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Abstract

A number of previous studies have examined music-related plasticity in terms of multi-sensory and motor integration but
little is known about the functional and effective connectivity patterns of spontaneous intrinsic activity in these systems
during the resting state in musicians. Using functional connectivity and Granger causal analysis, functional and effective
connectivity among the motor and multi-sensory (visual, auditory and somatosensory) cortices were evaluated using
resting-state functional magnetic resonance imaging (fMRI) in musicians and non-musicians. The results revealed that
functional connectivity was significantly increased in the motor and multi-sensory cortices of musicians. Moreover, the
Granger causality results demonstrated a significant increase outflow-inflow degree in the auditory cortex with the
strongest causal outflow pattern of effective connectivity being found in musicians. These resting state fMRI findings
indicate enhanced functional integration among the lower-level perceptual and motor networks in musicians, and may
reflect functional consolidation (plasticity) resulting from long-term musical training, involving both multi-sensory and
motor functional integration.
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Introduction

An increasing body of evidence indicates that musical training

can alter functional and structural organization in the brain, and

musicians’ brains are thought to provide a suitable model of

neuroplasticity [1–4]. Professional musicianship typically reflects

skilled performance that is acquired after years of intensive

training, and constitutes one of the most complex human abilities

involving a number of different brain regions. Previous structural

imaging studies have reported increased grey matter volume in

motor, auditory and visual cortex and cerebellar regions of the

brains of musicians and these areas are all thought to be important

for musical aptitude [5]. Diffusion tensor imaging (DTI) has also

recently been used to measure the integrity of fiber tracts in

musicians with altered diffusion parameters being reported in the

corticospinal tract [6] and the superior longitudinal fasciculus [7].

At the task-based, functional level, studies over the last two

decades have reported distinctive differences in a wide range of

brain regions in professional musicians including those involved in

gestural motor skills, auditory perception, and other aspects of

cognition such as emotion and memory [8–10]. Using fMRI,

Herdener and colleagues have also reported that musical training

induced functional plasticity in the hippocampus as a novelty

detector in the temporal domain of the acoustic modality [11].

Taken together, these findings appear to reflect stable (structural

imaging) and transient (task-based functional imaging) informa-

tion, suggesting that musical training can induce neural plasticity.

However, little is known about the functional and effective

connectivity patterns of spontaneous intrinsic activity between

brain regions during the resting state in musicians.

Recently, resting-state fMRI study has been widely used to

investigate functional connectivity in healthy controls based on

intrinsic spontaneous low-frequency blood oxygenation level-

dependent (BOLD) signal fluctuations [12]. Using independent

component analysis (ICA) and seed-based functional connectivity

analysis, more than 10 resting-state functional networks (RSN)

have been discovered [13]. Using functional connectivity analysis,

Besiwal et al. first reported the correlated connectivity pattern of

the spontaneous BOLD signal in the motor system [14], and the

RSNs identified in previous studies include the visual, somatosen-

sory-motor and auditory modalities [13,15–18]. In addition, these

perceptual networks are also inherently negatively correlated with

the default mode network (DMN) in the resting state [15]. On the

other hand, effective connectivity has also been a focus of a

number of fMRI studies using Granger causality analysis (GCA)

[19,20] applying multivariate or vector autoregressive models for

fMRI time series to test for directed connections [21–25]. As such,

GCA can provide information about the dynamics and direction-

ality of the BOLD signal among brain regions and we have

previously used it on resting-state fMRI data, to demonstrate
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causal influences among RSNs consistent with previous task-

related studies [19]. In addition, previous studies have indicated

that in the human brain directed influences within networks may

have prominent small-world topological properties [26,27]. These

topological properties have been found in the functional connec-

tivity [28–30] and structural networks [31,32] in the human brain.

Learning to play a musical instrument requires complex

multimodal skills involving the simultaneous perception of the

auditory, visual, somatosensory modalities, as well as the motor

system. Previous evidence indicates that musical production

involves motor areas in conjunction with other functional systems

such as the somatosensory, auditory, visual, emotional and

memory loops [33–35]. We thus hypothesized that musicians

would exhibit a higher level of intrinsic activity intensity in these

multi-sensory and motor systems compared with non-musicians

during the resting state. Furthermore, we predicted that the

effective connectivity among these systems might differ between

musicians and non-musicians. As such, we used resting-state fMRI

to test our hypotheses in two groups; musicians and non-

musicians. Functional connectivity analysis and GCA were

performed in both the multi-sensory and motor systems to assess

functional plasticity changes in spontaneous activity induced by

music training.

Results

One of the musicians and four of the non-musicians were

excluded due to excessive head motion. Thus, fifteen musicians

and fifteen non-musicians were included in the final analysis. The

average age in the musician group was 23.13 years (SD = 2.38),

and 21.93 years (SD = 2.05) in the non-musicians group. There

was no significant difference (p = 0.15) in age between the two

groups.

Functional connectivity analysis
For each ROI, significant positive and negative correlation

maps were identified in non-musician and musician groups. The

statistical threshold was p,0.05 (FDR-corrected). Visual inspec-

tion of the data from the two groups indicated similar connectivity

patterns of positive correlations with the seeds. A significant

positive correlation was found in contralateral homologous regions

in all seeds. In detail, significantly positive functional connectivity

with the right MI was found in the left MI, right superior temporal

gyrus and bilateral supplementary motor area(SMA) in musicians

and non-musicians. The left AI was positively correlated with

bilateral superior temporal gyrus, insula, postcentral gyrus and

SMA in both groups, and bilateral precentral gyrus was also

observed positive correlation with left AI in musicians. The signal

from left pre- and postcentral gyrus, left superior frontal gyrus,

right postcentral gyrus, and bilateral SMA, insula was positive

correlated with that from left SI, and the left VI was positively

correlated with bilateral lingual, fusiform, calcarine, middle

occipital gyrus and cuneus in both groups. The regions with

significantly positive functional connectivity with the left VII was

similar with that found in left VI, however, the area with

maximum positive correlation was observed at calcarine gyrus for

VI, and middle occipital gyrus for VII. These positive correlation

patterns (Figure 1) in all five seeds were consistent with the results

of previous studies [15,36]. Negative correlation patterns were also

found in each seed (Figure 2). The right MI was negatively

correlated with right inferior parietal lobule and left precuneus, as

well as bilateral insula a [27] nd inferior frontal gyrus in the non-

musicians group. In the musicians group, the right MI was

negatively correlated with the right insula, inferior frontal gyrus,

middle frontal gyrus, bilateral precuneus, inferior parietal lobule

and supramarginal gyrus. The negative correlation map with the

AI and SI clearly included the prefrontal lobule, posterior

cingulate cortex/precuneus and bilateral inferior parietal lobule.

The left VII exhibited a negative correlation with the inferior

parietal lobule, superior frontal gyrus and middle, posterior

cingulate cortex. These results in AI, SI and VII, were consistent

with previous observations [15].

Compared with the non-musicians, significantly increased

positive functional connectivity was found in musicians in all five

networks in the seed-based correlation analysis, and no decreased

positive functional connectivity was found. The statistical thresh-

old was p,0.001 (cluster size .10). For the increased positive

functional connectivity in musicians (Figure 3), the left AI showed

connections with the right occipital lobe (visual region) and

cerebellum, the left VII showed connections with bilateral

precentral gyrus (motor region) and right post-central gyrus

(somatosensory region), the left VI exhibited connections with

bilateral precentral gyrus (motor region), the left SI showed

connections with the right occipital lobe (visual region) and

bilateral precuneus, and the right MI showed connectivity with the

left occipital lobe (visual region) and left thalamus. The detailed

results are shown in Table 1. These findings suggest that musicians

exhibited significantly increased functional connectivity among the

motor and multi-sensory (visual, somatosensory and auditory)

cortices.

Granger causality analysis
The averaged magnitude values of Granger-causality interac-

tions of each pair of ROIs in musicians and non-musicians are

shown in Tables 2 and 3 respectively. Figure 4 shows the CGC

causal networks of statistically significant Granger-causality

interactions in both the musician and non-musician groups. The

red lines represent bi-directional connectivity, while the green

arrow represents uni-directional connectivity. The group averaged

inflow-degree, outflow-degree and outflow-inflow degree of the

nodes in the CGC causal connectivity networks were calculated

and demonstrated in Table S1 (means and standard errors of these

properties) for each group. The mean outflow-inflow degree for

each node (and their standard errors) in two groups is shown at the

bottom of Fig. 4. The main forward causal interaction (output) in

the musician group was from AI and VI to other nodes, whereas it

was from SI and VII in the non-musicians. For the causal inflow,

AI and VI were dominant nodes in non-musicians and the MI and

VII in musicians. To quantify the difference of outflow-inflow

degree between the two groups the Wilcoxon signed rank test was

used, and a significant difference was found at AI (P = 0.0078).

These results suggest that effective connectivity in the motor and

perceptual systems exhibited functional changes related to musical

training and that the auditory cortex might play a critical role in

the functional plasticity exhibited by musicians.

Discussion

This study used resting-state fMRI to examine functional and

effective connectivity among the motor and multi-sensory cortices

in musicians with long-term musical training. The data revealed

two main findings in support of our original hypotheses. First,

using an ROI-based functional connectivity analysis, we found

significantly increased functional connectivity among the motor

and multi-sensory cortices in musicians compared with non-

musicians. We speculate that enhanced functional integration

among the lower-level perceptual and motor networks (relative to

the higher-order cognitive networks, e.g. the attention network;

Functional Plasticity in Perceptual Networks
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Figure 1. The positive correlation map of motor, auditory, somatosensory and visual cortices in non-musicians and musicians
groups were rendered onto a 3D brain reconstruction.
doi:10.1371/journal.pone.0036568.g001

Figure 2. The negative correlation map of motor, auditory, somatosensory and visual cortices in non-musician and musician
groups.
doi:10.1371/journal.pone.0036568.g002
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DMN) was correlated with improvements in musically-relevant

motor and auditory skills. The GCA method was also used to

analyze resting state fMRI data to explore effective connectivity

differences in the motor and multi-sensory cortices. Our results

demonstrated a significant difference of the degree of outflow to

inflow at AI between the two groups, and AI was the main forward

causal interaction (output) in the musician group. They suggest

that the auditory cortex might play an important role in effective

connection pattern changes related to long-term music training.

Previous studies have reported neural plasticity changes induced

by music training using structural imaging [5,6] and task-based

approaches [10,11,35]. However, to the best of our knowledge this

is the first evidence of spontaneous functional and effective

connectivity using resting-state fMRI, supporting the notion that

musicians exhibit functional plasticity in motor and perceptual

networks.

Previous resting-state fMRI studies have reliably identified

intrinsic functional connectivity patterns in the motor and

perceptual systems using independent component analysis and

functional connectivity analysis [13–15,17]. Coherent oscillatory

patterns during rest in RSNs are thought to be involved in the

consolidation of past events and preparation for future responses

to stimuli [37]. Investigations into the resting state of the brain

may provide more insight into the fundamental architectural

properties of the brain and structural dysfunction in brain

disorders. It has recently suggested that resting-state patterns

may also be affected in mental disorders, such as epilepsy [38–40]

and schizophrenia [41]. In addition, resting state fMRI has been

used to examine developmental changes in functional brain

organization [42,43]. The plasticity that characterizes the devel-

opment of brain systems has been investigated in large-scale

networks [44], including those involved in attention and cognitive

control [45], and the default mode network [42], as well as in

functional connectivity of the anterior cingulate cortex [46]. In the

current study, we sought to identify plastic changes in the

perceptual and motor networks using a resting-state fMRI dataset

in non-musicians and musicians. Besides, we also found a negative

correlation pattern with the auditory, somatosensory and visual

cortices, which was consistent with the findings of Tian et al’s

study [15].

Trained musicians have been found to develop tight neuronal

coupling of auditory, somatosensory, and motor brain areas.

Obviously, the main difference between the professional musicians

and non-musicians is the daily intensive practice of playing a

Figure 3. The increased functional connectivity within five ROIs in musicians compared with non-musicians during resting state.
doi:10.1371/journal.pone.0036568.g003
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musical instrument throughout their lifetime. For example, when a

pianist plays a new piece of music, they will typically read the

musical notation by eye while playing the keys with their fingers

and listening by ear for feedback regulation. As mentioned above,

the performance of music involves not only brain motor areas but

also somatosensory, auditory, visual, emotional and memory loops

[1–3,9,35,47]. Our finding of increased spontaneous coherent

oscillatory connectivity in perceptual and motor systems is

Table 1. The regions with significantly increase functional connectivity in musicians compared with non-musicians.

Brain regions Brodmann area Cluster T Talairach coordinate (X Y Z)

Seed at MI

Left middle occipital gyrus 19 36 5.42 226 287 9

Left thalamus 18 4.16 26 212 0

Seed at AI

Left lingual gyrus 18 24 4.63 217 294 211

Left inferior occipital gyrus 18 17 4.18 246 280 26

Left cerebellum posterior lobe 20 4.95 220 280 231

Seed at SI

Left postcentral gyrus 7 34 5.59 211 249 63

Right postcentral gyrus 5 17 4.65 6 243 71

Seed at VI

Left medial frontal gyrus (Supplementary Motor Area) 6 40 5.45 29 220 60

Right precentral gyrus 6 11 4.86 26 216 62

Seed at VII

Right medial frontal gyrus (Supplementary Motor Area) 6 154 6.31 12 211 61

Right precentral gyrus 6 4.30 34 217 64

Left medial frontal gyrus (Supplementary Motor Aea) 6 53 4.82 212 210 57

Left paracentral lobule 31 4.05 0 218 48

Left postcentral gyrus 2 19 4.19 238 237 62

doi:10.1371/journal.pone.0036568.t001

Figure 4. The Granger causality results in musicians(right) and non-musicians(left) displayed separately. The lines without arrows
represent bi-directional connections, and the lines with arrow represent uni-directional connections. The group averaged outflow-inflow degree (Out-
In degree ) of the nodes in each network are displayed in the bottom panels. Vertical bars indicate estimated standard errors.
doi:10.1371/journal.pone.0036568.g004
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consistent with several previous results from task-based approaches

[10,35]. Our functional connectivity findings might reflect

functional consolidation resulting from long-term musical training

which requires multi-sensory and motor functional integration. An

additional finding of interest was that the visual cortex appeared to

be critical in increasing the integration of low-level functional

systems in musicians. This finding has not been reported in

previous task-based studies and may possibly reflect the use of

resting state fMRI to derive changes in intrinsic functional

architecture of brain function [12]. Indeed, in previous investiga-

tions of brain functional plasticity in musicians, the task-based

approaches adopted made extensive use of audiovisual stimuli

which may have obscured differences in functional integration

between the visual cortex and other sensory cortices in musicians

and non-musicians.

The functional connectivity analysis also revealed significantly

increased connectivity between the MI and the thalamus in

musicians. The human brain has projections from the thalamus to

the motor and primary motor cortex, which might contribute to

motor-related function, such as voluntary motor control of limbs

[48]. Recently, Krause et al. reported stronger interactions

between the premotor cortex and thalamus in musicians during

an auditory synchronization task, speculating that their observa-

tion was related to musical expertise or precise timing in musicians

[49]. Our finding also supports the occurrence of functional

plasticity changes between the thalamus and motor cortex in

musicians at the level of spontaneous oscillations. The present

results also revealed increased connectivity between the AI and the

cerebellum in musicians. The cerebellum is traditionally consid-

ered to be involved in motor coordination, motor skill learning,

and various aspects of cognitive and sensory discrimination [50]. A

significant difference in cerebellar volume has been reported

between musicians and non-musicians, possibly reflecting struc-

tural adaptation to long-term motor and cognitive functional

demands in the cerebellum during musical training [5]. However,

no changes in the connection between the AI and MI were found

in the current study. As such, we speculate that the increased

connection between AI and cerebellum may implicate cross-modal

linkage between the motor and auditory systems. These increased

links (MI-thalamus, AI-cerebellum) were not located between the

perceptual systems of the cerebral cortex that were the primary

focus of our study, but rather reflect motor functional plasticity

related to musical training.

In a previous study of directional connectivity among RSNs, it

has been reported that the intrinsic activity of low level perceptual

and motor networks is strongly intra-dependent in healthy controls

[51]. In the present study, the results revealed the apparent circuit

of effective connectivity in perceptional and motor networks in

both musician and non-musician groups. These results were

consistent with the previous observation. Furthermore, the degree

of outflow-inflow connections in the auditory node is significantly

different between two groups; it was the main output node of

information in the effective connectivity pattern of musicians,

while it was node with maximum level of inputs in the non-

musician group. The auditory network might therefore play a

major causal role in plasticity changes in musicians. It is possible

that the main causal output node or the driver of causal flow

changed to the auditory cortex in musicians because of the

importance of auditory cortex for musicians. This finding provides

new evidence for auditory plasticity related to musical training.

Several considerations regarding the methodology used in this

study should be noted. First, the musician group primarily

consisted of females (14/15) and therefore our findings might

reflect particular features of female musicians. Some studies have

Table 2. The averaged values of magnitudes of Granger-causality interaction in musicians.

Origin

MI AI SI VII VI

MI 0.030660.011* 0.039660.012* 0.019060.006* 0.034560.008*

AI 0.026060.010* 0.010960.006 0.017060.009 0.017160.009

Target SI 0.023360.008* 0.015760.005* 0.021960.007* 0.020260.007*

VII 0.027860.011* 0.025560.006* 0.025960.009* 0.041460.017*

VI 0.019660.006* 0.006860.004 0.017860.006* 0.028960.014*

Note: The rows represent ‘targets’, while the columns represent ‘origins’. * P,0.05 Granger causality interaction. Values of these properties reported are means 6

standard errors across subjects.
doi:10.1371/journal.pone.0036568.t002

Table 3. The averaged values of magnitudes of Granger-causality interaction in non-musicians.

Origin

MI AI SI VII VI

MI 0.010760.005 0.013560.007 0.021260.006* 0.023760.011

AI 0.009760.005 0.042060.013* 0.019360.006* 0.0270*60.009

Target SI 0.014760.008 0.029760.012* 0.014260.008 0.007660.004

VII 0.015360.009 0.020960.009* 0.016060.004* 0.023360.009*

VI 0.029360.011* 0.025260.011 0.034160.010* 0.036660.013*

Note: The rows represent ‘targets’, while the columns represent ’origins ’. * P,0.05 Granger causality interaction. Values of these properties reported are means 6

standard errors across subjects.
doi:10.1371/journal.pone.0036568.t003
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reported gender differences in functional plasticity related to the

musical training [52] and therefore potential effects of gender on

neural connectivity in musicians should be considered and

investigated in the future. Second, lateralized seeds were used in

this study and although early studies reported that music was

predominantly a right-hemisphere-dominated activity [53], this is

now considered to be an oversimplification. For example,

memorizing the lyrics of songs has been found to reduce activity

in the left hemisphere, while the perception of the violations of

expected notes is governed by the right hemisphere [54].

However, it is now known that music listening and performing

engage many bilateral brain regions [55]. Because the lateraliza-

tion of music effects is uncertain, the use of lateralized seeds may

have been unsuitable. However, we additionally performed the

same functional connectivity analysis seeded at the contralateral

ROIs and found that the main result (enhanced functional

integration among the lower-level perceptual and motor networks)

was the same. This finding also indicates that the functional

plasticity in perceptual and motor networks is not lateralized in

musicians. The third consideration concerns global signal removal.

Global signals that are ubiquitously presented across gray matter

can obscure underlying neuroanatomical relationships [56]. These

signals should be removed by global (whole brain) signal

correction. However, global signal correction as a pre-processing

step could introduce negative correlations and reduce positive ones

[57] and thus the removal of global signal remains a problem.

Third, the relevance of Granger Causality analysis at the neuronal

level in resting-state brain networks is not fully understood.

Although a few resting-state fMRI studies have revealed a causal

influence among the resting-state networks [19,20], it is believed

that this is exerted on the specific brain regions with which other

regions interact. Although, the present study focused on the causal

relationship among the motor and perceptional networks, the

other network (or region) might effect the effective connections

among them. However, the mechanism is unclear. We will

consider the issues in the future study. We considered the causality

analysis as a means to uncover the interaction between the

perceptual and motor these networks and the findings were

considered together with the results of the correlation analysis,

interpreted in terms of brain functional plasticity. Finally, there are

two available approaches to process the time series before the

GCA evolution in a group of subjects. One involved obtaining

separated effect estimate per subject at each pair of ROIs and then

combining these at a second-level test for effects across subjects

[20,26,27], which was used in the current study. The other was the

GCA evolution for the concatenated time series from the same

ROI across subjects [58–60]. Though these approaches were

adopted in the variable studies, any weakness still exists

respectively. For example, the former did not account for

differences in intra-subject variability, and using the letter

approach, temporal discontinuities and phase lag were introduced

to affect the estimation of causality [59,60], besides the inter-

subject variability was also ignored. The variable approach might

lead to the different findings, and the results should be treated with

caution.

In conclusion, our results have provided further evidence that

intensive musical training exerts a profound influence on

fundamental aspects of human brain function. Using resting state

fMRI recording, we found significantly increased functional

connectivity among the motor and multi-sensory cortices in

musicians. These findings indicate enhanced functional integration

among the lower-level perceptual and motor networks in

musicians, and might reflect functional consolidation (plasticity)

resulting from long-term musical training, involving multi-sensory

and motor functional integration. In addition, the results indicate

that the effective connectivity changes in the auditory cortices

might play important roles in functional plasticity in musicians’

brains. Thus, the present study has provided novel evidence of

spontaneous functional and effective connectivity using resting-

state fMRI, lending further support to the notion of functional

plasticity in perceptual and motor networks in musicians.

Materials and Methods

Subjects
Sixteen musicians and nineteen non-musicians participated in

the study after providing informed written consent. The experi-

mental protocol was approved by the research ethics review board

of the University of Southwest in China. All participants in the

musician group were either students of the University of Southwest

of China, studying music as their main subject, or were

professional musicians who already possessed an academic degree

in music. All musicians had received long-term training in playing

the piano (6–20 years), and some also had received variable

degrees of training in either the Chinese zither or accordion. All

non-musicians were students of the University of Southwest of

China, and reported that they had never received formal musical

training or played any music instrument. All participants in both

groups were right-handed and healthy, with normal brain

structure, normal hearing and no history of neurological or

psychiatric deficits. All individuals were paid for their participa-

tion.

Image acquisition
All subjects were scanned in a 3T Siemens Trio Tim MRI

scanner (Siemens, Erlangen, Germany) with an eight-channel-

phased array head coil in Key Laboratory of Cognition and

Personality of Ministry of Education, University of Southwest,

China. The functional images were acquired using 2D gradient

echo-planar imaging (EPI) sequences, with the following imaging

parameters: thickness: 3 mm (with 1 mm gap), repetition time

(TR) = 2,000 ms, echo time (TE) = 30 ms, field of view (FOV)

= 22 cm 622 cm, flip angle = 90u, matrix = 64664. A total of

205 volumes (32 slices per volume) were acquired during 410 sec-

onds. To ensure steady-state longitudinal magnetization, the first

five volumes were discarded. During data acquisition, participants

were instructed to relax with eyes closed, without falling asleep.

Anatomical T1-weighted images were acquired using a three-

dimensional (3D)-spoiled gradient recalled (SPGR) sequence,

generating 176 axial slices (thickness: 1 mm (no gap), TR = 8.5 ms,

TE = 3.4 ms, FOV = 24 cm624 cm, flip angle = 12u, ma-

trix = 5126512).

Data preprocessing analysis
Preprocessing and analysis of fMRI data was carried out using

SPM8 software (Statistical Parametric Mapping; http://www.fil.

ion.ucl.ac.uk/spm). We conducted slice time correction, 3D

motion detection and correction, spatial normalization to the

MNI template supplied by SPM, and spatial smoothing using an

isotropic Gaussian kernel (8 mm full width at half maximum).

Data were excluded if head motion exceeded 1 mm and 1 degree

during fMRI acquisition. As in our previous study [61], three

procedures were processed using in-house software to remove

possible spurious variance from the time series at each voxel. (i)

Temporal band-pass filtering (pass band 0.01–0.08 Hz) was

conducted using a phase-insensitive filter, which was performed

to reduce the effects of low-frequency drift and high-frequency

noise (ii) The time series was further corrected for the effect of six

Functional Plasticity in Perceptual Networks
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head motion parameters obtained in the realigning step, and the

effect of the signals from a cerebrospinal fluid (CSF) region, a

white matter (WM) region and averaged signals from the whole

brain.

Functional connectivity analysis
We examined the RSNs of the motor cortex and three

representative perceptual cortices, namely, the auditory, somato-

sensory and visual cortices, using a region of interest (ROI)-based

functional connectivity analysis. Based on previous research work

[15,36], four spherical regions (radius 10 mm) were selected as

seeds to identify four different networks; the right primary motor

cortex ( MI, Talairach coordinates [42,221,54]) for the motor

network, left primary auditory cortex (AI, Talairach coordinates

[256,217,6]) in the auditory network, left primary somatosensory

cortex (SI Talairach coordinates [247,231,55]) in the somato-

sensory network, and left V2 area (VII,Talairach coordinates

[227,284,22]) in the visual network. Furthermore, the left

primary visual ROI (VI, Talairach coordinates [29,284,6]) was

also selected for the visual network. The mean BOLD signal

intensity time series was extracted from the five ROIs. Subse-

quently, functional connectivity analysis was performed between

the seed and all voxels in the brain data. Individual correlation

coefficients were normalized to z-scores using Fisher’s r-to-z

transformation.

SPM8 was used to assess voxel-wise statistical significance of

functional connectivity at the group level and differences between

groups. First, an individual z-score map was used in a random

effects one-sample t-test. A statistical map of significant functional

connectivity of each seed for each group was acquired. Next, to

examine the difference of functional connectivity between

musicians and non-musicians in the five networks, the z-score

maps were also processed in a random effects two-sample t-test

embedded in SPM8 in the mask of each perceptual and motor

network. The mask was created based on the conjunction of two

maps which were significantly positively correlated with the seed in

the respective group. The mask was only used to determine the

area of the comparison between groups, so the loose statistical

threshold p,0.05 was adopted.

Granger causality analysis
Effective connectivity was based on GCA [25], which holds that

a time series X(t) may ‘‘Granger cause’’ another one time series

Y(t), if information about the past of X(t) helps to predict the time

series Y(t), better than knowing the past of Y(t) alone [62]. Another

important extension of Granger’s original definition of causality is

the consideration of the multivariate case: For three or more

simultaneous time series, the causal relation between any two of

the series may be direct, mediated by a third one, or a

combination of both. Recently, conditional Granger causality

analysis (CGCA) [63] has been proposed to estimate functional

coupling effectively in multivariate data sets [19,26]. In the current

study, CGCA was performed to characterize the effective

connectivity among the brain regions in perceptional and motor

functional systems using the Granger Causal Connectivity

Toolbox [64]. Consider the case of three time series X(t), Y(t),

and Z(t). First, the joint autoregressive representation for X(t) and

Z(t) can be written as

X (t)~
Xp

j~1

A11,jX (t{j)z
Xp

j~1

A12,jZ(t{j)ze1(t) ð1Þ

Z(t)~
Xp

j~1

A21,jX (t{j)z
Xp

j~1

A22,jZ(t{j)ze2(t)

and the noise covariance matrix can be represented as

X
1~

var(e1t)

cov(e2t,e1t)

cov(e1t,e2t)

var(e2t)

� �
ð2Þ

Next, we consider the joint autoregressive representation for a

system involving all the three time series X(t), Y(t), and Z(t) as

X (t)~

Xp

j~1

A31,jX (t{j)z
Xp

j~1

A32,jY(t{j)z
Xp

j~1

A33,jZ(t{j)ze3(t)

Y(t)~

Xp

j~1

A41,jX (t{j)z
Xp

j~1

A42,jY(t{j)z
Xp

j~1

A43,jZ(t{j)ze4(t)
ð3Þ

Z(t)~

Xp

j~1

A51,jX (t{j)z
Xp

j~1

A52,jY(t{j)z
Xp

j~1

A53,jZ(t{j)ze5(t)

and the noise covariance matrix for the above system can be

represented as

X
2~

var(e3t)

cov(e4t,e3t)

cov(e5t,e3t)

cov(e3t,e4t)

var(e4t)

cov(e5t,e4t)

cov(e3t,e5t)

cov(e4t,e5t)

var(e5t)

0
B@

1
CA ð4Þ

where p is the order of the autoregressive model; andeit, i = 1,. . . . .

., 5 are the prediction error, which are uncorrelated over time.

From these two sets of equations, we define the conditional

Granger causality from time series Y(t) to X(t) conditional on time

series Z(t) as

FY?X DZ~ ln
var(e1t)

var(e3t)

� �
ð5Þ

It is worth pointing out that Eq. 5 is essentially a log likelihood

ratio test, comparing models with and without the directed

connection from Y(t) to X(t).When the causal influence from time

series Y(t) to X(t) is entirely mediated by other time series Z(t), the

coefficients A32 in Eq. 3 are uniformly zero, and var(e1t) =

var(e3t). As such, FY?X DZ = 0, meaning that no further

improvement in the predication of time series X(t) can be expected

by including past measurements of time series Y(t) conditioned on

the other time series Z(t). On the contrary, when a direct influence

from time series Y(t) to X(t) exists, the inclusion of past

measurements of time series Y(t) in addition to that of time series
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X(t) and Z(t) should result in better predictions of time series X(t),

leading to var(e1t).var(e3t), and FY?X DZ.0 [65].

First, for each subject, conditional Granger causality was

assessed for the preprocessed time series form each ROI pair

(P2
5 = 20) separately. The time series of one of the network can be

associated with X(t), and another one with Y(t). Z(t) represents all

the remaining three ones. The time series of all predefined ROIs

were simultaneously modeled using the first order multivariate

regression (MVR). This order of the autoregressive model used for

scomputation of the influence measure was selected using the

Bayesian information criterion. The optimal order is almost always

equal to 1 (more than 90% of the times) for all subjects, so we stick

to this value of 1.

The G-causality interaction coefficients can be established via

an F-test implemented in the Granger Causal Connectivity

Toolbox [64] on the null hypothesis that conditional Granger

causality is zero [25]. For each subject, dominant connections that

passed a p = 0.05(FDR-corrected) significance level were used for

the following analysis. To describe the causal flow at a within-

group level, a causal connectivity graph within-group was

constructed with those connections for which the G-causality is

significantly different from the null distribution (wilcoxon signed

rank test, P,0.05). Since the null distribution of the G-causality

was unknown, the framework of the bootstrap methodology were

used to obtain the null distribution [66]. This approach was widely

employed in many fMRI studies to find the level of statistical

significance without making assumptions on the underlying

distribution of the data [20,23,26]. By choosing random samples

with replacement from a data set x and y a large number (the

number was set to be 1000 in the present study) of surrogate time

series are generated whose dynamic and statistical properties are

similar with that of the original. Computation of the G-causality

values over these surrogates gives a bootstrap empirical distribu-

tion that characterizes the null hypothesis of no influence between

time series x and y. Finally, the inflow-degree and outflow-degree

of the nodes in the CGC causal connectivity networks were

calculated for each subject to evaluate the causal inflow/outflow

connections. The outflow-degree was determined by the number

of significant causal afferent connections from a node in the

network to any other nodes. Similarly, the inflow-degree was

determined by the number of significant causal efferent connec-

tions from a node in the network to any other nodes. The outflow-

inflow degree was represented by the difference between the

inflow- and outflow-degrees.
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