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Abstract
Introduction: As	aging	attracted	attention	globally,	revealing	changes	in	brain	func-
tion	across	the	lifespan	was	largely	concerned.	In	this	study,	we	aimed	to	reveal	the	
changes	of	functional	networks	of	the	brain	(via	local	functional	connectivity,	local	
FC)	in	lifespan	and	explore	the	mechanism	underlying	them.
Materials and Methods: A	 total	 of	 523	 healthy	 participants	 (258	 males	 and	 265	
females)	 aged	 18–88	 years	 from	 part	 of	 the	 Cambridge	 Center	 for	 Ageing	 and	
Neuroscience	(CamCAN)	were	 involved	in	this	study.	Next,	two	data-driven	meas-
ures	of	 local	FC,	 local	 functional	connectivity	density	 (lFCD)	and	 four-dimensional	
spatial-temporal	 consistency	 of	 local	 neural	 activity	 (FOCA),	were	 calculated,	 and	
then,	general	linear	models	were	used	to	assess	the	changes	of	them	in	lifespan.
Results: Local	functional	connectivity	(lFCD	and	FOCA)	within	visual	networks	(VN),	
sensorimotor	network	 (SMN),	and	default	mode	network	 (DMN)	decreased	across	
the	 lifespan,	while	within	 basal	 ganglia	 network	 (BGN),	 local	 connectivity	was	 in-
creased	across	the	lifespan.	And,	the	fluid	intelligence	decreased	within	BGN	while	
increased	within	VN,	SMN,	and	DMN.
Conclusion: These	 results	might	suggest	 that	 the	decline	of	executive	control	and	
intrinsic cognitive ability in the aging population was related to the decline of func-
tional	connectivity	in	VN,	SMN,	and	DMN.	Meanwhile,	BGN	might	play	a	regulatory	
role in the aging process to compensate for the dysfunction of other functional sys-
tems.	Our	findings	may	provide	important	neuroimaging	evidence	for	exploring	the	
brain functional mechanism in lifespan.
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1  | INTRODUC TION

With	 the	 intensification	 of	 global	 aging,	 lifespan	 research	 has	 be-
come	a	hot	spot	(Bookheimer	et	al.,	2019;	Taylor	et	al.,	2017;	Wei,	
Zhuang,	et	al.,	2018).	Recently,	the	development	and	application	of	
functional	networks	via	functional	connectivity	(FC)	have	provided	
new perspectives and discoveries for changes in brain function 
across	the	lifespan	(Han	et	al.,	2018;	Nazeri	et	al.,	2015;	Vij,	Nomi,	
Dajani,	&	Uddin,	2018).	In	previous	behavioral	studies	(Grady,	2012;	
Mansson	et	al.,	2015;	Smith	et	al.,	2015),	it	was	suggested	that	with	
the	 development	 of	 the	 human	 brain	 (young-mature-aging),	 some	
cognitions	 and	 behaviors	 including	motor	 ability,	 vision,	 and	 audi-
tory	would	exhibit	an	inverted	U-shaped	curve.	Such	a	phenomenon	
could	be	explained	that	cognition	and	behavior	showed	a	trend	of	
increasing	 first	 and	 then	 decreasing	with	 age	 (Damoiseaux,	 2017;	
Wing	 et	 al.,	 2018).	 Using	 functional	 magnetic	 resonance	 imaging	
(fMRI),	several	brain	function	researches	 indicated	that	the	elderly	
have lower functional connectivity within the default mode net-
work	 (DMN),	 dorsal	 attention	 network	 (DAN),	 sensorimotor	 net-
work	(SMN),	visual	(VN)	and	fronto-parietal	networks	(FPN;	Betzel	
et	al.,	2014;	Cassady	et	al.,	2019;	Ferreira	&	Busatto,	2013;	Grady,	
Sarraf,	 Saverino,	 &	 Campbell,	 2016;	 Spreng,	 Stevens,	 Viviano,	 &	
Schacter,	 2016),	 as	 well	 as	 higher	 functional	 connectivity	 within	
the	 basal	 ganglia	 network	 (BGN;	 Allen,	 2011).	 Meanwhile,	 struc-
tural	MRI-related	studies	have	shown	that	 in	addition	 to	 temporal	
lobe-related	 networks,	 older	 people	 have	 lower	 gray	 matter	 vol-
umes	in	the	DMN,	DAN,	and	auditory	networks	(Damoiseaux,	2017;	
Liu,	2017).	 In	addition,	 several	previous	 lifespan	and	aging	 studies	
showed that older people had higher functional connectivity be-
tween	networks	 (such	as	DMN,	FPN,	DAN,	and	cingular-opercular	
network	 [CON];	Damoiseaux,	2017;	Grady	et	 al.,	 2016;	Wang,	 Su,	
Shen,	&	Hu,	2012;	Xia	et	al.,	2019).	In	general,	as	the	aging	process	
deepens,	the	functional	connectivity	within	network	decreased	and	
the	functional	connections	between	networks	increased	(Ferreira	&	
Busatto,	2013;	Vij	et	al.,	2018).	Reduced	functional	connectivity	may	
be	due	to	reduced	cognitive	and	other	functions,	and	the	increase	in	
functional connectivity between networks may be due to the com-
pensatory	mechanism	of	the	functional	network	(Damoiseaux,	2017;	
Ferreira	&	Busatto,	2013;	Naik,	Banerjee,	Bapi,	Deco,	&	Roy,	2017;	
Vij	et	al.,	2018).	Furthermore,	BGN	 is	associated	with	a	variety	of	
functions,	 including	 motor,	 cognitive,	 motivational,	 and	 emotional	
processes	(Doya,	2000),	and	has	overlapping	several	functions	with	
other	networks,	especially	with	SMN	which	could	be	expected	that	
BGN	 may	 compensate	 to	 the	 dysfunction	 of	 SMN	 (Figley,	 2017;	
Yanagisawa,	 2018).	Meanwhile,	 Regners	 et	 al.	 also	 found	 that	 in-
creased	effective	connectivity	from	dDMN	to	BGN	in	long-term	ab-
stinence may be a compensatory mechanism related to behavioral 
monitoring	 (Castellazzi,	 2014;	 Regner	 et	 al.,	 2016).	 However,	 the	
physiological mechanisms of functional network changes in lifespan 
are	still	unclear,	especially	whether	and	how	the	potential	compen-
sation mechanism is in lifespan.

In	recent	years,	resting-state	fMRI	has	been	used	as	a	power-
ful	 tool	 for	exploring	spontaneous	brain	activity	and	changes	 in	

brain	function	(Biswal,	Zerrin	Yetkin,	Haughton,	&	Hyde,	1995;	De	
Luca,	Beckmann,	De	Stefano,	Matthews,	&	Smith,	2006).	Unlike	
traditional	task	fMRI	focusing	on	a	single	functional	system	at	a	
time,	resting-state	fMRI	can	provide	 important	spontaneous	ac-
tivity information of functional connectivity for the interpreta-
tion	of	 lifespan	functional	network	changes	 (Betzel	et	al.,	2014;	
Li	et	al.,	2019;	Tomasi	&	Volkow,	2012;	Yang,	2016).	Considering	
that the local functional homogeneity of spontaneous activity is 
neurobiologically	 relevant	 due	 to	 possible	 anatomical,	 develop-
mental,	and	neurocognitive	factors	(Jiang	et	al.,	2015;	Wei,	Chang,	
et	al.,	2018),	there	are	two	popular	resting-state	measures	of	local	
functional	connectivity	(local	FC).	One	is	the	local	functional	con-
nectivity	density	(lFCD),	which	reflects	the	local	functional	hubs	
of	 the	 brain	 in	 the	 time	 domain	 (	 Tomasi	 &	Volkow,	 2010),	 and	
another is the four-dimensional spatial-temporal consistency of 
local	neural	 activity	 (FOCA),	which	 reflects	 the	 functional	 state	
of	 the	 brain	 locally	 in	 the	 time–frequency	 domain	 (Azeez	 &	
Biswal,	 2017;	Dong	 et	 al.,	 2015).	 These	 two	 local	 FC	measures	
may	 comprehensively	 assess	 the	 local	 functional	 activity,	 more	
comprehensively,	 from	 its	 specific	 perspective.	 Therefore,	 with	
the	advantages	of	satisfactory	reproducibility	and	reliability,	both	
data-driven	lFCD	and	FOCA	measures	of	local	FC	may	be	suitable	
for revealing changes in brain function and its mechanism across 
the lifespan.

This	 study	was	 the	 first	 to	explore	 the	alterations	of	 functional	
networks in lifespan and the possible underlying mechanism through 
local	FCs	of	lFCD	and	FOCA,	to	our	knowledge.	In	this	study,	we	hy-
pothesized	that	the	compensation	across	the	lifespan	may	exist	in	a	
wide	range	of	high-level	(e.g.,	DMN)	and	primary	networks	(e.g.,	VN	
and	 SMN)	 via	 local	 functional	 connectivity,	 and	BGN	may	 play	 im-
portant role in the compensatory mechanism. Using resting-state 
fMRI,	lFCD	and	FOCA	were	calculated	on	healthy	participants	aged	
18–88	years.	Then,	a	general	linear	model	(GLM)	was	used	to	assess	
the relationships between local functional indicators and age/age2,	
while	controlling	the	nuisance	items	of	the	gender,	head	motion,	and	
intracranial	 volume.	 In	 addition,	 relationships	 between	 functional	
measures	 and	 behavior	 scores	 were	 also	 investigated	 using	 GLM,	
while adding the nuisance items as covariates. We predicted that it 
may	provide	important	neuroimaging	evidence	for	exploring	the	brain	
mechanism in lifespan.

2  | MATERIAL S AND METHODS

2.1 | Participants

In	 this	 study,	 523	 healthy	 participants	 (258	 males	 and	 265	 fe-
males)	 aged	 18–88	 years	 from	 part	 of	 the	 Cambridge	 Center	 for	
Ageing	 and	 Neuroscience	 (CamCAN,	 http://www.cam-can.org/;	
Taylor	 et	 al.,	 2017)	were	 involved.	Among	all	 the	participants,	 the	
proportion	 of	male	 and	 female	 participants	 remained	 equally,	 and	
there were about 100 participants per 10-year-old. Participants 
performed	cognitive	tasks	outside	the	MRI	scanner.	The	tests	used	

http://www.cam-can.org/
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in this study were the Cattell Culture Fair Test (complete nonver-
bal	puzzles	involving	series	completion,	classification,	matrices,	and	
conditions),	 to	assess	 fluid	 intelligence	 (Horn	&	Cattell,	1966),	 and	
the	speed	choice	reaction	time	(RT)	task	(participants	were	required	
to respond as quickly as possible to 1 of 4 possible cued fingers using 
a	4-button	response	box,	total	trail	was	67),	to	assess	speed	of	pro-
cessing.	For	the	RT	tasks,	the	mean	(M-RT)	and	variability	(SD of RT 
values,	SD-RT)	were	computed	from	individual	trials.	Moreover,	due	
to	 the	 lack	 of	 records	 and	 data	 quality	 control,	 some	 participants	
were	excluded	 in	 this	 study	 (see	Table	1	and	Table	S2	 for	details).	
All	procedures	followed	the	Helsinki	Declaration	and	have	been	ap-
proved	by	the	Cambridgeshire	2	Research	Ethics	Committee,	a	local	
ethics	committee	in	the	UK.

2.2 | fMRI data acquisition and preprocessing

Imaging	data	were	 collected	by	 a	3T	MRI	 scanner	 (Siemens	TIM	
Trio).	During	 the	 scanning	 period,	 all	 participants	were	 required	
to lie still and keep their eyes closed. The T1-weighted anatomi-
cal	 images	were	 gathered	 using	 an	MPRAGE	 sequence	with	 the	
following	parameters:	TR/TE	=	2,250	ms/2.99	ms;	flip	angle	=	9°;	
FOV	=	256×240	×	192	mm3;	voxel	size	=	1	×	1	×	1	mm3. For resting-
state	 fMRI	 measurements,	 261	 volumes	 of	 echo-planar	 imaging	
(EPI)	sequences	were	acquired	with	the	following	parameters:	se-
quential	descending	order;	slice	thickness	3.7	mm	with	a	slice	gap	
of	20%	 for	whole-brain	coverage;	TR/TE	=	1,970	ms/30	ms;	 flip	
angle	=	78°;	FOV	=	192×192	mm2;	voxel	size	=	3×3	×	4.44	mm3; 
number	of	slices	=	32;	duration	time	=	520	s.

The	resting-state	fMRI	data	were	preprocessed	using	SPM12	as	
implemented	 in	 the	Neuroscience	 Information	Toolbox	 (NIT,	 ver-
sion	 1.3,	 http://www.neuro.uestc.edu.cn/NIT.html;	 Dong,	 2018).	
The	 first	 5	 volumes	 were	 deleted	 from	 the	 resting-state	 fMRI	
data	 of	 each	 subject	 for	 excluding	 T1	 saturation	 effects.	 Then,	
the	 images	 were	 preprocessed	 including	 realignment,	 slice	 time	
correction,	 spatial	 normalization	 using	 T1-weighted	 MRI	 data	
(3	×	3	×	3	mm3).	The	head	motion	of	each	participant	was	calcu-
lated	 using	 the	mean	 framewise	 displacement	 (mean	 FD;	 Power,	
Barnes,	Snyder,	Schlaggar,	&	Petersen,	2012).	Participants	whose	
FD was two or more SD	above	the	group	mean	FD	were	excluded	
from further analysis.

2.3 | lFCD and FOCA

In	 this	work,	 lFCD	and	FOCA	measures	were	 calculated	 to	 assess	
the local brain activity in resting state using NIT software (http://
www.neuro.uestc.edu.cn/NIT.html,	 version	 1.3;	 Dong,	 2018).	 The	
local	 functional	 connectivity	 density	 (lFCD)	 reflects	 the	 distribu-
tion of functional hubs of the human brain from the perspective of 
time	consistency	 in	 the	 local	 region	 (Tomasi	&	Volkow,	2010).	 For	
a	 voxel	 v	 in	 the	 brain,	 the	 lFCD	 value	 of	 voxel	 v was the number 
of	voxels	in	the	contiguous	functional	connectivity	cluster	in	a	local	
region	(Tomasi	&	Volkow,	2010).	The	Pearson	correlation	was	used	
to	assess	the	strength	of	the	functional	connectivity	between	voxel	
v	and	its	closest	neighbors	of	voxels	functionally	connected,	and	a	
given	time	courses	threshold	of	0.6	and	the	MRI	signal-to-noise	ratio	
threshold of 50 were used to ensure significant functional connec-
tivity	(Tomasi	&	Volkow,	2010).	A	voxel	was	added	to	the	list	of	voxels	
connected	with	voxel	v	only	if	it	was	linked	to	voxel	v by a continuous 
path	of	connected	voxels	and	correlation	was	larger	than	the	given	
threshold	and	this	computation	repeated	for	 the	next	voxel	 in	 the	
list until no new neighbors can be added to the list. This calculation 
was	performed	for	all	voxels,	and	the	individual	map	was	obtained	
by dividing by the mean value of the map. Before calculating lFCD 
maps,	 normalized	 functional	 images	were	passband-filtered	 (0.01–
0.08	Hz)	and	nuisance	signals,	including	12	head	motion	parameters	
(6	parameters	of	translation	and	rotation	and	their	derivative),	linear	
trend,	global	mean,	individual	mean	white	matter,	and	cerebrospinal	
fluid	signals,	were	removed	from	the	unsmoothed	fMRI	data.

On	the	other	hand,	the	four-dimensional	spatial-temporal	consis-
tency	of	local	neural	activity	(FOCA)	reflects	the	functional	state	of	
the	brain	locally	consist	in	time–frequency	domain	(the	consistency	
from	 both	 temporal	 homogeneity	 of	 local	 adjacent	 voxels	 using	
temporal correlation and regional stability of brain activity states 
between	 neighboring	 time	 points;	 Azeez	 &	 Biswal,	 2017;	 Dong	
et	 al.,	 2015).	 For	 each	 voxel,	 FOCA	value	was	 calculated	 as	mean	
temporal	 and	 spatial	 correlation	of	 a	 local	 region	 from	normalized	
functional	 images.	After	 calculating	FOCA	of	 all	 voxels	 across	 the	
brain,	the	FOCA	value	was	divided	by	the	mean	value	of	the	whole	
brain.	Brain	regions	with	high	FOCA	values	are	considered	to	have	
higher consistency of local spontaneous activity. Before calculating 
FOCA	maps,	nuisance	signals,	including	12	head	motion	parameters,	
linear	 trend,	 individual	mean	white	matter,	 and	cerebrospinal	 fluid	
signals,	were	removed	from	the	unsmoothed	fMRI	data.	The	detailed	
information	of	FOCA	can	be	seen	in	Dong	et	al.	(2015).	Finally,	the	
lFCD	image	and	FOCA	image	were	smoothed	with	an	8	mm	FWHM	
Gaussian	kernel.

2.4 | Statistical analysis

To	 exhibit	 the	 relationship	 between	 local	 functional	 connectivity	
and	age,	we	used	GLM	to	fit	local	measures	(lFCD	and	FOCA	maps)	

TA B L E  1   Information of participants

 Number
Male/
female

Range 
(years/
values) Mean SD

Age 523 258/265 18–88 51.28 17.60

Cattell 509 254/255 12–44 32.82 6.37

RT_M 476 236/240 0.35–1.11 0.57 0.13

RT_SD 476 236/240 0.04–0.39 0.12 0.06

http://www.neuro.uestc.edu.cn/NIT.html
http://www.neuro.uestc.edu.cn/NIT.html
http://www.neuro.uestc.edu.cn/NIT.html
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over age/age2 while adding the gender (Xsex),	 head	motion	 (mean	
framewise	displacement,	XmFD),	and	intracranial	volume	(Xvolume)	as	
covariates	 (Equation	 1).	 Additionally,	 GLM	was	 also	 conducted	 to	
fit linear local measures over behavior scores (fluid intelligence and 
speed	choice	reaction	time)	adding	the	same	covariates	(Xbehavior in 
Equation	2).	Because	the	changes	of	mean	FCs	across	lifespan	were	
mainly	linear	and	quadratic	(the	inverted	U	shape;	Grady,	2012)	and	
FC	changes	within	some	functional	networks	(VN,	CEN)	have	linear	
decreases	across	 lifespan	while	 those	within	DMN	have	quadratic	
(the	inverted	U	shape)	decreases,	and	SMN,	SAN	shown	both	linear	
and	quadratic	decreases	of	FCs	(Vij	et	al.,	2018;	Wang	et	al.,	2012).	
It	is	reasonable	to	apply	a	GLM	to	reveal	the	age	effect	on	local	FCs.	
Furthermore,	the	age	and	behavioral	score	were	strongly	correlated	
(r2	=	.43,	p	=	3.6	×	10–63,	see	Figure	S1).	Because	adding	the	behavio-
ral	score	in	the	GLM	in	Equation	1	would	lead	to	a	collinearity	prob-
lem,	according	to	the	previous	studies	(Kievit,	2014;	Onoda,	Ishihara,	
&	Yamaguchi,	2012),	two	GLMs	were	applied	to	these	two	measures,	
respectively.

For	each	local	functional	measure	(lFCD	and	FOCA	maps),	the	T	
value of coefficients of age and age2	in	Equation	1	(β1 and β2,	respec-
tively)	was	used	to	measure	the	impact	of	age	(linear	and	quadratic)	
on	local	functional	measures.	Meanwhile,	the	T	value	of	coefficients	
of	behavior	score	(Cattell	score,	M_RT,	and	SD_RT)	in	Equation	2	(�′

1

)	was	used	to	measure	the	significance	of	the	linear	relationship	be-
tween	them	and	local	functional	measures.	All	the	significance	level	
was set to p	<	.05,	false	discovery	rate	(FDR)-corrected.

3  | RESULTS

3.1 | Changes of lFCD and FOCA

First,	we	analyzed	the	linear	correlation	between	local	functionality	
(lFCD	and	FOCA)	and	age.	During	the	resting	state,	the	lFCD	values	(1)localFC=�0+�1×age+�2×age

2
+�3×Xsex+�4×XmFD+�5×Xvolume

(2)localFC=��
0
+��

1
×Xbehavior+��

2
×Xsex+��

3
×XmFD+��

4
×Xvolume

F I G U R E  1   Relationships between 
local	functional	connectivity	(FOCA	and	
lFCD)	and	age/age2.	(a)	Impact	of	age	on	
local	FC	and	(b)	impact	of	age2 on local FC 
(cluster	size	>	30,	p	<	.05,	false	discovery	
rate	(FDR)	correction).	Red	areas	indicate	
that local FC increased significantly as 
age	increased,	while	blue	areas	indicate	
the opposite. R stands for the right 
hemisphere	of	the	brain,	and	L	stands	for	
the left hemisphere of the brain



     |  5 of 10WEN Et al.

in	the	olfactory	cortex,	the	superior	temporal	gyrus,	right	insula,	hip-
pocampus,	right	amygdala,	cerebellum	inferior,	and	right	caudate	nu-
cleus	were	positively	correlated	with	age,	while	areas	that	negatively	
correlated	with	lFCD	involved	occipital	gyrus,	calcarine,	left	cuneus,	
left	lingual	gyrus,	inferior	frontal	gyrus,	left	precentral	gyrus,	and	left	

medial	superior	frontal	gyrus.	At	the	same	time,	the	FOCA	values	of	
thalamus,	 caudate	 nucleus,	 hippocampus,	 superior	 temporal	 gyrus,	
left	middle	frontal	gyrus,	and	left	medial	superior	frontal	gyrus	were	
positively correlated with age; the areas that negatively correlated 
with	 FOCA	 involved	 right	 calcarine,	 right	 paracentral	 lobule,	 right	

Index Region

MNI coordinates
Peak 
t_value

Cluster 
sizeX Y Z

Age

lFCD Olfactory_L −27 12 −18 8.34 9,204

Temporal_Pole_Sup_L −45 9 −12 8.17  

Temporal_Sup_R 42 6 −12 8.09  

Insula_R 27 18 −18 7.26  

Hippocampus_R 24 −30 −3 7.15  

Amygdala_R 21 3 −12 6.92  

Temporal_Sup_L −45 −9 0 6.83  

Olfactory_R 18 6 −15 6.63  

Hippocampus_L −24 −24 −6 6.57  

Cerebelum_9_L −9 −45 −42 6.57  

Cerebelum_9_R 3 −48 −42 6.23  

Caudate_R 9 18 12 6.17  

Occipital_Mid_R 15 −93 6 −7.52 4,248

Calcarine_L −21 −96 3 −7.13  

Occipital_Mid_L −27 −93 0 −6.95  

Cuneus_R 6 −90 27 −6.48  

Calcarine_R 3 −75 12 −6.27  

Lingual_L −9 −72 −3 −5.57  

frontal_Inf_Tri_R 39 21 27 −4.92 736

Precentral_L −48 6 30 −4.56 434

Frontal_Sup_Medial_L 0 18 42 −4.62 208

FOCA Thalamus_L −18 −24 0 9.32 6,903

Thalamus_R 21 −21 0 9.57  

Caudate_L −9 15 15 8.8  

Hippocampus_R 24 −30 −3 8.38  

Caudate_R 9 15 15 8.34  

Hippocampus_L −33 −36 0 7.56  

Temporal_Pole_Sup_L −45 12 −16 7.23  

Frontal_Mid_L −30 60 30 4.36 139

Frontal_Sup_Medial_L 0 57 45 4 172

Calcarine_R 3 −66 21 −5.94 7,491

Paracentral_Lobule_R 3 −33 51 −5.72  

Lingual_R 9 −75 −3 −5.49  

Cerebelum_6_L −27 −78 −18 −5.35  

Cerebelum_Crus1_L −45 −54 −24 −5.35  

Cingulum_Mid_R 3 −15 45 −5.08  

Postcentral_R 42 −27 48 −4.68  

Postcentral_L −45 −27 45 −3.54 902

Frontal_Mid_Orb_L 0 48 −12 −5.65 258

Cerebelum_Crus1_R 42 −60 −24 −4.98 231

TA B L E  2   Detailed information on each 
brain region for the relationship between 
local FC and age
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lingual	gyrus,	cerebellum	superior,	cerebellum	superior,	 right	medial	
and	 lateral	 cingulate	 gyrus,	 postcentral	 gyrus,	 and	 left	 superior	 or-
bital	frontal	gyrus	(Figure	1a,	detailed	information	located	in	Table	2).	
Meanwhile,	results	of	lFCD	with	time	course	thresholding	of	0.5	and	
0.7	were	similar	to	the	above	findings	and	are	shown	in	Figures	S2	and	
S3; and there also were wide changes of degree of global networks at 
the	voxel	level	in	the	brain	across	lifespan	(Figure	S4).

In	 addition,	 a	 nonlinear	 correlation	 between	 local	 functionality	
(lFCD	and	FOCA)	and	age	was	analyzed.	The	lFCD	values	in	the	right	
dorsolateral	superior	 frontal	gyrus,	 left	hippocampus,	 left	precentral	
gyrus,	left	precuneus,	right	inferior	temporal	gyrus,	and	right	caudate	
nucleus	were	positively	correlated	with	age,	while	area	that	negatively	
correlated	with	 lFCD	 involved	 right	 postcentral	 gyrus.	 At	 the	 same	
time,	the	FOCA	values	of	the	inferior	temporal	gyrus,	caudate	nucleus,	
and right inferior frontal orbital gyrus were positively correlated with 
age;	the	areas	that	negatively	correlated	with	FOCA	involved	cerebel-
lum	superior,	right	calcarine,	precentral	gyrus,	superior	temporal	gyrus,	
left	postcentral	gyrus,	and	transverse	temporal	gyrus	(Figure	1b,	de-
tailed	information	located	in	Table	3).	In	addition,	gender	and	age	to-
gether	have	few	impacts	on	local	FCs	in	our	study	(Figure	S5).

3.2 | Relationship between behavior and local FCs

In order to illustrate the relationship between behavior and local 
FCs,	we	 calculated	 the	 correlation	 between	 them.	 The	 fluid	 intel-
ligence	 (Cattell)	was	negatively	 correlated	with	age	 in	 the	 lifespan	

while	positively	related	to	local	FC	within	DMN,	VN	and	partial	SMN.	
However,	there	were	few	significant	relationships	between	local	FCs	
and	RT_M/RT_SD	(Figure	2).	The	detailed	information	could	be	seen	
in Table S1.

4  | DISCUSSION

This	study	explored	the	alterations	in	functional	networks	across	the	
lifespan and the underlying mechanism via local functional connec-
tivity.	In	brief,	as	shown	in	Figure	3,	it	was	found	that	local	functional	
connectivity	(lFCD	and	FOCA)	in	the	VN,	SMN,	and	DMN	decreased	
across	the	lifespan	while	that	in	the	BGN	increased	across	the	lifes-
pan.	Such	results	might	be	explained	by	the	decline	in	the	VN,	SMN,	
and	 DMN,	 reflecting	 the	 impairment	 of	 corresponding	 functions,	
while	the	increase	in	the	BGN	indicates	compensation	for	functional	
networks.

4.1 | Changes of lFCD and FOCA across the lifespan

The changes of functional connectivity in lifespan have always 
been	a	research	hot	spot,	and	there	have	been	a	few	studies	on	the	
mechanism behind the changes of functional connectivity. Previous 
studies have shown that functional connectivity in lifespan de-
creased	with	 age,	mainly	within	DMN,	 FPN,	CON,	 SMN,	 and	VN,	
while some studies suggested that FCs within the partial motor and 

Index Region

MNI coordinates
Peak 
t_value

Cluster 
sizeX Y Z

Age2

lFCD Frontal_Sup_R 21 12 57 5.91 190

Hippocampus_L −36 −9 −24 4.92 367

Precentral_L −30 −3 51 4.6 118

Precuneus_L −9 −54 51 4.31 71

Temporal_Inf_R 45 −6 −39 4.03 58

Caudate_R 12 18 12 4 46

Postcentral_R 39 −21 48 −3.77 41

FOCA Temporal_Inf_R 48 −45 −6 5.96 78

Caudate_R 15 21 15 5.42 197

Caudate_L −18 9 24 4.18 152

Temporal_Inf_L −57 −27 −21 4.12 510

Frontal_Inf_Orb_R 42 36 −12 3.97 67

Cerebelum_6_L −24 −81 −18 −4.57 908

Calcarine_R 6 −81 3 −4.11  

Precentral_L −42 −12 57 −4.65 77

Temporal_Sup_L −57 0 0 −4.03 113

Postcentral_L −54 −15 42 −4.03 66

Heschl_R 54 −12 9 −3.98 59

Temporal_Sup_R 60 0 0 −3.78  

TA B L E  3   Detailed information on each 
brain region for the relationship between 
local FC and age2
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subcortical	networks	increased	with	age	(Damoiseaux,	2017;	Ferreira	
&	Busatto,	2013).	In	general,	the	decline	of	situational	memory,	self-
reference	processing,	and	thinking	wandering	in	the	elderly	leads	to	
the	decline	of	functional	connectivity	 in	DMN	(Buckner,	Andrews-
Hanna,	 &	 Schacter,	 2008).	 Moreover,	 the	 functional	 connectivity	
between	DMN	and	FPN	was	positively	correlated	with	age,	which	
may be due to the weakening of the separation of the two func-
tional	networks	with	aging	(Grady	et	al.,	2016;	Spreng	et	al.,	2016).	
On	the	other	hand,	Coste	and	his	colleagues	found	that	the	decline	

in functional connectivity within CON may be due to decreased 
alertness	among	older	people	(Coste	&	Kleinschmidt,	2016)	and	Yan,	
Zhuo,	Wang,	and	Wang	(2011)	suggested	that	the	decline	of	VN	in-
ternal functional connectivity with age may be due to the decline of 
visual	function	in	the	elderly.	In	addition,	the	elderly	performed	an	
impaired	motor	performance,	yet	the	consistent	changes	of	FC	were	
not	observed	within	SMN.	As	 the	age	grows,	FC	 increased	within	
some	portions	of	SMN,	while	some	portions	of	SMN	exhibited	the	
contrary phenomena. The lifespan and aging studies implied that 

F I G U R E  2  Relationships	between	local	functional	connectivity	(FOCA	and	lFCD)	and	behavior	scores	(cluster	size	>	30	voxels;	Cattell-
fluid	intelligence,	p	<	.05,	FDR	correction;	RT_M,	RT_SD-average	response	time	in	response	time	tasks,	intraindividual	response	time	
variability	in	response	time	tasks,	p	<	.001,	uncorrected).	Red	areas	indicate	that	local	FC	decreased	significantly	as	behavior	scores	
decreased,	while	blue	areas	indicate	the	opposite.	R	stands	for	the	right	hemisphere	of	the	brain,	and	L	stands	for	the	left	hemisphere	of	the	
brain

F I G U R E  3   Illustration of the 
underlying mechanisms of four networks 
over	the	lifespan.	As	age	increases,	the	
local	FCs	within	the	VN,	SMN,	and	DMN	
decreased	(impairment),	while	those	
within	the	BGN	increased	(compensation).	
The	behavior	scores	exhibited	an	inverted	
U-shaped curve across the lifespan
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the	declines	within	SMN	were	associated	with	decreases	in	sensory	
processing and diminished communications within a “sensorimotor 
feedback”	system	(Roski,	2013;	Seidler	et	al.,	2015).	Moreover,	fluid	
intelligence	is	associated	with	executive	control	and	intrinsic	cogni-
tive	ability,	which	decreases	with	age	growing	indicating	the	elderly	
might	impair	with	the	above	abilities	(Finn	et	al.,	2015;	Gray,	Chabris,	
&	Braver,	2003).	Our	study	found	that	local	functional	connectivity	
(lFCD	and	FOCA)	within	DMN,	VN,	and	SMN	decreased	in	lifespan.	
We also found the fluid intelligence was negatively correlated with 
age	in	the	lifespan	while	positively	related	to	local	FC	within	DMN,	
VN,	and	partial	SMN.	Together,	our	results	indicate	that	the	decline	
of fluid intelligence might be linked with decreased local functional 
connectivity	within	VN,	SMN,	and	DMN.

4.2 | The possible compensatory role of the BGN

It was widely believed that the increased FC changes in lifespan could 
reflect	a	compensatory	mechanism,	and	most	of	these	changes	were	
intranetwork	FC.	For	example,	the	FCs	between	DMN	and	FPN/atten-
tional networks were increased in lifespan due to the dedifferentiation 
process	of	aging	brain,	occurrence	of	aging	for	late	neurodevelopmen-
tal	stages,	and	a	compensatory	for	cognitive	decline	(Grady	et	al.,	2016;	
Zhai	 &	 Li,	 2019;	 Zonneveld	 et	 al.,	 2019).	Meanwhile,	 the	 BGN	was	
thought to be related to motor learning functions and the increased 
FC	within	 BGN	might	 suggest	 as	 a	 compensatory	 role	 of	 dysfunc-
tions	of	motor	 learning,	especially	 in	Parkinson's	disease-related	 re-
search	 (Lyman,	 Anguera,	 &	 Terman,	 2011;	 Saling	 &	 Phillips,	 2008).	
Furthermore,	it	was	also	found	that	the	homologous	basal	ganglia	cir-
cuitry	was	related	to	cognition	and	emotion	(Saling	&	Phillips,	2008)	
and an increased FC within it might compensate high-order cognition 
(Siman-Tov,	 2016).	 In	 lifespan,	 the	BGN	might	 play	 a	 compensatory	
role to balance the dysfunction of other functional networks. In our 
study,	the	local	FC	(lFCD	and	FOCA)	with	BGN	increased	in	lifespan	
reflects	that	the	increased	FCs	in	BGN	might	provide	the	compensa-
tory for the decline function networks of primary and high-order cog-
nition.	In	summary,	the	BGN	might	regulate	other	functional	networks	
(VN,	SMN,	and	DMN)	and	compensate	 the	corresponding	cognitive	
decline in lifespan.

4.3 | Limitations

Although	our	findings	could	give	insight	into	the	compensatory	role	
of	the	BGN	across	the	lifespan	to	some	degree,	several	 limitations	
should	be	addressed.	First,	behavioral	data	were	relatively	 insuffi-
cient. Further research should involve more behavioral data to re-
veal	more	detailed	cognitive	relationships	between	local	FCs,	such	
as	working	memory,	motor	ability,	and	emotion	recognition.	Second,	
fMRI	 has	 low	 temporal	 resolution	 compared	 to	 electroencepha-
logram	 (EEG).	 In	 the	 future,	EEG	data	should	be	 involved	 to	study	
real-time	 effective	 behavior	 results.	 Finally,	 because	 of	 the	 accu-
rate	compensatory	effects	are	not	tested	in	this	work,	the	accurate	

mechanism	of	the	BGN	remains	unclear.	Our	study	perhaps	offers	
one	 possible	 explanation	 of	 the	 compensatory	 mechanism	 of	 the	
BGN	across	 the	 lifespan	 through	 local	FCs,	and	more	 research	ef-
forts	are	needed	 in	 this	 regard.	Additionally,	 since	 the	distribution	
of	functional	hubs	in	the	human	brain	is	a	critical	topic,	it	would	be	
helpful	to	expand	our	research	with	complex	network	analysis	in	fu-
ture work.

5  | CONCLUSION

In	 this	 study,	we	 used	 resting-state	 lFCD	 and	 FOCA	measures	 to	
investigate the changes of local functional connectivity in lifespan 
and tried to give the underlying mechanism: The decline of cogni-
tive	function	in	the	aging	population	led	to	the	decline	of	FC	in	VN,	
SMN,	and	DMN.	Meanwhile,	BGN	may	play	a	regulatory	role	in	the	
aging process to compensate for the dysfunction of other functional 
systems.
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