption may explain why there is still a strong individ-
ual difference in BCI accuracy after a long-term MI train-
ing with real time feed-back of the Mu rhythm amplitude 
of each participant. According to the dipole-source model 
of EEG (Schimpf et al. 2002), the electrical field mapping 
on the scalp is not a simple overlay of all of the electri-
cal fields from each neuron. The electrical fields derived 
from the gyrus activities are accumulated in the scalp and 
could be recorded easily by a scalp EEG. The counteractive 
nature of electrical fields of EEG recordings during activi-
ties in the sulci makes the activation in the sulci is difficult 
to be properly measured on the scalp, because of counterac-
tion of potential in anisotropic electrical field.

In this study, we hypothesized that, the location (gyri or 
sulci) and the strength of MI-induced activation may affect 
the amplitude of ERD in the scalp EEG, thus interrupting 
the performances of MI-BCI, even if the MI was performed 
intently. As an essential substance of information interac-
tion, white matter (WM) inter-connection within the loop 
associated with MI could provide an indirect approach to 
assess the cortical activity of MI. Based on our assumption, 
as the signals of electrodes C3 and C4 are most useful for 
MI-BCI, it is possible that the WM connections within this 
loop would mainly exist at the gyrus of the SM1 in sub-
jects with a good MI-BCI performance. Also, the subject 
with higher MI-related WM connectivity in SM1 be found 
to have a better BCI performance. Thus, in this study, we 
examine our hypothesis by investigating that whether the 
WM connectivity features between the SM1 and the other 
regions in the MI loop would predict the MI-BCI per-
formances. To achieve this, diffusion-weighted imaging 
(DWI) was used to reconstruct the white matter connection 
within the MI loop, including the SM1, SMA, three nuclei 
in the BG and the thalamus in a group of participants who 
were recruited to perform MI-BCI tests. Subsequently, the 
WM connectivity with the gyrus and the sulci of the SMA 
and the SM1 were evaluated, respectively. Finally, the con-
nectivity features, such as the ratio of connection to the 
gyrus and the sulci, were as a result associated with MI-
BCI performance.

Methods

Participants and Behavior Measure

Twenty-six volunteers (17 males and 9 females, mean age 
22.96 ± standard deviation 1.97  years) participated in the 
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study after signing informed consents. Subjects also under-
went clinical psychiatric assessment and were confirmed 
to have no psychiatric or neurological disease history. Two 
left-handed subjects were eliminated after performing the 
Edinburgh Handedness Inventory. Each participant fin-
ished two simple questionnaires (MIQ-RS and KVIQ-20) 
(Malouin et al. 2007; Gregg et al. 2010) to make sure that 
each one of them have the ability to do motor imagery 
(Table 1). These questionnaires, interned reflect self-identi-
fied motor imagery ability, constituting self-rating of visual 
and kinesthetic motor imagery. The study was approved by 
the ethics committee of the University of Electronic Sci-
ence and Technology of China.

EEG Data Acquisition and Processing

EEG data were recorded with 15 Ag/AgCl electrodes from 
an extended 10–20 system by using a Symtop amplifier 
(Symtop Instrument, Beijing, China); for more details, refer 
to our previous study (Zhang et  al. 2015). Subjects per-
formed left/right hand MI according to the instructions on 
the computer screen. Trials begun with a 4  s rest period, 
a cue then appeared on the left or right side of the screen 
for 1  s to instruct the subject to perform MI with the left 
or right hand. After the bar turned green, the subjects per-
formed the requested motor imagery for 5  s. The motor 
imagery dataset included four runs, the first two runs of 
which as the training set and the last two runs as the test 
set, for each subject, with 50 trials per run.

A standard pipeline was used to analyze the EEG data 
of the BCI experiments. The 15 electrodes were selected 
from extended 10–20 system, which covered the whole 
brain (Fig. S1). In brief, the MI-BCI performance, which 
was characterized by the MI-BCI recognition rate, of 
each subject was obtained from their motor imagery data-
set. Furthermore, common spatial patterns were used to 
extract the motor imagery-related EEG features, and linear 

discriminant analysis was used to classify the left/right 
hand motor imagery conditions based on the extracted 
features (Zhang et  al. 2015). SMR, which reflects motor 
imagery-related changes in EEG activity, was used to divide 
different types of imagined movements. For calculating 
motor imagery-related ERD, the 2  s EEG segment before 
the cue was considered as the baseline period, as event-
related changes in ongoing EEG require time to recover, 
and the 5 s EEG segment during motor imagery was con-
sidered as a task period. According to previous MI-BCI lit-
eratures (Blankertz et al. 2010), the MI-related ERD occurs 
mainly at channel C3 and C4, thus in this study, Laplacian-
filtered C3 and C4 channels were selected for calculating 
the ERD [Laplacian-filtered C3 signal is calculated from 
C3-1/4(FC3 + C5 + CP3 + Cz), and Laplacian-filtered C4 
signal is calculated from C4-1/4(FC4 + C6 + CP4 + Cz)], 
and an 8–30 Hz (consisting of an 8–30 Hz motor imagery 
related-MU rhythm and a 16–26 Hz BETA rhythm) power 
for the baseline and task periods, were first obtained by the 
fast Fourier transform method. The ERD of one trial was 
calculated according to the method described in (Jeannerod 
and Decety 1995). Finally, the ERD was averaged across 
the trials. Moreover, it must be mentioned that, the lower 
the ERD value is, the higher the activation of the corre-
sponding region (Table 2).

MRI Data Acquisition

All MRI data were obtained using a GE 3 T scanner (GE 
Discovery 750) with a standard 8-channel head coil (GE 
Medical Systems, Milwaukee, WI) in the MRI research 
center of UESTC. The subjects lay supine on the scan-
ner bed, and visual stimuli were back-projected onto 
a screen through a mirror built into the head coil. For 
each subject, diffusion-weighted images were acquired 
using a single-shot, spin-echo, echo-planar sequence 
(TR = 8500  ms; TE = 70  ms; voxel size = 2 × 2 × 2  mm3; 
FOV = 256 × 256 mm; 76 axial slices; scan time = 10 min; 
diffusion direction = 64; b factor = 1000  s/mm2). In addi-
tion, before the acquisition of DWIs, we acquired 3 

Table 1  Demographic information and motor imagery self-evaluat-
ing value of all participants

STD standard deviation, MIQ-RS_V and MIQ-RS_K visual and kines-
thetic imagery score of MIQ-RS questionnaire, respectively, KVIQ_V 
and KVIQ_K visual and kinesthetic imagery score of KVIQ question-
naire, respectively

Variable Mean STD Range

Age (years) 22.96 1.97 19–26
Gender Female = 9
Handedness Right-handed
MIQ-RS_V 4.56 0.43 3.7–5
MIQ-RS_K 4.46 0.46 3.4–5
KVIQ_V 6.44 0.61 5–7
KVIQ_K 6.03 0.70 4.57–7

Table 2  BCI performances

Left MI means ERD value when doing left-hand motor imagery and 
right MI means ERD value when doing right-hand motor imagery
STD standard deviation

Variable Mean STD Range

BCI accuracy ratio 0.764 0.136 0.52–0.99
ERD in C4 of β (left MI) −0.035 0.121 −0.355–0.318
ERD in C4 of μ (left MI) −0.076 0.162 −0.427–0.361
ERD in C3 of β (right MI) −0.046 0.106 −0.282–0.228
ERD in C3 of μ (right MI) −0.089 0.121 −0.285–0.227
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non-diffusion-weighted data sets as a reference. High 
resolution 3D FSPGR T1 images were acquired for each 
subject with a matrix = 256 × 256 × 152 and a voxel 
size = 1 × 1 × 1 mm3.

Preprocessing of Diffusion MRI Data

First, motion and eddy current corrections were performed 
for each subject’s diffusion MRI (dMRI) data by linear 

registering of all DWIs to the averaged image of 3 non-dif-
fusion-weighted images (Fig. 1, step 1). After this, global 
registration was carried out for the dMRI data to the T1 
anatomy by using rigid-body transformation (FLIRT tool in 
FSL 5.0.6, http://www.fmrib.ox.ac.uk/fsl; FMRIB Software 
Library, University of Oxford) (Jenkinson et al. 2012), fol-
lowed by gradient direction transformation using the rota-
tion parameters. This process also interpolated all DWIs to 
the individual anatomy space by tri-linear interpolation.

Fig. 1  Flow chart. Step 1 dMRI of every subject were preprocessed. 
The preprocessing included deleting non-brain tissues and eddy cur-
rent corrections; Step 2 a diffusion tensor mode was applied to recon-
struct FA map (a, by DTIFIT tool); Step 3 a Markov Chain Monte 
Carlo sampling was used to build up distributions on the diffusion 
parameters at each voxel (b, by BedpostX tool); Step 4 structural 
image of each subject was inflated by FreeSurfer. And a neuroana-
tomical label was assigned automatically to each location on a corti-
cal surface model based on probabilistic information estimated from 
a manually labeled training set. ROIs, such as gyri and sulci of SM1, 
were extracted from Destrieux Atlas (c, sulci of precentral was shown 

in yellow, gyrus of precentral in blue, central sulcus in green, gyrus of 
postcentral in red and sulcus of postcentral in violet). Step 5 Transfor-
mation matrixes, which was between FreeSurfer space and FA map, 
was acquired. Step 6 Tractograms were acquired in anatomical space 
by probabilisitic tracking which using BG, SMA, CI and CC as seeds. 
White matter connectivity features, including connectivity strength 
and connectivity GSR, on SM1 was acquired (d, overlaid the tracto-
gram of BG, which was shown in yellow–red, on pial surface.). Step 7 
The relationship between WM connectivity features and BCI perfor-
mances was investigated. (Color figure online)

http://www.fmrib.ox.ac.uk/fsl
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There are two inherent advantages of transforming the 
diffusion images and the corresponding gradient directions 
to the anatomical space, even though this process increases 
the calculation complexity. Registration to the anatomical 
space made it possible to acquire tractograms, which were 
reconstructed by using the refined segmentation of the 
individual anatomical image as seed. Smoothing was intro-
duced to the images caused by the interpolation step of the 
rigid transformation. Therefore, this would reduce a poten-
tial directional bias, which might be caused by the inter-
polation for the different dMRIs in the motion correction 
procedure. This procedure was tested and verified by work 
from Professor Anwander and his colleagues (Ruschel et al. 
2013). Most importantly, as Smith has mentioned, there 
is no significant interpolation blurring introduced into 
the images by performing the procedure described above 
(Smith et al. 2006).

After registration, a diffusion tensor mode was applied 
to reconstruct diffusion parameter maps, such as fractional 
anisotropy (FA) or mean diffusivity (MD). Subsequently, 
a Markov Chain Monte Carlo sampling was used to build 
up distributions of the diffusion parameters at each voxel, 
in which we hypothesized that there were no more than 2 
families of fibers (Behrens et al. 2007) (Fig. 1, step 2, 3).

Definition of the Region of Interest

Twenty-two regions of interest (ROIs) associated with motor 
imagery were identified according to the meta-analysis by 
Hétu et  al. (2013), including 12 SM1 regions (the bilateral 
gyrus of the precentral region, the gyrus of the postcentral 
region, the sulcus of the central region, the superior and infe-
rior sulcus of the precentral region, and the sulcus of the post-
central region), two SMA regions (bilateral SMA), six BG 
regions (bilateral caudate nucleus, putamen, and pallidum) 
and two thalamic regions (bilateral thalamus) (Fig. 1, step 4). 
These ROIs, except for SMA, were acquired by segmented 
native anatomic images using FreeSurfer (http://surfer.nmr.
mgh.harvard.edu; Martinos Center for Biomedical Imag-
ing, Boston, USA) according to the Destrieux cortical atlas. 
To acquire tractograms more reliably and to avoid a partial 
volume effect, we constrained the cortex ROI masks using 
individual FA between 0.15 and 0.25, which was consid-
ered as the gray–white matter interface (Ruschel et al. 2013). 
Similarly, to exclude the external capsula and internal capsula 
from the basal ganglia and thalamic ROIs, we excluded vox-
els of which FA value higher than 0.6 from these ROIs. We 
manually defined the SMA ROIs as follows because there is 
no firsthand SMA mask in the Destrieux Atlas. First, BA 6 
was identified for each subject. We then extruded the SMA 
ROI by excluding the primary and pre-motor areas from 
BA 6, as BA 6 is composed of a pre-motor area, SMA and 

a primary motor area. Finally, we checked the SMA ROI of 
each subject by eye.

Moreover, considering that there might be a relationship 
between the ERDs and the WM connectivity between the 
bilateral hemispheres, the WM connectivity on the corpus 
callosum (CC) tract was considered. We only focused on the 
one part of the CC that connected the bilateral SM1. To map 
this part, we drew the entire CC mask manually for each par-
ticipant and constrained it using FA >0.3. These masks were 
used as seeds to reconstruct probabilistic tractography, and 
bilateral SM1 masks (including the bilateral precentral and 
postcentral regions) were used as classification targets. After 
the probabilistic tractography, we obtained the output classi-
fication images. The value of each voxel in the classification 
images was the number of samples, which started from the 
voxel and reached the SM1 mask. Subsequently, we binarized 
these classification images by the stronger 50% non-zero vox-
els to acquire the SM1 part of CC.

Most importantly, these ROIs were used as seeds for prob-
abilistic fiber tracking in the following analysis.

Tractography and Connectivity Analysis

Probabilistic tractography method (probtrackx script in FSL) 
(Behrens et  al. 2007) was used to reconstruct whole brain 
WM connectivity maps using each sub-cortical area, the 
SMA area and the SM1 part of the CC as seeds (Fig. 1, step 
6). Due to the fact that the connectivity distribution dropped 
with distance from the seed mask, distance correction was 
used in the tractography reconstruction procedure. Further-
more, 10,000 iterations of tracking were performed for each 
voxel in each seed to get tractograms more reliably. Specifi-
cally, as the thalamus is an important relay for sensory motor 
information, we reconstructed the BG-cortical WM connec-
tions in which the bilateral thalamus served as the waypoint 
ROIs (Figs. 2, S2, S3).

The WM pathway contained in the corticospinal tracts 
(CST) is observed to be related to motor execution instead of 
MI. Therefore, similarly, the anterior and posterior arms of 
the internal capsule were defined as seed. Subsequently, the 
bilateral CST were acquired by probabilistic tracking between 
the internal capsule and the SM1.

After probabilistic tracking, connectivity distribution 
maps were binarized by the stronger 30% non-zero voxels to 
acquire mean FA and MD values of each participant on all 
tracts. Then, the connectivity strength and connectivity pat-
tern between the ROIs were calculated. Connectivity strength 
S (A, B) was defined by the formula

S(A,B) =

∑

P
A
(R

B
) +

∑

P
B
(R

A
)

V
A
+ V

B

http://surfer.nmr.mgh.harvard.edu
http://surfer.nmr.mgh.harvard.edu
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where the 
∑

PA(RB) represents the total streamlines from 
seed region A that reached target region B after 10,000 
random walks and  VA represents the number of voxels in 
region A.

Meanwhile, the connectivity pattern “Gyrus-Sulcus 
Ratio (GSR)” was defined on the ratio of S (Gyrus, A) and 
S (Sulcus, A), where Gyrus denotes gyrus ROIs in SM1, 
Sulcus denotes sulcus ROIs in SM1, and A implies the seed 
ROIs. This indicator can reflect the projection pattern of 
the MI-related fiber bundle at SM1.

In this study, we obtained the connectivity strength and 
the GSR on SM1 of WM pathways including BG-thalamic-
SM1 and SMA-SM1 loops. Subsequently, correlations 
were calculated between the BCI performances and the 
WM characteristics, including FA/MD on tract and con-
nectivity strengths, as well as connectivity patterns (GSR) 
across all 24 subjects (Fig. 1, step 7). Subsequently, the dif-
ference in WM characteristics mentioned above between 
the higher and the lower BCI performance groups were 
compared using a Mann–Whitney U test.

Support Vector Regression (SVR) Analysis

After obtaining the single influence of these WM charac-
teristics on the MI-BCI, the coupling effect of a given WM 
tract characteristics on the on-line BCI accuracy, were also 
analyzed. A supervised learning technique deriving from 
the support vector machines (SVM) to predict continuous 
variables, as a usual SVR (ε-SVR) algorithm (Smola and 
Schölkopf 2004), was used to predict the individual BCI 
accuracy by WM mixed features. Features were selected 
based on the abovementioned correlation results. We 

normalized the WM characteristics, which were found to 
be correlated with BCI performances, to the [0 1] range 
divided by the maximum. The SVR training were con-
ducted using the LIBSVM (Library for Support Vector 
Machines) toolbox (Chang and Lin 2011) implemented in 
MATLAB (R2013b; The MathWorks, Natick, MA). Then 
the regression model was evaluated using a leave-one-out 
cross-validation procedure, and used for prediction of the 
on-line BCI accuracy. After the predicting of BCI accuracy, 
the correlation coefficient between predicted BCI accu-
racy and the actual one for all participants was calculated. 
Subsequently, permutation based nonparametric statistic 
method was used to disprove the null hypothesis that, there 
is no correlation between actual and predicted BCI accu-
racy by the randomly disrupted order of actual BCI accu-
racy of all participants in each iteration. The significant 
level was defined by the proportion of permutations that the 
original correlation coefficient was smaller than the 5000 
iterated ones. Finally, we used the mean absolute error 
(MAE) (Franke et al. 2010) to measure the correctness of 
the BCI accuracy estimations.

Results

BCI Performances

Because MI ability might be affected by handedness, we 
excluded two left-handed participants from further analysis.

According to the calculation of the EEG data, we 
obtained five types of BCI performances for each sub-
ject, which included BCI online accuracy, ERD on the C3 

Fig. 2  ROIs and tractograms of BG and SM1 (only showed left hem-
isphere). a Overlaid SM1 ROIs on FA map (sulci of precentral was 
shown in yellow, gyrus of precentral in blue, central sulcus in green, 
gyrus of postcentral in red and sulcus of postcentral in violet). b 

Overlaid sub-cortical seeds on FA map (thalamus was shown in pink, 
caudate shown in red, putamen was shown in green and pallidum was 
shown in blue). c Tractograms which were acquired by using BG as 
seeds and ipsilateral thalamus as waypoint. (Color figure online)
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electrode in Mu rhythm and in Beta rhythm when doing 
right hand MI, as well as ERD on the C4 electrode in Mu 
rhythm and in Beta rhythm when doing left hand MI.

Based on the BCI accuracy, the 24 subjects were equally 
divided in to 3 groups, where the higher threshold was 0.8 
and the lower was 0.75. This grouping was aimed to high-
light the intergroup difference of the WM features. After 
eight higher-performance subjects and eight lower-perfor-
mance subjects were assigned to their own groups, respec-
tively, the remainders were assigned to the middle group, 
which were excluded from the comparison process between 
the other two groups, as the middle-performance group had 
some ambiguous factors.

The Fiber Tracking of MI‑Related Pathways

We checked the tractography results of BG (Fig.  2), the 
SM1 part of CC (Fig. S2) and CI (Fig. S3) for each sub-
ject to ensure the reliability of further analysis. After this, 
we obtained the WM connectivity characteristics, as well 
as the microstructure characteristics of each tract. Then, we 
discovered that, some white matter connectivity character-
istics were associated with BCI performances.

Association of BCI Performances with WM Between 
the BG and Cortical Regions Where the Thalamus 
was the Waypoint

In the condition where the thalamus was used as the way-
point, five significant associations were found between BCI 
performances and white matter characteristics, which were 
between the BG and the cortical regions (P < 0.01, uncor-
rected). Three of them were negative correlations between 
the ERDs and the three GSRs (between the right caudate 
and the precentral region, between the left pallidum and 
the SM1, and between the left pallidum and the precen-
tral region). The remaining two were positive correla-
tions, which were between the BCI accuracy and the two 
GSRs (between the right caudate and the precentral region 
and between the right putamen and the precentral region). 
Unfortunately, no WM connectivity strengths were found to 
be significantly correlated with BCI performances (Fig. 3; 
Table  3). In addition, the MD on tract between the right 
pallidum and the postcentral region, with the thalamus as 
the waypoint, was found to positively correlate with the 
ERD value on the C4 electrode in the Mu band when doing 
left MI (Fig. S4; Table S1).

Association of BCI Performances with WM 
Characteristics on the SM1 Part of the CC Tract

We discovered that, the connectivity strength on the 
SM1 part of the CC tract significantly and negatively 

correlated with the ERD values on the C3 electrode when 
doing right MI and on the C4 electrode when doing left 
MI. These results were also consistent with our hypoth-
esis (Fig. 4; Table 4).

Association of BCI Performances with WM Mixed 
Features in the MI Loop

When the four GSRs of the BG-Th-SM1 WM connectiv-
ity, which showed significant correlation with ERDs and 
with BCI accuracy, were used in combination as input 
samples, an estimation accuracy was obtained. The corre-
lation between the estimated and the actual BCI accuracy 
of subjects was r = 0.56 (Fig. 5), with the significant level 
P < 0.05 (nonparametric test). The MAE between the esti-
mated and true accuracy was 0.1.

In a word, the WM connectivity characteristics, 
including connectivity strength, connectivity patterns and 
WM microstructure measurements between the BG and 
the SM1, were found to correlate with BCI performances. 
In addition, using a combination of specific white matter 
characteristics as a mixed feature, we can predict the MI-
BCI accuracy of the subjects. However, the WM charac-
teristics, which was reconstructed from the thalamus (as 
seed) and the SMA to the SM1, did not show a significant 
correlation with BCI performances.

Discussion

The potential structural and functional coupling may 
play a role in information processing in the human brain 
(Blankertz et al. 2010; Halder et al. 2013). In this study, 
we provided the further evidence to support that, the 
white matter pathway characteristics including the con-
nectivity strength and the connectivity patterns (GSR) 
have a significant impact on EEG signals during MI. In 
addition, consistent with our hypothesis, this study illus-
trated that subjects who have distinct WM connections 
between the gyri of SM1 and BG (high GSR) linked to 
higher MI-BCI performances than those who have more 
WM connections between the sulci of SM1 and BG. To 
the best of our knowledge, this is the first study to sug-
gest that WM connectivity pattern between the cortical 
(SM1) and subcortical (BG) regions plays a role in the 
evaluation of BCI performances. Moreover, this study 
may afford indirect non-invasive evidence to support that, 
the activation at the sulci causes poor detection of EEG 
features related to MI tasks.
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The Pattern (GSR) of the WM Connection of the SM1 
with the BG Plays a Critical Role in the Detection 
of ERDs

The successful identification of EEG signal features related 
to MI is crucial in MI-BCI. Neuronal activation at the cor-
tex, especially at the gyri rather than the sulci, mainly con-
tributes to the signal recorded in the scalp EEG. Thus, the 

activation ratio of the gyri and the sulci (GSR) during MI 
could predict the efficiency of detecting the EEG signal of 
MI. The WM connection between the regions in the MI 
loop plays a role in information integration. In a previous 
study, this loop, including the SM1, the SMA, the BG and 
the thalamus, has been observed to be part of the activa-
tion induced by the MI task. In this study, we found that, 
rather than WM connectivity strength itself, the GSR of the 

Fig. 3  Significant associations between BCI performances and white 
matter characteristics, which were between the BG and the cortical 
regions, acquired in the condition where the thalamus was used as the 
waypoint. Boxplots reflected distributions on WM characteristics of 

same-colored scatterplot of high accuracy group (in yellow) and low 
accuracy group (in grey). Asterisk in boxplots means that WM char-
acteristics of two groups showed significant differences. (Color figure 
online)
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Table 3  White matter 
connectivity characters between 
BG and SM1 when thalamus 
was used as waypoint

STD standard deviation, L_Pre left precentral, R_Pre right precentral, L_Post left postcentral, R_Post right 
postcentral, L_SM1 left primary sensorimotor areas, R_SM1 right primary sensorimotor areas
“↑” means significant positive correlation; “↓” means significant negative correlation

Seeds Targets Connectivity strength GSR

Mean STD Correlation Mean STD Correlation

Caudate L_Pre 16941.59 10051.43 1.34 0.89
R_Pre 10202.54 12032.11 2.05 1.33 C4 ERD↓

Accuracy↑
L_Post 27988.69 24465.33 2.09 1.53
R_Post 11347.06 12719.80 1.07 0.71
L_SM1 20253.30 11003.88 1.45 0.72
R_SM1 10520.79 10330.05 1.56 0.92

Pallidum L_Pre 4891.85 2716.79 1.54 0.69 C3 ERD↓
R_Pre 2901.53 2563.41 1.67 0.74
L_Post 5390.90 4124.96 2.18 1.62
R_Post 2972.47 2954.63 1.48 1.25
L_SM1 5013.23 2812.36 1.63 0.63 C3 ERD↓
R_SM1 2921.75 2470.08 1.50 0.65

Putamen L_Pre 6936.30 10485.58 1.46 0.74
R_Pre 9477.30 8592.40 1.84 0.91 Accuracy↑
L_Post 10104.23 12740.52 1.92 1.18
R_Post 9090.10 7882.35 1.27 0.90
L_SM1 11166.61 7576.84 1.55 0.65
R_SM1 8398.45 8871.74 1.56 0.67

Fig. 4  Connectivity strength on the SM1 part of the CC tract significantly correlated with BCI performances

Table 4  White matter connectivity characters on corpus callosum tract between bilateral SM1

STD standard deviation
“↑” means significant positive correlation; “↓” means significant negative correlation

Variable Target Seed Mean STD Correlation

Connectivity SM1 SM1 part of corpus callosum 26949.64 5081.65 C3 ERD↓, C4 ERD↓
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tract linked to the BG on SM1was associated with the MI-
BCI performances. According to the white matter anatomy 
of the human brain, some efferent connections of BG con-
nects to SM1 through the thalamus. Consisted with our 
hypothesis, when the thalamus was included as a relay in 
the WM fiber tracking, a better ERD detection and a higher 
BCI accuracy was found correlated with a higher GSR of 
the BG-SM1 tracts on the SM1. Therefore, these findings 
suggested that the GSR of the WM connection between 
the SM1 and the BG plays an imperative role than the WM 
connection between the whole SM1 and the BG.

In our findings, the caudate nucleus was a main com-
ponent in the WM connection between the BG and the 
SM1 that contributed to the prediction of MI-BCI perfor-
mance. In general, the caudate nuclei are involved in the 
encoding process of motion response and spatial working 
memory (Postle and D’Esposito 1999) and play an impor-
tant role in motor functions such as adjusting the posture 
of the limbs and modulating speed and accuracy in motor 
functions (Villablanca 2010). All the participants were 
asked to imagine their hands waving like slapping a ball 
with a 1 Hz frequency when they interacted with the MI-
BCI system online. In this process, the caudate nuclei 
would play a modulation role in the interaction between 

the sensory and the motion information. Combining our 
findings related to the caudate nuclei, these goes to sug-
gest that the caudate takes part in the MI as a major com-
ponent in the BG. A further analysis of the SM1 through 
its division into pre- and postcentral regions revealed 
that the precentral region, which responds to the motor 
function, was a major contributor in our results. It is 
hence likely that the MI is related to the WM connection 
between the primary motor cortex (precentral region of 
SM1) and the caudate nuclei. In addition, we observed 
that the right connection between the caudate and the 
SM1 was a better predictor than the left. Similarly, the 
ERD of the rhythm at C4 (right hemisphere) was also 
related to the right WM connection. This seems to sug-
gest a lateralization in the effect of the WM connection 
on MI performance in our study. In other words, detect-
ing the imagery of the left limb movement (activation at 
the left SM1) might be easier than the imagination of the 
right. We presumed therefore that, the right handedness 
of subjects might associate with the potential lateraliza-
tion observed here, as a more significant ERD feature was 
observed in the left limb MI than in the right limb MI 
in a previous EEG study (Stinear et al. 2006; Nam et al. 
2011).

Depending on previous studies, putamen and primary 
motor cortex takes part in motor planning and preparation 
(Deiber et  al. 1996; Taniwaki et  al. 2003; Gerardin et  al. 
2004). In detail, in motor preparation process, sensorimotor 
cortex activated first, and then output information to puta-
men. After received information from SM1, these informa-
tion has been processed in putamen, and have been sent 
back to SM1 through the thalamus (Petrides et  al. 1989; 
Alexander and Crutcher 1990). These information inter-
actions were supported by the WM pathways between the 
above-mentioned regions. In the present, it has been found 
that the GSR of the left putamen-cortex pathway on pre-
central was positively correlated with BCI accuracy. This 
result may reveal the process, that precentral motor cortex 
activated and transmitted motor preparation information to 
putamen in motor imagery process, and this activation has 
been recorded by EEG to achieve BCI, was effected by the 
WM connectivity between these regions.

Pallidum is part of the extrapyramidal motor system. In 
primates, it is divided into two parts: internal globus pal-
lidus (GPi) and the external globus pallidus (GPe). As a 
part of BG, GPe receives information from striatum and 
then project to GPi through subthalamic nucleus. After that 
information was relayed by thalamus and output to cortex. 
In addition, GPi involves in direct pathway, receive infor-
mation from striatum and output to thalamus. In this study, 
the significant correlations were found between ERDs 
and the GSR of the pallidum-seeded pathways on cortex. 
These results demonstrated that the pallidum-cortical WM 

Fig. 5  Four WM connectivity characteristics, including the GSR 
between right caudate and precentral, the GSR between left pallidum 
and precentral, the GSR between left pallidum and SM1 and the GSR 
between right putamen and precentral, which were found correlated 
with BCI performances, were introduced to SVR process to predict 
BCI accuracy. The scatter plot showed the correlation (estimation 
accuracy r = 0.56, P < 0.05 by permutation based nonparametric test, 
and the MAE = 0.10.) between the SVR estimated and the actual BCI 
accuracy of subjects



Brain Topogr 

1 3

connection was involved in the process of motor imagery, 
and their WM characteristics play a significant role in the 
generation of the MI-induced ERDs.

In addition, SVR results demonstrated that the WM 
mixed features of BG–thalamus–SM1 loop could pre-
dict the BCI accuracy. This indicated that the information 
interaction in BG–thalamus–SM1 loop was important in 
MI progress, and gave more evidence that EEG signal is 
affected by the WM connectivity characteristic of human 
brain. Based on the results of the SVR, we have raised the 
possibility that all parts of the BG in a collaborative way to 
participate in the process of motor imagery, and their WM 
connections to cortex could affect the accuracy of BCI. 
However, the role of each part of BG for MI was unclear, 
and need further studies.

The Participation of the SMA in MI‑BCI

The signal at the C3 and C4 electrodes, which are close to 
the SM1 and the SMA, is commonly used for analysis in 
MI-BCI. Therefore, in our assumption, the GSR connec-
tion of WM in the SM1 and the SMA might influence the 
detection of ERDs related to MI. The SMA contributes to 
the control of movement, inhibition of movement, and the 
initiation of internally generated movement (Nachev et al. 
2008). The neuronal assemblies in the SMA and the SM1 
are related to complex cognitive processes, especially the 
motor-related information process (Georgopoulos et  al. 
1993). However, we didn’t find any significant correla-
tion between BCI performances and WM characteristics 
existing between SMA and SM1. We speculate that was 
because, the SMA and SM1 are all cortical regions, and the 
dMRI was not sensitive enough to reconstruct small nerve 
fibers between cortices.

The Relationship Between ERD and Interhemispheric 
Coupling

The corpus callosum, which connects the bilateral cerebral 
hemispheres and facilitates interhemispheric communica-
tion, was thought to serve both an inhibitory and excita-
tory influence on the contralateral hemisphere (Meyer et al. 
1998; Bloom and Hynd 2005). Thus, the structural connec-
tivity of the corpus callosum may affect the discrimination 
in ERD amplitude during motor imagery of different hands, 
which in turn affects the accuracy of BCI. In this study, 
it’s found that the connectivity strength on the SM1 part 
of the CC tract significantly and negatively correlated with 
the ERD values. This result reflects the stronger the struc-
tural connection between hemispheres, the higher the EEG 
activation of MI. One possible explanation of this finding 
is that the structural connectivity between the hemispheres 
may affect the inhibition of irrelevant side SM1 at the MI 

task, then impact on the ERD. However, this speculation 
requires further study to verify.

The Role of CST in MI‑BCI Performance

CST mainly arise from the primary motor cortex, supple-
mentary motor area, premotor cortex, and somatosensory 
cortex, and control the movement of muscles of the body 
(Hall 2015). CST carries motor information from the pri-
mary motor cortex to the motor neurons in the spinal cord. 
We did not find any significant correlation between BCI 
performance and white matter characteristics of the CST 
pathway. The MI-related information is only a small part 
of these, and hence, it is comprehensible that there was no 
significant correlation between them.

Limitations and Prospects

EEG has high temporal resolution and is sensitive to a 
change in cortical potential so that it can recognize whether 
the cortex is activated or not. The activation signal was 
recorded in the C3 and C4 electrodes when motor imagery 
was used to operate BCI system. In order to stabilize the 
data quality, we did our best to maintain the consistency 
for each participant of a variety of features, including but 
not limited to the experimental environment, equipment, 
instruction, training duration, smearing of electrode jelly, 
and wearing of the electrode cap. Thus, it can be consid-
ered that the individual differences in BCI performance 
correlated with only the participants themselves.

DMRI measures the dephasing of the spins of protons 
in the presence of a spatially-varying magnetic field. This 
measurement, which was used to estimate fiber orienta-
tion density function, only reflects the amount of hindrance 
when water molecules are moving with a component of 
displacement along the direction of the applied gradi-
ent, which is then averaged over the voxel. Therefore, the 
derived tractogram did not acquire the actual anatomical 
connectivity. This leads to false-positive and false-negative 
connections in the tractograms. Besides, the issue of cross-
ing fiber would still be a major problem disturbing findings 
of dMRI. This problem has not been well resolved under 
the existing technical framework. To ensure data quality, 
we examined the original dMRI image for each subject, 
corrected the effects of distortion caused by eddy cur-
rent and susceptibility by using the EDDY toolkit of FSL, 
checked the registration results and used more iterations in 
the tracking stage. Therefore, despite these limitations, the 
accuracy of the estimation of the long-range connectivity 
is enough to be considered as an indicator of anatomical 
connectivity.

In addition, a study of Tal and colleagues demonstrated 
that fractional anisotropy of particular white matter tracts 
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are associated with auditory-motor synchronization skills 
(Blecher et al. 2016). Although there’s no significantly cor-
relation between MI-related WM connectivity strength in 
SM1 with BCI performance and with EEG feature found 
in the present, we speculated that WM connectivity may 
also have an impact on the ability of motor imagery. The 
negative result of this study may be due to the fact that we 
only focus on the WM connectivity on SM1, rather than the 
entire MI-related tracts. We will investigate this issue in the 
future.

Conclusion

To the best of our knowledge, the present study demon-
strates the potential relationship between the WM pathway 
of the human brain and EEG signals in MI performances 
for the first time. The pattern of WM connectivity of the 
BG-SM1 has a great influence on both EEG signal and the 
classification accuracy in MI-BCI. These results indicated 
that the BG-SM1 WM connection participates in the MI 
process and that the connectivity characteristics of these 
connections have an impact on the generation of the MI-
related EEG signal. In summary, we provided the coupling 
mechanism between structural and dynamic physiology 
features of human brain, which would associate with the 
underlying reason for MI individual differences. This study 
also provides some supporting material for the researches 
of the origin of EEG.
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