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Abstract

Background: The functional architecture of the human brain has been extensively described in terms of functional
connectivity networks, detected from the low–frequency coherent neuronal fluctuations that can be observed in a resting
state condition. Little is known, so far, about the changes in functional connectivity and in the topological properties of
functional networks, associated with different brain diseases.

Methodology/Principal Findings: In this study, we investigated alterations related to mesial temporal lobe epilepsy (mTLE),
using resting state functional magnetic resonance imaging on 18 mTLE patients and 27 healthy controls. Functional
connectivity among 90 cortical and subcortical regions was measured by temporal correlation. The related values were
analyzed to construct a set of undirected graphs. Compared to controls, mTLE patients showed significantly increased
connectivity within the medial temporal lobes, but also significantly decreased connectivity within the frontal and parietal
lobes, and between frontal and parietal lobes. Our findings demonstrated that a large number of areas in the default-mode
network of mTLE patients showed a significantly decreased number of connections to other regions. Furthermore, we
observed altered small-world properties in patients, along with smaller degree of connectivity, increased n-to-1
connectivity, smaller absolute clustering coefficients and shorter absolute path length.

Conclusions/Significance: We suggest that the mTLE alterations observed in functional connectivity and topological
properties may be used to define tentative disease markers.
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Introduction

Human brain function is thought to rely on the two principles of

functional specialization and integration. Functional integration is

implemented by the complex and reciprocal neural networks in

the brain. Brain networks have been depicted in terms of

functional connectivity by electroencephalography (EEG) [1],

magnetoencephalography (MEG) [2] and functional magnetic

resonance imaging (fMRI) [3–5], and in terms of structural

connectivity by diffusion spectrum imaging (DSI) [6], diffusion

tensor imaging (DTI) [7] and morphological studies [8].

Many brain disorders, such as the Alzheimer’s disease [9],

schizophrenia [10,11], autism [12], attention deficit/hyperactivity

disorder [13] and epilepsy [14–17], often present abnormalities in

brain networks. The most common type of human medically-

intractable epilepsy is mesial temporal lobe epilepsy (mTLE), and

its pathologic substrate is usually the hippocampal sclerosis (HS)

[18,19]. It is typically viewed as a network disorder since the

bilateral mesial temporal structures, together with a few of cortical

and subcortical structures constitute a temporal epileptogenic

networks [20–24]. During an interictal period, decreased func-

tional connectivity among ipsilateral networks and contralateral

compensatory has been reported in a resting state fMRI study

[14], and enhanced EEG connectivity in the epileptogenic zone

has been found using interictal EEG recordings [25]. Disruptions

in functional connectivity within more brain regions related to the

interictal epileptic discharges (IEDs) or seizure propagation have

been also revealed. For example, hypersynchrony between the

thalamus and remote cortical region was found during TLE

seizure [26]. Current multi-modality neuroimaging tools have

been devoted to map this epilepsy network from various aspects.

Several abnormalities in the metabolic, electrophysiological, and

structural profiles within the epilepsy network have been already

observed [14,21,22,25,27–29].
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fMRI studies based on blood oxygen level-dependent (BOLD)

mechanism have been increasingly performed to investigate, with

high spatial resolution, brain activation related to the epileptogenic

networks [30–33]. A popular fMRI method to detect brain

networks is functional connectivity, based on the temporal

correlation between BOLD signals in distant brain regions.

Functional connectivity measures in a resting state condition can

detect the coherent spontaneous neuronal activity within a brain

network [34,35]. A variety of resting state networks, each showing

a definite spatial topography and putatively corresponding to a

specific brain function, has been already detected with this

approach. Among them, the default-mode network (DMN) is the

most famous and important network for the resting condition, as it

consistently shows an increased activity during rest than during

active and passive cognitive tasks [36]. In healthy subjects, the

DMN areas typically comprise the posterior cingulate/precuneus,

medial prefrontal cortex, bilateral inferior temporal cortex and

bilateral inferior parietal cortex. There is no consensus on the

functions of the DMN, although it is often associated with focus on

the external environment, or autobiographical memory, envision-

ing the future, and mind wandering [37]. Disruptions in functional

connectivity within the DMN and other networks have been

reported in mTLE using different techniques [14,15,31,38]. As an

example, Bettus and colleagues have observed a decreased

functional connectivity in an epileptogenic network within

temporal lobes with a concomitant contralateral compensatory

increased connectivity [14]. In addition, our previous studies

suggested that the attention network and the perceptual networks

were impaired in mTLE [16,17]. However, such changes in

functional connectivity, as well as the global topological properties

of the brain networks in mTLE, require further investigation.

In the present study, we aimed at testing the hypothesis that

mTLE disease results in an alteration of: 1) the functional

connectivity of whole brain network; 2) the n-to-1 connectivity C,

which implicitly describes the amount of information that one

region received from the whole network; and 3) the global

topological properties of the whole brain functional networks. In

this regard, functional connectivity was estimated by calculating

the Pearson’s correlation between the mean time series of each

pair of brain regions for each subject. The resulted correlation

matrices were thresholded to generate a set of undirected binary

graphs. Therefore, we evaluated topological parameters, the n-to-

1 connectivity C, degree of a given node, network hubs, clustering

coefficient, shortest path lengths and small-world properties were

evaluated.

Materials and Methods

Participants
Twenty-three mTLE patients (all right-handed, 8 females, age

range: 17-51, mean age 24.1 yrs) participated in the study. We

recruited them from May 2005 to October 2008 at the Jinling

Hospital, Nanjing University School of Medicine. Some of these

patients participated in our previous studies [16,17]. General

information of the patients is summarized in Table S1. All of them

underwent a comprehensive clinical evaluation according to the

epilepsy classification by the International League Against

Epilepsy (ILAE), which included three inclusion criteria: (1)

Symptoms of mTLE. Patients had suffered from complex partial

seizures; some of them were accompanied by secondarily

generalized or simple partial seizures. 11 patients had febrile

convulsions in their childhood. (2) MRI manifestation of bilateral

hippocampal sclerosis. Hippocampal atrophy [hippocampal vol-

ume less than the Chinese normal hippocampus volume (2.62 cm3

on the right, and 2.48 cm3 on the left ,2SDs of the Chinese

normal hippocampus volume)] [39,40] measured in coronal T1

images, and increase in T2 fluid-attenuated inverted recovery

(FLAIR) signal in the hippocampus were used as diagnostic

criteria. There was no other MRI abnormality than the HS. (3)

EEG findings: All patients showed bilateral frontotemporal or

temporal lobes interictal discharges on scalp- and sphenoidal

EEGs, despite 11 patients were identified as the left sided, and 12

patients as the right sided seizure onset during ictal video-EEG

recordings. The exclusive criteria included (1) Structural abnor-

mality other than HS, such as cortical dysplasia, vascular

malformation or brain tumor. (2) Unilateral HS or MRI negative

in the conventional MRI. Additional details about the patients can

be found in our previous studies [16,17].

Twenty-seven healthy volunteers (all right-handed) were

recruited as controls (8 females, mean age, 25.6 yrs). They were

recruited among college students and staff components by

advertisement at the Nanjing University School of Medicine,

and selected to match the patient group in age and gender

distribution. They all had no neurological or psychiatric disorder.

Written Informed Consents was obtained from all participants.

This study was approved by the local Medical Ethics Committee

at Jinling Hospital, Clinical School, Medical College, Nanjing

University.

Data Acquisition
MRI data were collected using a 1.5-Tesla scanner (GE-Signa,

Milwaukee, US.). Participants were instructed to rest with their

eyes closed and to be still. A foam pad was used to minimize the

head motion. Firstly, anatomic images were acquired for clinical

diagnosis, which included axial T1 weighted images (TR/

TE = 2200 ms/24 ms, matrix = 5126512, FOV = 24624 cm2,

slice thickness/gap = 4.0 mm/0.5 mm, 23 slices covered the whole

brain), coronal T1 and T2 FLAIR images (4 mm thickness, no gap,

14 slices ) for detecting the hippocampal lesions.

Functional images covering the whole brain were acquired

axially using an echo planar imaging sequence (TR = 2000 ms,

TE = 40 ms, flip angle = 80u, matrix = 64664, FOV = 24624cm;

4mm thickness and 0.5 mm gap, 23 slices). For each subject, the

fMRI scanning lasted 7 minutes, thus collecting 210 volumes.

Data Preprocessing
Data preprocessing was partly carried out using SPM2 (http://

www.fil.ion.ucl.ac.uk/spm). The first 10 images were discarded to

ensure the magnetization equilibrium. The remaining 200 images

were first corrected for the acquisition time delay among different

slices, and then were realigned to the first volume for head-motion

correction. The time- course of head motion was obtained by

estimating the translation in each direction and the rotation in

angular motion on each axis for all 200 consecutive volumes. Data

of five patients out of 50 subjects were excluded because either

translation or rotation exceeded +1 mm or +10, respectively.

Accordingly, 18 patients (7 females, mean age, 23.9 yrs) and 27

controls (8 females, mean age, 25.6 yrs), matched for age

(p~0:355, two-sample two-tailed t-test) and gender (p~0:5233,

Kruskal-Wallis test), remained for analysis. We also evaluated the

group differences in translation and rotation of head motion

according to the following formula [11]:

Head Motion=Rotation

~
1

L{1

XL

i~2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jxi{xi{1j2zjyi{yi{1j2zjzi{zi{1j2

q
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where L is the length of the time series (L~200 in this study), xi,

yi and zi are translations/rotations at the ith time point in the x, y
and z directions, respectively. The results showed that the two

groups had no significant differences (two sample two-tailed t-test,

T~1:28, p~0:206 for translational motion and T~0:502,

p~0:619 for rotational motion). The fMRI images were further

spatially normalized into a standard stereotaxic space at

36363 mm3, using the Montreal Neurological Institute (MNI)

echo-planar imaging template in SPM2 and spatially smoothed by

convolution with an isotropic Gaussian kernel (FWHM = 8 mm).

Anatomical Parcellation
The images were segmented into 90 anatomical regions of

interests (ROIs) (45 ROIs for each hemisphere, Table 1) using the

anatomically labeled template reported in previous studies

[5,11,41]. These anatomical ROIs were extracted by the

MarsBaR toolbox (http://marsbar.sourceforge.net). For each

subject, the representative time series in each ROIs was obtained

by simply averaging the fMRI time series across all voxels in the

region.

Functional Connectivity and Graph-Theory Preprocessing
Several procedures were used to remove the possible spurious

variances from each regional (ROI) mean time series [5,11]: 1)

Temporal band-pass filtering (0:01vf v0:08Hz), which was

performed in order to reduce the effects of low-frequency drift

and high-frequency noise [11,34,35]. 2) Each time series was

further corrected for the effect of head motion parameters

[5,13,14] by linear regression. 3) Each time series was also

corrected for the ventricular signal averaged from a ventricular

ROI and 4) the white matter signal averaged from a white matter

ROI through linear regression according to previous resting state

fMRI studies [14,34,42]. 5) The residuals of these regressions were

linearly detrended [13], and then used for the functional

connectivity and graph-theory analysis.

Computation of Correlation Matrix
The resting state BOLD time series were correlated region by

region for each subject across the full length of the resting time

series (L = 200 time points, d.f. = 197), and then a square N|N
(where N = 90 is the number of ROIs) correlation matrix was

obtained for each subject. A Fisher’s r-to-z transformation was

applied to the correlation matrices to improve the normality of the

correlation coefficients (r) [11]. For each group, z-score matrices

were averaged across all subjects in each group [5,11].

Graph Visualization
The regional centroid of each ROI (node) was positioned

according to its anatomical location in the MNI stereotaxic space

by using Pajek software [43] (http://vlado.fmf.uni-lj.si/pub/

networks/pajek/). The edges (functional connectivity) between

nodes could be constructed by applying a correlation threshold T
(Fisher’s r-to-z). We defined the threshold in terms of probability

that the observed zijwT under the null hypothesis that zij is

less than an arbitrary value T . As the possible 4005

(C2
90~90|89=2~4005) inter-regional correlations were subject-

ed to multiple, non-independent tests, we employed the strict

Bonferroni correction for multiple comparisons (i.e., 0.001/

4005 = 2.4969|10{7 as threshold).

Direct Comparisons between Patients vs. Controls
We performed two-sample two-tailed t-test on all 4005 possible

connections represented in the two 90|90 correlation matrices

related to patients and controls [11,42]. To account for multiple

comparisons, the false discovery rate (FDR) method was applied

[42].

Graph-Theory Analysis
Topological properties of the brain functional

networks. The topological properties of the brain functional

networks were defined on the basis of a 90|90 binary graph, G,

consisting of nodes and undirected edges (see Graph visualization):

eij~
1 if jzij jwT

0 otherwise

�
,

where eij refers to the edge in the graph. In general, if the absolute

zij of a pair of brain regions, i and j, exceeds a given threshold T ,

an edge is assumed to exist; it does not exist otherwise. A subgraph

Gi is defined as the graph including the nodes that are the direct

neighbours of the ith node, i.e. directly connected to the ith node

with an edge. The degree at each node, Ki,i~1,2, � � � 90, is

defined as the number of nodes in the subgraph Gi. The degree of

connectivity of a graph, Knet, is the average of the degrees of all the

nodes in the graph:

Knet~
1

N

X
i[G

Ki,

which is a measure for the sparsity of a network. Briefly, the degree

of a given node, Ki, denotes to which extent the node is connected

to the rest of the network. A node with a higher degree has more

connections (where each connection is counted once) [6].

Network hubs. After creating the brain network using the

selected threshold, we then determined which nodes were

connected to the largest number of other nodes, i.e. which nodes

are ‘‘hubs’’ [1,6]. Specifically, we define a hub as a node whose

degree is larger than the average degree of the network [2].

Degree distribution fits. More details about the degree

distribution can be found in Text S1 and Table S2.

n-to-1 Connectivity C. Based on the studies of Jiang et al.

[44], the connectivity degree gij between the node i and the node j

was expressed as gij~e{jdij [44,45]. j is a real positive constant,

which measures how the strength of the relationship decreases

along with the distance between two nodes. It was set to 2 in this

study [44,45]. dij refers to the distance between the two nodes, and

was calculated as: dij~(1{rij)=(1zrij), where rij represents the

correlation between two brain regions i and j. Therefore, the total

connectivity degree Ci of a node i in a graph is the sum of all the

connectivity degrees between node i and all other nodes, i.e.,

Ci~
Pn

j~1 gij [44]. It describes the amount of information that the

node i receives from the particular network. Obviously, C differs

from the canonical cross-correlation analysis using the 1-to-1

connectivity measures delineated above. It may be possible to find

changes of the total functional connectivity degree in different

brain activity states [44]. We further normalized Ci of a node i,

namely, Ci~Ci=
Pn

j~1 Cj . The differences of C of each ROI

between mTLE patients and healthy controls were tested using a

two-sample two-tailed t-test, with FDR correction.

Clustering coefficient. The absolute clustering coefficient of

a node is the ratio between the number of existing connections and

the number of all possible connections in the subgraph Gi:

Ci~
Ei

Ki(Ki{1)=2
,

Altered Brain Networks in mTLE
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Table 1. Summary of network measures for each group.

Degree (K) n-to-1 (C)

Controls mTLE mTLE vs. Controls

Region name Abbreviation LH RH LH RH LH RH

Medial Temporal

Amygdala AMYG 8 9 10 11

Hippocampus HIP 5 5 5 5

Parahippocampal gyrus PHIP 6 8 7 7

Middle temporal gyrus, temporal pole MTGp 2 11 3 3

Superior temporal gyrus, temporal pole STGp 10 10 11 13

Subcortical

Caudate nucleus CAU 6 6 4 5

Olfactory cortex OLF 8 7 7 7

Pallidum PAL 8 8 8 6

Putamen PUT 10 11 11 11

Thalamus THA 6 6 5 5

Occipital

Calcarine fissure CAL 12 11 11 11

Cuneus CUN 14 14 11 11

Fusiform gyrus FG 9 15 8 13

Lingual gyrus LING 13 13 12 13

Inferior occipital gyrus IOG 14 13 10 10

Middle occipital gyrus MOG 14 15 13 10

Superior occipital gyrus SOG 14 13 13 12

Frontal

Anterior cingulate gyrus ACC 13 12 8 8

Inferior frontal gyrus, opercular IFGoper 20 19 13 15

Inferior frontal gyrus, orbital IFGorb 13 13 11 11

Inferior frontal gyrus, triangular IFGtri 18 17 11 10

Superior frontal gyrus, medial orbital SFGmorb 18 19 20 15 *

Middle frontal gyrus, orbital MFGorb 12 13 7 8 *

Middle frontal gyrus MFG 20 19 14 11

Superior frontal gyrus, medial SFGmed 19 20 14 22 *

Superior frontal gyrus, orbital SFGorb 8 11 10 11

Superior frontal gyrus SFG 10 20 11 12

Gyrus rectus REG 11 12 10 10 * *

Temporal

Heschl gyrus HES 11 9 7 7

Insula INS 19 18 16 16

Inferior temporal gyrus ITG 16 24 7 13

Middle temporal gyrus MTG 13 19 11 14 *

Superior temporal gyrus STG 15 15 11 12

Parietal-(pre)Motor

Rolandic operculum ROL 14 14 11 13

Angular gyrus ANG 16 18 14 12

Median cingulate gyrus MCC 13 15 8 10

Posterior cingulate gyrus PCC 14 12 10 8

Paracentral lobule PCL 4 6 3 6

Inferior parietal gyrus IPG 19 17 18 12

Superior parietal gyrus SPG 9 11 6 4

Altered Brain Networks in mTLE
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where Ei is the number of edges in the subgraph Gi [46,47]. The

absolute clustering coefficient of a network is the average of the

absolute clustering coefficient of all nodes:

Cnet~
1

N

X
i[G

Ci:

Cnet is a measure of the extent of the local density or cliquishness

of the network.

Shortest path lengths. The mean shortest absolute path

length of a node is:

Li~
1

N{1

X
i=j[G

minfLi,jg,

in which minfLi,jg is the shortest absolute path length between the

node i and j, and the absolute path length is the number of edges

included in the path connecting two nodes. The mean shortest

absolute path length of a network is the average of the shortest

absolute path lengths between the two nodes:

Lnet~
1

N

X
i[G

Li,

Lnet is a measure of the average connectivity extent, or overall

routing efficiency, of the network.

Small-World Brain Networks
Compared to random networks, which are characterized by a

low clustering coefficient and a typical short path length, small-

world networks have similar absolute path length but higher

absolute clustering coefficient, that is c~Cnet=Crandomw1,

l~Lnet=Lrandom&1 [46]. Those two conditions can also be

summarized into a scalar quantitative measurement, namely

small-world-ness, s~c=l, which is typically w1 for networks

with a small-world organization [3,48]. To examine the small-

world properties, the value of Cnet and Lnet of the functional brain

network need to be compared with those of random network

(Crandom and Lrandom).

Generation of the random network. The theoretical values

of these two measures for a random network are Crandom~K=N,

and Lrandom& ln (N)= ln (K) [3,49,50]. As suggested by Stam et al.

[50], statistical comparisons should generally be performed between

networks that have equal (or last similar) degree sequence; however,

theoretical random networks have Gaussian degree distributions

that may differ from the degree distribution of the brain networks.

According to a previous study [11], to obtain a better control for the

functional brain networks, we generated 100 random networks for

each K and T of each individual network by a Markov-chain

algorithm [51,52]. In the original matrix, if node i1 was connected

to node j1 and node i2 was connected to node j2 for random

matrices, the edge between node i1 and node j1 was removed but an

edge between node i2 and node j2 was added. That means that a

pair of vertices (i1, j1) and (i2, j2) was selected for which, ei1j1~1,

ei2 j2~1, ei1 j2~0, and ei2j1~0. Then ei1j1~0, ei2j2~0, ei1j2~1 and

ei2 j1~1. Then we randomly permuted the matrix which assured

that random matrix had the same degree distribution as the original

matrix. We repeated this procedure until the topological structure of

the original matrix was randomized [3]. Then we averaged across

all 100 generated random networks to obtain a mean Crandom and a

mean Lrandom for each degree K and threshold T .

Identifying small-world regime. Although there is

currently no formal consensus regarding threshold selection, we

investigated the topological properties of brain functional network

as a function of T and K , following the studies by Stam and

colleagues [50] and Liu and colleagues [11]. (1) We thresholded all

matrices using a single, conservative threshold chosen to construct a

sparse graph with mean degree Knet§2 log N&9 (total number of

edges K§405). The maximum threshold (T) is selected also to

assure that each network is fully connected with N~90 nodes. This

allowed us to compare the topological properties between the two

groups in a way that was relatively independent of the size of the

network. (2) The minimum threshold is selected to ensure that the

brain networks have a lower global efficiency and a larger local

efficiency compared to random networks with relatively the same

distribution of the degree of connectivity [4]. We selected the

threshold range, TminƒTƒTmax by intersecting the upper criteria.

As shown in Figure S1, we selected the small-world regime as

0:022ƒTƒ0:386 (with steps of 0.005), which corresponded to the

degree of connectivity threshold 9:09ƒKƒ34:8 (with steps of 0.83).

Correlation between Topological Measures and Clinical
Variables

To investigate the underlying relationship between properties

measures (r, C, Knet, Cnet, Lnet, c, l and s) of the brain functional

networks and clinical variables (epilepsy duration, seizure

Degree (K) n-to-1 (C)

Controls mTLE mTLE vs. Controls

Region name Abbreviation LH RH LH RH LH RH

Postcentral gyrus PoCG 14 12 8 9

Precentral gyrus PreCG 17 12 12 6

Precuneus PCUN 17 15 11 12

Supplementary motor area SMA 13 10 11 10

Supramarginal gyrus SMG 17 19 12 12

The abbreviations listed are those used in this paper, which differ slightly from the original abbreviations by Tzourio-Mazoyer et al. [41]. Six main groups derived from
Salvador et al. [5]. Network hubs defined as a node with degree larger than the average degree of the network for each group were listed in bold. An asterisk (*)
indicates that the significant stronger n-to-1 connectivity C in the patients than the healthy controls. Separate columns show data for left to right cerebral hemispheres

(LH and RH, respectively).
doi:10.1371/journal.pone.0008525.t001

Table 1. Cont.
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frequencies) for each T and K in the mTLE patients group, the

Pearson’s correlation analysis was used. As these analyses were

exploratory in nature, we used a statistical significance level of

pv0:05, uncorrected.

Results

Functional Connectivity of Patients and Healthy Controls
The mean correlation matrix was calculated by averaging the

correlation matrix (N~90 ROIs) across all the subjects within

groups (including both positive and negative values). These 90

regions were categorized into six main locations (Table 1 shows

the abbreviation corresponding to each ROI) as proposed by

Salvador et al. [5]. For better visualization of the structural

patterns within those connection matrices, a layout of nodes

(individual ROIs) and undirected edges (functional connectivity)

were represented as networks (Figure S2).

Direct Comparisons between Patients and Controls
For directly comparing the connectivity difference between two

groups, two-sample two-tailed t-test was performed on all 4005

potential connections included in the 90|90 mean correlation

matrices. Compared to healthy controls, 11 cross-correlations

showed a statistically significant increase (pv0:01, FDR corrected)

in the patients group. Details can be seen in Table S3. Figure 1

shows the connectivity (r) in patients was stronger than that in the

controls between pairwise ROIs, e.g. lAMYG vs. lSTGp; rAMYG

vs. rSTGp (pv0:001, FDR corrected). 80 cross-correlations in the

patients significantly decreased (pv0:01, FDR corrected) compared

to controls (Table S4). Furthermore, healthy controls produced

significantly stronger connectivity (r) than the patients group

between specific ROIs, e.g. lAMYG vs. lPCL; lPCC vs. rSFGorb;

lIPG vs. rMFGorb; lIPG vs. rIPG; lIPG vs. rSPG; lPCUN vs.

rPCUN; lSMG vs. rMFG; lSMG vs. rSPG; lSMG vs. rSMG; rPCC

vs. rSFGorb; lIFGoper vs. rIFGoper; lIFGoper vs. rSOG; lIFGtri

vs. rIFGoper; lMFGorb vs. lIPG; lSFGmed vs. rMTGp; rSFGorb

vs. rTHA; rSFG vs. rTHA (pv0:001, FDR corrected).

n-to-1 Connectivity C
Figure S3 shows the n-to-1 total connectivity degree C of each

brain region across all subjects for each group. A larger C indicates

that a large functional connectivity of a given region with other

regions, so that the region can be considered an important node in

the network [44]. The differences in n-to-1 connectivity degree

between the two groups are listed in Table 1. Some ROIs showed

significantly increased connectivity in mTLE, such as bilateral

REG, lSFGmorb, lMTG, rIFGorb and rSFGmed (pv0:05, FDR

corrected).

Degree Distribution and Hubs
Details on the degree distribution, calculated as described in the

Text S2, are provided in Figure S4. The nodes are connected with

the largest number of other nodes in the network, i.e. the hubs,

were defined as those with a degree larger than the average degree

[2]. In the healthy controls, 50 nodes were found to satisfy this

condition (average degree Knet~12:8), including 11 regions in the

occipital cortex, 15 regions in the frontal cortex, 8 regions in the

temporal cortex and 16 regions in the parietal-(pre)motor cortex.

In the mTLE patients, 48 hubs were found (average degree

Knet~10:1), including 3 regions in the medial temporal cortex, 10

regions in the occipital cortex, 14 regions in the frontal cortex, 7

regions in the temporal cortex and 12 regions in the parietal-

(pre)motor cortex, and 2 subcortical regions (for details, see Table 1

and Figure S2). For direct between-group comparisons of hubs,

two-sample two-tailed t-test was performed on all 90 regions.

Compared with the healthy controls, 5 regions (bilateral IFGoper,

lPCC, lPCUN, rPreCG) showed significantly decreased values

(pv0:05, FDR corrected) in patients (Table S5).

Altered Topological Properties of Brain Functional
Network

The higher threshold resulted in a lower mean absolute clustering

coefficient (Cnet) and a longer mean shortest absolute path length

(Lnet) for both group. Over the whole range of T values

Figure 1. Statistically significant differences in functional connectivity between patients and controls. Nodes (individual ROIs) were
differently colored according to the six anatomical subregions listed in Table 1 (see legend). Undirected edges were differently colored according to
the significantly larger functional connectivity (pv0:01 and pv0:001, FDR corrected). The symbols z and { denoted the positive and negative t
value, respectively) in two-sample two-tailed t-test.
doi:10.1371/journal.pone.0008525.g001
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(0:022ƒTƒ0:386) (Figure S5A) and of K values (9:09ƒKƒ34:8)

(Figure S5B), the mean absolute clustering coefficient (Cnet) was

slightly larger in controls. On the other hand, the mean shortest

absolute path length, for most of the thresholds K , was shorter in

patients compared to controls (Figure S5D).

Figure 2 shows the small-world attribute in the brain networks of

both groups (see Methods for details about the definition of small-

world attribute). It can be observed that c is significantly higher than

1 while l is found not to be different from 1 over the whole range of

T and K values. There are no statistically significant differences in

the values of c, l and s between two groups (Figure 2A–C). l is

significantly lower in the mTLE patients for most values of K
(Figure 2E). Only at a small number of connectivity values s is

found to be significantly increased in patients (Figure 2F).

Relationship between Topological Measures and Clinical
Variables

The functional connectivity of two pairwise ROIs with

significantly decreased connectivity in patients, i.e. rIFGoper vs.

lIFGtri, showed a negative correlation with epilepsy duration

(Figure 3). No significant correlation was found between functional

connectivity and seizure frequencies.

Figure 2. c, l and s of a brain functional network. (A) c~Cnet=Crandom indicates the absolute clustering coefficient scaled to an equivalent
parameters of a population of random graph, (B) l~Lnet=Lrandom indicates the shortest absolute path length scaled to an equivalent parameters of a
population of random graph and (C) s~c=l indicates the small-world-ness of network for the mTLE patients (blue circles) and healthy controls (red
dots) as a function for different functional coefficient threshold T (0:022ƒTƒ0:386). (D) c, (E) l and (F) s for mTLE patients (blue circles) and healthy
controls (red dots) as a function of different degree of node thresholds K (9:09ƒKƒ34:8). Black star markers indicate statistically significant
differences between two groups (two-sample two-tailed t-test, pv0:05, FDR corrected). Vertical bars indicate estimated standard errors.
doi:10.1371/journal.pone.0008525.g002
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Discussion

By using functional connectivity and graph theoretical tech-

niques, the present fMRI study investigated the global alterations

of network properties in mTLE. The increased and decreased

functional connectivity observed in specific regions might underlie

the functional disruptions described in previous studies [14–17].

More importantly, the changes in the global topological properties

including the smaller degree of connectivity, the increased n-to-1

connectivity, the smaller absolute clustering coefficients and the

shorter absolute path length along with small-world properties,

implicate altered whole brain network macroscopic organization

[2,3,5,49,53], which extends the understanding of network

mechanisms in mTLE from local characteristics to global

topological properties.

Changes in Functional Connectivity
Patients with bilateral HS were enrolled in the present study.

Most of them were likely to have bilateral interictal discharges.

Specific criteria was adopted to exclude a lateralization effect,

despite these patients had lateralized seizure focus. A few bilateral

brain regions in the mTLE patients significantly showed altered

functional connectivity. Decreased connectivity was found within

the frontal, parietal and occipital lobes (Figure 1 and Table S4).

Notably, these areas are mostly included in the DMN [36,54] and

in the dorsal attention network, respectively [34,35], in line with

previous reports. The properties of the DMN in epilepsy patients

have been documented in a few simultaneous EEG-fMRI studies,

which suggested that the IEDs can suspend the normal default-

mode brain function, through a pathophysiological mechanism

underlying impaired consciousness in epilepsy [30–32,55]. Espe-

cially, Laufs and colleagues suggested that the epileptic activity

may spread from the temporal lobe into one or more functionally

interconnected DMN regions [31] in TLE, and further indicated a

correlation between IEDs in TLE and DMN fluctuations [31].

Our results support that the DMN is modulated in mTLE in terms

of low-frequency BOLD fluctuations. IEDs are unlikely to be a

result of an external requirement to perform tasks [30], and may

be abnormal spontaneous neuronal events [56,57]; hence the

DMN may be momentarily suspended [30]. Although we could

not directly correlate the alterations of functional connectivity to

the IEDs [30,31,55], the interesting link between the functional

connectivity and the epilepsy duration suggests that the decreased

connectivity may reflect the functional impairment associated with

duration of epilepsy state (Figure 3). Moreover, the decreased

connectivity in the dorsal attention network confirms our previous

results and suggests that the top-down attention function [58] is

impaired in mTLE [16].

We also found a significantly increased functional connectivity

within the medial temporal lobe, the frontal lobe, and between the

parietal and frontal lobes when comparing the patients and the

healthy controls (Figure 1 and Table S3). Combined with the

result on decreased connectivity, the current findings demonstrate

that seizures are the result of excitatory/inhibitory imbalance [15].

Furthermore, the present study could be assumed to support an

alteration of the neural synchrony in temporal lobe epilepsy

network [24,59–61], though we have not yet solid evidence to link

the BOLD fluctuations to neural oscillations [62].

Viewed as a network disorder, mTLE has been found that the

widespread brain regions are functionally impaired in addition to

the mesial temporal lobe. Functional connectivity MRI has been

used to reveal a few of local network abnormalities in mTLE, such

as the mesial temporal network [14], language network [15],

attention and perceptual networks [16,17]. Nonetheless, the

current work provided new data, not only addressing the alteration

in local networks, but also describing the alteration in global

topological properties in mTLE patients by using a graph

theoretical approach.

Changes in Hubs
The degree distribution and hubs of healthy controls well

described the properties of both resting state functional networks

[5] and structural networks [6], reporting a high density of strong

structural and functional core areas associated with DMN

components. Buckner and colleagues have suggested that PCC/

PCUN provides a key hub for overlapping connections between

themselves, the medial temporal lobe, and inferior parietal lobe,

which constitute the major posterior extent of the DMN [37,63].

Because of its pivotal role, PCC/PCUN may be the first candidate

to show altered properties in patients with respect to healthy

controls. According to our data, not only the this area, but also

other areas in the DMN, such as the IFGoper, showed a lower

number of degrees in mTLE patients than healthy controls

(Table 1 and Table S5). The essence of the degree that measures

to which extent the node is connected to the rest of the network

plays pivotal roles in the coordination of information flow [1],

along with the disrupted functional connectivity of DMN discussed

above, may explain why the degree of some regions in the DMN

decreased more in the patients than the healthy controls. By

detecting the difference of the degree of some regions between the

patients and the healthy controls, we directly found the regions

with the lower number of degrees, which might further confirm

the dysfunction of brain network in the patients with mTLE.

Changes in n-to-1 Connectivity C
The n-to-1 connectivity C (strength of nodes) characterized how

the strength of the relationship decreases with the distance

between the two regions [44,45]. The degree of a given region

characterized where each connection is counted once in the

unweighted connectivity matrix. On the other hand the strength of

a given node is equal to the sum of exponential connection density

or weight [6]. In healthy controls, the distributions of node

strengths (Figure S3) show high values in the frontal cortex,

temporal cortex, and partly in the parietal-(pre)motor cortex. If the

functional networks are interrupted and the topological properties

of the brain networks are altered in mTLE, we expect significant

differences in strength values for specific brain regions between

Figure 3. Relationship between the functional connectivity and
epilepsy duration. Significant negative correlation (R~{0:586,
p~0:011) for the functional connectivity (correlation coefficient, r)
between rIFGoper and lIFGtri with the epilepsy duration.
doi:10.1371/journal.pone.0008525.g003
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patients and healthy controls. This hypothesis was strongly

supported by the statistical analysis on the strength value

(Table 1). The strength values of the bilateral REG, lSFGmorb,

lMTG, rIFGorb and rSFGmed significantly increased in the

patients compared to controls. Understanding how the alteration

of connection density of the above brain regions may yield insight

into network connectivity. EEG-fMRI studies associated with

epileptic discharges with DMN activity [30–32,55]. However,

investigations on the interruption and alteration of functional

networks in the mTLE patients are currently limited. Our study

hence may extend the knowledge on how the brain areas are

connected in mTLE.

Changes in Graph Theory Measures
Topological properties, including the clustering coefficient,

shortest path lengths and small-world properties were altered in

the mTLE patients with bitemporal damage compared to controls

(Figure 2 and Figure S5). For most of the thresholds K , the

absolute clustering coefficients (Cnet) showed significantly lower

values in patients, implying relatively sparse local connectedness of

the brain functional networks in mTLE. This means that the local

connectedness of the mTLE patients has a tendency closer to

random networks, characterized by low average clustering

coefficients and short mean path lengths [46]. Short absolute

path lengths have been demonstrated to promote effective

interactions between and across different cortical regions

[1,4,49,52,53]. The shorter absolute path lengths (Lnet) may

indicate that information interactions between interconnected

brain regions are faster and high efficient in mTLE. We also found

that the c value did not show statistically significant difference

between two group when the same thresholds (both for T and K )

were applied, and at specific thresholds the c value even showed to

be lower in healthy controls. More importantly, the l value

showed a statistically significant increase for most of the thresholds

K , supporting the evidence that brain network of mTLE are closer

to random networks. The lower absolute clustering coefficients,

the shorter absolute path lengths and the small-world properties as

a function of T or K indicate that the topological measures of the

brain functional networks were disrupted in mTLE. Our findings

show that in the patients with mTLE, the local connectedness of

the brain functional network is relatively sparse and is poorly fault

tolerant in the case of loss of connectivity. Notably, it further

indicates that the global topological measures of the brain

functional network are disrupted in mTLE.

Methodological Considerations and Study Limitations
Several considerations in the methodology of the current study,

however, should be mentioned. Like most functional connectivity

studies in brain disorders based on resting state fMRI [64], we

could not eliminate the effects of physiologic noise that could be

discarded using independent component analysis [65]. In the

current study, in fact, we used a relatively low sampling rate

(TR = 2 s) for multislice (23 slices) acquisitions. Under this

sampling rate, respiratory and cardiac fluctuations may still pose

a problem for fMRI time series, despite a band-pass filtering in the

range 0:01vf v0:08 Hz is used to reduce them. These respiratory

and cardiac fluctuations may reduce the specificity of low

frequency fluctuations to functional connected regions [66].

Another methodology consideration is about correction for

multiple comparisons. We used the Bonferroni correction when

we defined the threshold T primarily in terms of the probability of

the observed zijwT under the null hypothesis that zij was less than

an arbitrary value T . From this standpoint, we employed the strict

Bonferroni correction for multiple comparisons. On the other

hand, statistical comparison of functional connectivity, degree of

node, n-to-1 connectivity C, the absolute clustering coefficients

Cnet, the absolute path length Lnet, c, l and s between the two

groups were accomplished by two-sample two-tailed test with FDR

corrected for multiple comparisons. Here, in fact, the degree of

freedom (d.f.) was relatively small, and we used the relative loosen

controlling (FDR) instead of the strong controlling (Bonferroni) for

multiple comparisons.

This study has three main limitations. The first limitation

pertains to the fact that most epilepsy imaging studies used the

simultaneous EEG-fMRI technique [30–32,55] to detect the

activation and deactivation associated with IEDs, whereas the

current study lacks of simultaneous EEG-fMRI data. It should be

considered that IEDs may have occurred in the mTLE patients

during resting state and could affect the finding about both

functional connectivity and global topological properties. Second,

although the selected patients all present bilateral HS in structural

MRI and bilateral IEDs in interictal scalp-EEG, different

epileptogenic lateralization among patients might still cause

different alterations of functional connectivity between hemi-

spheres. Equal number of patients with left and right mTLE was

expected to avoid this bias. An additional limitation is that no

sufficient special clinical variables were available for correlation

with these altered topological measurements for a better

understanding of the pathophysiologial mechanisms of mTLE.

Conclusion
In conclusion, we have demonstrated that an increased

functional connectivity within the medial temporal lobe, the

frontal lobe, and between the parietal and frontal lobes and a

decreased functional connectivity in the DMN areas in patients

with mTLE. Furthermore, our results suggest that topological

properties, such as the smaller degree of connectivity, the

increased n-to-1 connectivity, the smaller absolute clustering

coefficients and the shorter absolute path length along with

small-world properties, are altered in this specific disease. We

suggest that the alterations observed in functional connectivity and

topological properties may be used to define tentative disease

markers for mTLE.

Supporting Information

Text S1

Found at: doi:10.1371/journal.pone.0008525.s001 (0.04 MB

DOC)

Text S2

Found at: doi:10.1371/journal.pone.0008525.s002 (0.02 MB

DOC)

Figure S1 Selection of the Upper Criteria of Small-World

Regime. Largest cluster size (Giant connected cluster or largest

subgraph size) as a function of T for the healthy controls (red lines)

and the mTLE patients (blue lines) brain network. As expected,

the percentage of the regions connected to the largest cluster

decreases as a monotonically increasing function of threshold T.

Found at: doi:10.1371/journal.pone.0008525.s003 (2.14 MB TIF)

Figure S2 Network Visualization of the Correlation Matrices.

(A) Dorsal and lateral views of the connectivity network of healthy

controls. Labels indicating anatomical regions were placed at their

respective centroids. Node (individual ROIs) size was coded and

colored according to their degree. Undirected edges (functional

connectivity) were differently colored according to the connection

strength (p#0.001 and p#0.0001, Bonferroni corrected) and

connection polarity (positive and negative correlation coefficient r
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denoting the symbol 6, respectively) in the correlation matrices.

(B) Dorsal and lateral views of the connectivity network of the

patients.

Found at: doi:10.1371/journal.pone.0008525.s004 (8.30 MB TIF)

Figure S3 n-to-1 Total Connectivity DegreeC. (A) Total

connectivity degree for left (left column) and right (middle column)

cerebral hemispheres of healthy controls. Shaded bars represent

means across subjects and colored symbols indicate data for

individual subjects in each group. The distribution of the total

connectivity degree C for each group showed in the right column.

Node (individual ROIs) size was coded and colored according to

the total connectivity degree C of themselves. (B) Total

connectivity degree and the distribution of the patients.

Found at: doi:10.1371/journal.pone.0008525.s005 (12.19 MB

TIF)

Figure S4 Degree Distribution of a Brain Functional Network.

For the healthy controls (A) and the mTLE patients (B), the

histogram of regional degree ki distribution (Left column). Log-log

plot of the cumulative probability of degree versus the degree

(Right column). The blue asterisk indicates observed data, the red

solid line is the best-fitting exponentially truncated power law, the

dashed line is an exponential, and the dotted line is a power law.

Found at: doi:10.1371/journal.pone.0008525.s006 (0.51 MB TIF)

Figure S5 Cnet and Lnet of a Brain Functional Network. Mean

absolute clustering coefficient, Cnet, for healthy control (red dots)

and mTLE patients patients (blue circles) as a function for

T(0.022#T#0.386) (A) and as a function of K (9.09#K#34.8)

(B). Mean shortest absolute path length, Lnet, for healthy control

(red dots) and mTLE patients (blue circle) as a function for T

(0.022#T#0.386) (C) and as a function of K (9.09#K#34.8) (D).

Black pentagrams indicate where the statistically significant

difference between two groups (two-sample two-tailed t-

test,p#0.05, FDR corrected). Vertical bars indicate estimated

standard errors.

Found at: doi:10.1371/journal.pone.0008525.s007 (1.99 MB TIF)

Table S1 Description of Study Patients. ED: Epilepsy duration;

AO: Age onset; Fron: Frontal lobe; Temp: Temporal lobe; Par:

Parietal lobe; Bi: Bilateral; L: left; R: Right; Sp: Spike; SW: Spike

and wave; CPS: Complex partial seizures; SPS: Simple partial

seizures; GTC: generalized tonic-clonic seizure; CBZ: carbamaz-

epine; PHT: Phenytoin; VPA: valproate; TPM: topiramate; PB:

Phenobarbital; TCHM: traditional Chinese herb medicine; CZP:

clonazepam.

Found at: doi:10.1371/journal.pone.0008525.s008 (0.06 MB

DOC)

Table S2 Parameter Values and Goodness-of-Fit. SSE, the sum

of squares due to error; R-square, the coefficient of multiple

determination; Adjusted R-square, the degree of freedom adjusted

R-square; RMSE, the root mean squared error; AIC, Akaike’s

information criterion.

Found at: doi:10.1371/journal.pone.0008525.s009 (0.06 MB

DOC)

Table S3 The Increased Inter-Regional Cross-Rorrelation in

Patients Compared to Controls. a The regions are similar to those

found in an intrinsically ‘task positive’ network, or anti-correlated

with PCUN/PCC. b The regions are similar to those found in an

intrinsically ‘task negative’ network, or correlated with PCUN/

PCC. All p#0.01, and asterisks (**) indicates p#0.001, all FDR

corrected.

Found at: doi:10.1371/journal.pone.0008525.s010 (0.03 MB

DOC)

Table S4 The Decreased Inter-Regional Cross-Correlation in

Patients Compared to Controls. a The regions are similar to those

found in an intrinsically ‘task positive’ network, or anti-correlated

with PCUN/PCC. b The regions are similar to those found in an

intrinsically ‘task negative’ network, or correlated with PCUN/

PCC. All p#0.01, and asterisks (**) indicates p#0.001, all

corrected FDR.

Found at: doi:10.1371/journal.pone.0008525.s011 (0.14 MB

DOC)

Table S5 Regions Showing Significantly Increased/Decreased

Number of Degrees in Controls Compared to Patients. An asterisk

(*) indicates p#0.05, FDR corrected. Two-sample two-tailed t-test

was performed on 90 regions. Separate columns show data for left

and right cerebral hemispheres (LH and RH, respectively).

Found at: doi:10.1371/journal.pone.0008525.s012 (0.09 MB

DOC)
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