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Action video games (AVGs) have attracted increasing research attention as they offer a unique perspective into the relation between
active learning and neural plasticity. However, little research has examined the relation between AVG experience and the plasticity
of neural network mechanisms. It has been proposed that AVG experience is related to the integration between Salience Network
(SN) and Central Executive Network (CEN), which are responsible for attention and working memory, respectively, two cognitive
functions essential for AVG playing. This study initiated a systematic investigation of this proposition by analyzing AVG experts’
and amateurs’ resting-state brain functions through graph theoretical analyses and functional connectivity. Results reveal enhanced
intra- and internetwork functional integrations in AVG experts compared to amateurs. The findings support the possible relation
between AVG experience and the neural network plasticity.

1. Introduction

One of the most prominent changes to our modern lives is
the use of computers, which has adapted our entertainment
experience with the introduction of video games. The action
video game (AVG) is major video game genre that offers an
important virtual environment for human behaviors and has
increased exponentially in popularity worldwide over a wide
age range. Similar to conventional sports (e.g., basketball
and football), AVG is physically and mentally demanding as
it requires multiple cognitive functions including hand-eye
coordination, working memory, and attention (see Footnote
for an example of AVG) [1]. Furthermore, AVG influences
cognitive development adaptively, thus offering an important
venue to examine the relation between active learning and
neural plasticity [2].

Research has shown that AVG experience is related
to enhanced primary (e.g., visual processing [3-5], eye-
hand coordination [6], contrast sensitivity [4], oculomotor
performance [7], and body movement [8]) and higher-level

cognitive functions (e.g., attention and working memory).
For example, AVG experts tend to have better selective atten-
tion than amateurs, and AVG training improves attentional
performance in the amateurs, thus supporting the attentional
effects of AVG experience. Research also shows that AVG
experts have enhanced spatial distribution of visuospatial
attention [9], attentional capture [10], and attention shifting
at switching tasks [11]. In addition, AVG experts tend to have
better visual short-term and working memory than amateurs,
and AVG training enhances visual working memory in
amateurs [12-14]. For example, Colzato et al. [12] found that
AVG experts were faster and more accurate in n-back task
than amateurs. Furthermore, Blacker et al. [13] examined
whether AVG training could increase the quantity and/or
the quality of information stored in visual working memory
(VWM). Results revealed a significant increase in the VWM
capacity after the training, as measured by a change detection
task.

Research has also examined the neural basis of the
cognitive benefits of AVG experience. A recent study shows



that AVG experts have enhanced functional connectivity
and grey matter volume in insular subregions compared to
amateurs [15]. AVG experts also have better early filtering of
irrelevant information and selective attention than amateurs,
as measured by neural activities in frontoparietal areas [16].
Furthermore, AVG experience is related to gray matter
volume (GMV) in brain areas responsible for attention and
working memory (e.g., dorsal striatum [17], right poste-
rior parietal area [18], entorhinal area, hippocampal gyrus,
occipital lobe [19], and dorsolateral prefrontal cortex [20]).
In addition, AVG training improved older adults’ cognitive
control by reducing the multitasking cost as measured by
electrophysiological signatures [21].

However, little research has examined the relation
between AVG experience and the integration of attentional
and working memory networks. Research of resting-state
functional connectivity (FC, a dynamic coordinated activity
for communicating information on connected brain regions
[22, 23]) reveals two separate functional networks for atten-
tion and working memory, respectively [24-29]. The Salience
Network (SN), typically including anterior cingulate cortex
(ACC) and anterior insula, supports the detection of salient
events. The Central Executive Network (CEN), typically
including the dorsolateral prefrontal cortex (DLPFC) and
posterior parietal cortex (PPC), supports attentional control
and working memory (see Table 2 for nodal information of
the networks).

SN and CEN may interact with each other in supporting
attention and working memory [27, 30]. Specifically, SN
receives and provides selective amplification of salient infor-
mation thereafter generates a top-down control signal that
initiates CEN to respond to salient information for attentional
shift and control execution [31]. Thus, research has proposed
that enhanced attention and working memory improve the
functional integration of SN and CEN [32] and that this
improvement may be the neural basis of expert attention and
working memory [27]. AVG experience therefore offers an
important venue to test this proposition, since AVG requires
a high level of attention and working memory. This study
examines the relation between AVG experience and the
integration of SN and CEN by comparing AVG experts and
amateurs. We first analyzed functional integration using the
graph-theoretical analysis and then located the functional
integration using the FC analysis. Graph theory is the study
of graphs, which are mathematical structures used to model
pairwise relations between objects. A graph is a set of nodes
(vertices) linked by connections (edges) and provides an
abstract representation of the elements and their interactions
in a system. Graph theory has been widely used to quan-
titatively characterize topological organization of functional
networks. We predict that if AVG experience is related to the
integration of SN and CEN, experts should have enhanced
functional integration compared to amateurs.

2. Materials and Methods

2.1. Participants. Participants gave written consent to partic-
ipate in this study, which was approved (20150035) by the
Ethics Board of the University of Electronic Science and
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Technology of China (UESTC). Twenty-three AVG experts
(M = 233yrs + 4.3) and 22 amateurs (M = 22.3yrs +
3.46) participated in this study. The experts were experienced
AVG players (i.e., League of Legends (LOL) or Defense of
the Ancient (DOTA)). Based on a preliminary self-report
questionnaire, the experts had at least four years of AVG
experience, while the amateurs had less than one year of AVG
experience. AVG expertise was quantified based on the Elo
rating generated by the AVG program [33]. The experts’ score
ranged from 1800 to 2600 points, while the amateurs’ score
was below 1200, verifying the group membership. The Elo
rating scale is widely used as a predictor of the outcome of
a multiplayer AVG game. A 100-point advantage indicates
a 64% probability of winning a game, while a 200-point
advantage indicates a 76% probability.

The two groups were matched in years of school edu-
cation, IQ as measured by Ravens Progressive Matrices
(experts: 91 + 10.8 versus amateurs: 91.6 + 9.8) prior to this
study, and the onset age (8 years) of video game playing (not
necessarily AVG). All the participants were male and right-
handed based on the Edinburgh Inventory [34], reported
normal or corrected-to-normal vision, and presented no
history of neurological illnesses.

To allow for the examination of the relation between
behavioral and fMRI data, participants completed a digital »-
back task and a spatial memory task before an fMRI session.
In the digital n-back test, they first saw a sequence of digits
and were then asked to indicate whether a digit matched the
one from # steps earlier in the sequence. The task difficulty
was adjustable by the load factor - #, ranging from 0 to
2 [35]. In the spatial memory task, participants first saw a
sequence of blocks being lit up within a 6 x 6 grid consisting
of 36 blocks and were asked to memorize the sequence and
then repeat it. Starting with a short sequence which increased
to a 15-block sequence maximally, this task measured the
longest sequence one could remember [36]. These tasks
were used because (1) they require both spatial attention
and working memory that are essential for AVG playing
and (2) the task difficulty is dynamically adjustable based
on participants’ performance, making these tasks sensitive
indicators to one’s spatial attention and working memory in
a computer game session. Thus, although the tasks are not
standardized tests of spatial attention and working memory,
they offered sufficiently sensitive behavioral data for us to
examine their relation to fMRI data.

2.2. Data Acquisition. Images were collected on a 3T
MRI scanner (GE Discovery MR750) at the UESTC MRI
Research Center. Resting-state fMRI data were acquired
using gradient-echo EPI sequences (repetition time (TR) =
2000 msec, echo time (TE) = 30 msec, flap angle (FA) = 90°,
matrix = 64 x 64, field of view (FOV) = 24 x 24 cm?, and
slice thickness/gap = 4 mm/0.4 mm), with an eight-channel-
phased array head coil. All the participants underwent a
510-second resting-state scanning to yield 255 volumes (32
slices per volume). High-resolution T1-weighted images were
acquired using a 3-dimensional fast spoiled gradient echo
(T1-3D FSPGR) sequence (TR = 6.008 msec, TE =1.984 msec,
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TABLE 1: Mathematical formulas used in graph theoretical analyses.

Global efficiency Connection cost Nodal efficiency Nodal clustering coeflicient
1 1 1 1 1 e
E = — — Ko=) K E = T G = t
gobal = NN 1) #;G L, cost = N(N - 1) t; (N-1) i;G Ly Ki(K;-1)/2

Note: we defined the subgraph G; as the set of nodes which are the direct neighbors of the ith node, which is directly connected to the ith node with an edge.

FA = 9°, matrix = 256 x 256, FOV = 25.6 x 20 cm” (80%), and
slice thickness (no gap) = 1mm) to generate 152 slices.

2.3. fMRI Data Preprocessing. The fMRI data were pro-
cessed through typical preprocessing procedures using SPM8
software (Wellcome Department of Cognitive Neurology,
London, UK) [37, 38], including the first five volumes of each
run discarded, slice scan time correction, head motion cor-
rection [37], normalized images with a BOLD EPI template
in the Montreal Neurological Institute (MNI) atlas space,
and spatial smoothing with Gaussian kernel of 8 mm full-
width half-maximum (FWHM). Temporal filtering (band-
pass) was then performed between 0.01 and 0.08 Hz. BOLD
time courses were extracted from each ROI by averaging 27
voxels. The linear regression was used to reduce the effects
of physiological processes (e.g., the fluctuations of cardiac
and respiratory cycles). Otherwise, the 9 noise covariates
were added in the regression analysis, including White Matter
(WM), Cerebro-Spinal Fluid (CSF), Global Signal (GS), as
well as 6 motion parameters (3 rotations and 3 translations as
saved by the 3D motion correction) [39-42]. We derived the
GS/WM/CSF nuisance signals averaging the time courses of
the voxels in each subject’s whole brain/WM/CSF masks. To
derive these masks, coregistration between T1 and functional
image as well as the segmentation process of each participant’s
T1 image were performed.

2.4. Functional Network Analysis. The quantitative met-
rics of SN and CEN were analyzed based on the graph-
theoretical method for the full correlation matrix using the
Brain Connectivity Toolbox (http://www.brain-connectivity-
toolbox.net/) [43]. The topological properties of the func-
tional networks were defined on the basis of a 23 x 23 binary
graphs, G, consisting of nodes (each ROI) and undirected
edges (functional connectivity) between nodes. This binary
graph was constructed by applying a correlation threshold T
to the correlation coefficients. Consider

L, IfrT,
0, otherwise,

where ¢;; refers to the edge in the graph. When r;; of a pair
of nodes, i and j, exceeds a given threshold T, an edge is
assumed to exist; it does not exist otherwise. Since there is no
gold standard defining the threshold T based on the literature,
we used a variety of thresholds ranging from 0.05 to 0.3 in 25
steps. Since all the thresholds generated a similar pattern of
results, the threshold of 0.2 was used for the data report.

We then conducted the graph-theoretical analysis.
At the network level, we analyzed three characteristics

(i.e., global efficiency, cost, and mean clustering coefficient).
Three nodal characteristics were also analyzed (i.e., nodal
clustering coefficient, nodal degree, and nodal efficiency)
[43]. The nodal degree was defined by the number of
links connected to the node, which was equivalent to the
number of neighbors that the node had. See Table 1 for the
mathematical formulas used in graph-theoretical analyses
(see [44] for details).

The between-group comparisons were conducted using
the nonparametric permutation test, a method widely used
when normality assumption was violated [45, 46]. For a given
parameter, we first estimated ¢ value to indicate the between-
group difference. We then randomly assigned the parameter
values of all the participants to two groups to recalculate
t value between the two randomized groups. We repeated
the permutation 10,000 times and obtained 10,000 ¢ values.
Finally, we determined the significance level of the between-
group differences at 95% of the empirical distribution in a
two-tailed test [47].

ROIs and the network construction were defined based
on the methods and findings of previous research [24, 25,
38, 48, 49]. The network construction of SN was defined
according to Seeley et al’s method [25]: we first selected
anterior insula as the start ROI of SN; we then computed the
FC between anterior insula and other brain areas; multiple
comparison corrections were then conducted with FDR p <
0.05, and the survival clusters were the other ROIs of SN.
This analysis showed that, in addition to ACC, survival
clusters also included SMG, MFG, and posterior insula. This
is consistent with Cauda et al’s findings [38] (see Cauda et al’s
supplementary materials for details). The ROIs of CEN were
defined according to Markett et al’s [49] and Spreng et al’s
findings [48].

Thus, we selected 23 MNI coordinates as the center
positions of functional network nodes (ROIs) (Table 2).
Functional network edges were defined by Pearson’s correla-
tion coefficients computed between the extracted signals of
ROIs for each participant. The correlation coefficients then
underwent Fisher’s 7-to-z transformation [50]. For each edge,
independent samples t-tests analyzed the between-groups
difference and corrected the multiple comparisons with False
Discovery Rate (FDR, p < 0.05). To analyze the relation
between SN and CEN, we calculated the average nodal signal
across all the nodes within SN and CEN, respectively.

3. Results

3.1 Increased Global Characteristics. For quantitative metric
of the integration between SN and CEN, we constituted
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TABLE 2: The selected ROIs for data analysis (Number 1~9 ROIs = SN, 10~23 ROIs = CEN).

ROI number Network Abbrev. Coordinate (MNI) Brain area

! alns-L -l 21 2 Anterior insula

2 alns_R 39 19 -3

3 plns-L 40 4 2 Posterior insula

4 plns_R 42 -6 0

5 SN dACC 2 22 28 Dorsal anterior cingulate cortex

6 MFG.L -7 42 25 Middle frontal gyrus

7 MFG-R 34 45 22

8 SMG_L -59 -35 29 .
Supramarginal gyrus

9 SMG_-R 58 =37 33

10 IPS.L -2 =70 46 Left intraparietal sulcus

1 IPS_R 25 -62 53

12 IPLL 42 48 oL Inferior parietal lobule

13 iPL.R 57 -36 54

14 VIPS L - -0 24 Ventral parietal sulcus

15 vIPS_R 35 -85 27

16 CEN FER-L 24 b 66 Frontal eye field

17 FEF_R 28 -10 58

18 IPCL -55 -2 38 Inferior precentral lobule

19 SMA -2 -2 55 Supplementary motor area

20 DLPFC.L 40 39 30 Dorsolateral prefrontal cortex

21 DLPFC_R 38 41 26

22 VOC.L 47 -7 -8 Ventral occipital lobe

23 VOC_R 55 -64 -13

the nodes of both SN and CEN into a multisystem network.
At different threshold levels as shown in Figurel, graph-
theoretical analyses showed significant increases in the three
global characteristics (i.e., global efliciency, connection cost,
and the mean clustering coefficients in the multisystem
network) in the experts compared to the amateurs (see
Figure 1).

3.2. Increased Nodal Characteristics. In the new network,
we found significantly enhanced nodal characteristics in the
experts compared to the amateurs (Figure 2). Figure 2(a)
showed that DLPFC.L of CEN and four nodes of SN had
increased nodal clustering coefficient (bilateral alns, plns.L,
and SMG.L). Figure 2(b) showed a significantly increased
nodal degree in most of the SN and CEN nodes. Figure 2(c)
revealed a pattern of results similar to Figure 2(a) except IPCL
and SMA of CEN in nodal efficiency.

3.3. Enhanced FC in the Intranetworks and Internetworks.
We examined the intranetwork FC through the correlation
between nodes within each network (SN and CEN). The
results showed that the experts had a significantly enhanced
intranetwork FC within both SN and CEN. In Figure 3, red
lines indicate enhanced edges within SN, while green lines
indicate enhanced edges within CEN.

The average nodal signal was calculated across all the
nodes within SN and CEN, respectively. Then, we examined
the internetwork FC through the correlation between the
average nodal signal of SN and CEN. The experts had

a significantly enhanced internetwork FC between SN and
CEN than the amateurs (experts: Mean = 0.82, SD = 0.21;
amateurs: Mean = 0.51, SD = 0.32, t = 3.91, and p < 0.001,
Figure 3(a)). The enhanced internetwork FC was mostly
evident in bilateral DLPFC and SMA in CEN, while SN
showed a more even spatial distribution since the majority of
the nodes were related to the enhancement of internetwork
FC. Furthermore, the experts did not have decreased FC
compared to the amateurs.

3.4. Correlations between Behavioral Data and Graph-Theo-
retical Characteristics. The experts outperformed the ama-
teurs in the spatial memory task (+ = 4.07 and p < 0.001)
and responded faster (but similarly accurately) in the 2-back
task (t = —2.08 and p = 0.04). In addition, the experts’
performance on the spatial memory task was positively
related to the global efficiency (r = 0.47 and p = 0.04) and
the connection cost (+ = 0.48 and p = 0.03); furthermore, the
response time in the 2-back task was negatively correlated to
the nodal efficiency of DLPFC.L (r = —0.51 and p = 0.02).
The same analyses in the amateurs did not reveal significant
correlations between behavioral data and graph-theoretical
characteristics.

4. Discussion

This study examined the functional integration of SN
and CEN in AVG experts and amateurs. Results showed
that experts had enhanced global characteristics, nodal



0.8

0.7

0.6

Cost

0.5

0.4

UCHED 0.8.0.0.0.8.0.0.0.0.8.0.0.0.8.8.0.0.0.0.0.0.2.0.0 ¢

0.05 0.1 0.15 0.2 0.25 0.3
—o— Expert * P <001
—6— Amateur % p < 0.001

(®)

e e e e ek e e ek ek ek e ok Aok ok ek

Neural Plasticity
1
0.9
0.8
ey
207
.8
9
&
L
= 0.6
=)
]
O
0.5
0.4
0.3
L.0.0.2.8.8.0.0.0 0088000000088 08.06.0.¢4¢
0.05 0.1 0.15 0.2 0.25 0.3
—o— Expert % p <001
—o— Amateur % p <0.001
(@
1
0.9
0.8
5‘5’ 0.7
L
8
oo
£ 0.6
g
2
O 05
0.4
0.3
0.05 0.1
—o— Expert

—6— Amateur

0.15

0.2 0.25 0.3

% p<0.05
% p <0.005

FIGURE 1: Increased global characteristics in AVG experts over amateurs. (a), (b), and (c) indicate global efficiency, connection cost, and mean
clustering coefficient, respectively. The abscissa indicated step-by-step thresholds (correlation coeflicient) to establish a network.

characteristics, and FC both within and between networks
compared to amateurs. Thus, AVG experience may be related
to enhanced integration between SN and CEN.

4.1. Enhanced Global Characteristics. Research suggests that
both SN and CEN are activated in certain cognitive tasks
[27]. Using graph-theoretical analyses, we examined the
multisystem network (SN and CEN combined) and found

significantly enhanced global characteristics in AVG experts
compared to amateurs, including global efficiency, mean
clustering coeflicient, and connections cost (Figure 1). Global
characteristics often indicate the global information of a
network. Specifically, global efficiency reflects the ability of a
network to integrate all the nodal information; mean cluster-
ing coeflicient indicates the nodal information processing of a
network in the centralized tendency; connection cost denotes
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the resource consumption in maintaining the function of
a network [43, 44]. Thus, the current findings suggested
that the experts might be advanced in processing network
information. Furthermore, these enhancements were realized
with increased resource consumption in maintaining the
function of networks, consistent with previous findings on
the neural network [51]. The correlations between behavioral
data (performance of the spatial memory) and global char-
acteristics (global efficiency and connection cost) suggested
that this enhanced efficiency of the global network might in
turn improve the performance in an AVG session.

4.2. Enhanced Nodal Characteristics. We evaluated three
nodal characteristics: clustering coefficient, degree, and effi-
ciency. Nodal clustering coeflicient indicates the ability of
information processing of a node; nodal degree reflects
the number of connections of a node, a basic nodal char-
acteristic to which other nodal characteristics are related;
nodal efficiency reflects the ability of a node to integrate
specialized information from other nodes [43, 47]. Thus,
the experts’ increased nodal characteristics suggest that they
have an enhanced information processing ability in local
regions of CEN and SN. These regions are shown in Figure 2.
It is noteworthy that the nodes with enhancements of all
the three characteristics (i.e., DLPFC, Insula, and SMG)
may be exceptionally closely related to AVG experience.
Furthermore, we found that DLPFC.L, an important node in
CEN, is related to attentional control and working memory
(25, 27].

Consistent with a recent study that found an enhanced
GMYV in DLPFC in AVG experts, the present study showed
an enhanced DLPFC.L [20]. Furthermore, nodal efficiency
of DLPFC.L was correlated with the response time in the 2-
back task in the experts but not in the amateurs. AVG experts
also had better working memory than amateurs. Thus, the
left DLPFC might play an exceptionally important role in
the cognitive effects of AVG experience. Furthermore, the
bilateral DLPFC, which are the main nodes in CEN, had
greater enhanced FC between CEN and SN than other nodes,
suggesting that DLPFC might be related to the integration of
both CEN and SN.

In addition, bilateral alns receives salient information and
initiating CEN. According to a recent resting-state study,
bilateral plns and SMG.L are related to the sensorimotor
network [38] which charge input and output information
to support attentional and working memory. Thus, these
enhanced nodal characteristics support the behavioral find-
ing that AVG experience is related to advanced attention and
working memory [12, 52, 53].

4.3. Enhanced Functional Integration. To further locate the
functional integration, we examined intranetwork and inter-
network using FC analyses. We found that the experts had
significantly enhanced FC in the intranetworks compared
to the amateurs (see Figure 3 (red and green lines)). Fur-
thermore, the enhanced FC between the nodes of SN and
CEN (e.g., dACC, iPL_L, bilateral AI, PI, DLPFC, and MFG)
suggests an enhanced functional integration between SN and
CEN, which may facilitate attention and working memory in

a cognitively demanding task [25, 48]. Enhanced functional
integration between SN and CEN observed in the experts
might be the neural basis of expert attention and working
memory in an AVG session [12, 52-54]. These enhance-
ments observed at the global level in the present study are
consistent with our recent findings that AVG experts have
enhancements in insular subregions observed at the local
level. These findings support the possible relation between
AVG experience and enhancements of functional integration.

Nevertheless, the correlational nature of this study pre-
cludes causal inferences. For example, AVG experts may
have an innate advanced attentional ability, which in turn
may reinforce their interest in AVG. In addition, AVG
experts may lead a more active life than amateurs, which
may also contribute to the network change. Nevertheless,
we found a possible relation between AVG experience and
the integration of functional networks, motivating follow-up
experimental studies to test the causal effect of AVG training
on neural plasticity. An experimental study that is currently
in progress shows preliminary evidence supporting the causal
effect of AVG training on neural plasticity. In addition, future
studies should recruit a control group that has no video game
experience. This design can reveal any qualitative distinctions
related to the AVG experience [55].

5. Conclusions

By comparing AVG experts with amateurs, this study found
that AVG experts had significantly enhanced global charac-
teristics, nodal characteristics, and FC in SN and CEN. Thus,
long-term AVG playing is related to the integration between
SN and CEN. The integration may be related to the experts’
advanced attention and working memory in a game session.
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