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Although mounting neuroimaging studies have greatly improved our understanding of
the neurobiological mechanism underlying internet addiction (IA), the results based on
traditional group-level comparisons are insufficient in guiding individual clinical practice
directly. Specific neuroimaging biomarkers are urgently needed for IA diagnosis and the
evaluation of therapy efficacy. Therefore, this study aimed to develop support vector
machine (SVM) models to identify IA and assess the efficacy of cognitive behavior
therapy (CBT) based on unbiased functional connectivity density (FCD). Resting-state
fMRI data were acquired from 27 individuals with IA before and after 8-week CBT
sessions and 30 demographically matched healthy controls (HCs). The discriminative
FCDs were computed as the features of the support vector classification (SVC) model
to identify individuals with IA from HCs, and the changes in these discriminative FCDs
after treatment were further used as features of the support vector regression (SVR)
model to evaluate the efficacy of CBT. Based on the informative FCDs, our SVC model
successfully differentiated individuals with IA from HCs with an accuracy of 82.5% and
an area under the curve (AUC) of 0.91. Our SVR model successfully evaluated the
efficacy of CBT using the FCD change ratio with a correlation efficient of 0.59. The
brain regions contributing to IA classification and CBT efficacy assessment were the left
inferior frontal cortex (IFC), middle frontal cortex (MFC) and angular gyrus (AG), the right
premotor cortex (PMC) and middle cingulate cortex (MCC), and the bilateral cerebellum,
orbitofrontal cortex (OFC) and superior frontal cortex (SFC). These findings confirmed the
FCDs of hyperactive impulsive habit system, hypoactive reflecting system and sensitive
interoceptive reward awareness system as potential neuroimaging biomarkers for IA,
which might provide objective indexes for the diagnosis and efficacy evaluation of IA.

Keywords: internet addiction, cognitive behavior therapy, support vector classification, support vector
regression, biomarker
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INTRODUCTION

In the last two decades, with the development of digital
information technology, the internet has brought great
convenience and benefit to people’s lives, but the popularity
of the internet has also brought new public health issues,
such as internet addiction (IA). IA, characterized by excessive
internet craving and habitual and uncontrolled use of the
internet (Hormes et al., 2014; Wang et al., 2019), has widely
prevailed all over the world, with a prevalence ranging from
0.2 to 57.5% (Darvesh et al., 2020). Even in medical students,
the pooled incidence rate of IA is as high as 30.1% (Zhang
et al., 2018). Furthermore, the incidence of IA is rising rapidly.
The prevalence rate of IA has risen steeply almost ninefold in
Hong Kong in the last 10 years (Chung et al., 2019). Additionally,
with the popularity of mobile internet, the risk of IA in children
has become an increasing concern (Mihajlov and Vejmelka,
2017). Surveys show that almost one-quarter of early teenagers
spend 40 h online per week (Ayar et al., 2017), and more than
30% of children under 2 years old have used mobile internet
devices (Young, 2017), reflecting the younger age trend of IA.
Collectively, epidemiological features, including worldwide
prevalence, high incidence, rapidly increasing incidence and
younger age trend, make IA a public health threat as serious as
substance addiction.

As one of the most widely used noninvasive
technologies for investigating brain function in vivo,
functional magnetic resonance imaging (fMRI) has greatly
improved our understanding of the neuropathological
abnormalities underlying IA. Using resting-state functional
connectivity (FC), an fMRI technology reflecting the functional
communication of preselected regions of interest (ROIs),
researchers have found hyperactive function of the striatum
and orbitofrontal cortex (OFC) (Kuehn and Gallinat, 2015; Ge
et al., 2017), indicating that IA has similar pathological reward
awareness to substance addiction. In a longitudinal fMRI study,
the FC of the putamen in individuals with IA was also found to be
significantly correlated with the online time per day, suggesting
that the habitual use of the internet was related to hyperactive
impulsive habit system in the brain (Lee et al., 2021). Using
functional connectivity density (FCD) analysis, a novel method
that overcomes the bias of FC produced by the preselection of
ROIs, to analyze whole-brain functional communication, we
further found altered dorsolateral prefrontal cortex (DLPFC)
function in our prior study (Wang et al., 2019), representing
the defective reflecting system in IA. These fMRI studies have
provided us with the potential neuropathologic mechanism
underlying IA; however, the average differences between groups
are insufficient in guiding individual clinical practice directly.
There is still a lack of biomarkers to diagnose IA and evaluate the
effectiveness of therapy on IA.

Recently, machine learning (ML) has increasingly gained
popularity in the neuroimaging research field. Through
appropriate features, ML models can identify neuropsychiatric
diseases and predict the effectiveness of treatment accurately,
which provides us with an available way to explore potential
biomarkers for neuropsychosis diagnosis and the evaluation of

therapy efficacy (Arbabshirani et al., 2017). Feature selection,
aiming to find appropriate features to develop model, is a
necessary step in ML studies, especially in the neuroimaging
field. Due to the vast amount of data in neuroimaging studies,
overfitting is inevitable without feature selection (Chiang et al.,
2015). The two-sample t-test is a commonly used approach for
feature selection in pattern recognition, which can determine
the features distributed differently in two groups, meaning
that the corresponding features have excellent discrimination
ability (Liu et al., 2019). Support vector machine (SVM), which
includes support vector classification (SVC) and supporter
vector regression (SVR), is currently the most popular algorithm
applied in neuroimaging studies for its outstanding performance
on pattern recognition and regression prediction in small-sample
datasets (Bruin et al., 2019). Using the FC of the ventral tegmental
area and substantia nigra to build an SVC model, Wen et al.
(2020) successfully identified individuals with IA, implicating the
potential of the functional connectivity indexes of interoceptive
reward awareness system as neuroimaging markers of IA.
However, due to the priori selection of ROIs, seed-based FC can
only partly provide SVC with local features referred to ROIs.
The lack of global features of information communication might
reduce the performance of SVC (Guo et al., 2017). Additionally,
no studies have focused on the evaluation of IA treatment
efficacy, although SVR has been applied in the evaluation of
IA severity (Song et al., 2020). Thus, an SVM study based on
more comprehensive features is needed to explore potential
effective biomarkers for both IA diagnosis and the evaluation of
therapy efficacy.

Functional connectivity density analysis, computing the
temporal correlations of each voxel to all other voxels, can
provide SVM with more comprehensive features without bias.
Based on voxel-based FCD, data-driven SVM with global
features will provide us with an opportunity to acquire specific
neuroimaging markers for IA diagnosis and the evaluation of
therapy efficacy. Thus, this study aims to explore potential
biomarkers for IA diagnosis and the evaluation of therapy efficacy
using a combination of FCD analysis and SVM models. For
this purpose, we first computed the local FCD (lFCD), long-
range FCD (lrFCD), and global FCD (gFCD) of 27 individuals
with IA and 30 healthy controls (HCs) and then selected the
discriminative FCDs as effective features by a 2-sample t-test.
After parameter optimization, SVC models were established to
identify IA. After cognitive behavior therapy (CBT), an effective
treatment for various addictions, including IA (Goslarp et al.,
2020), FCD changes were used as features in SVR for the
evaluation of the efficacy of CBT. We hypothesized that (1) FCDs

Abbreviations: AG, angular gyrus; AUC, area under curve; CBT,
cognitive behavior therapy; DLPFC, dorsolateral prefrontal cortex; FC,
functional connectivity; FCD, functional connectivity density; fMRI,
functional magnetic resonance imaging; HC, healthy control; IA, internet
addiction; IAT, Young’s Internet Addiction Test; IFC, inferior frontal cortex;
LOOCV, leave-one-out-cross-validation; MCC, middle cingulate cortex; MFC,
middle frontal cortex; ML, machine learning; OFC, orbitofrontal cortex;
PMC, premotor cortex; RBF, radial basis function; ROC, receiver operating
characteristic; ROI, regions of interest; SFC, superior frontal cortex; SVC,
support vector classification; SVM, support vector machine; SVR, support vector
regression.
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would accurately discriminate individuals with IA from HCs
by the SVC model, and (2) FCD changes would well represent
symptom improvement after CBT by the SVR model.

MATERIALS AND METHODS

Participants
The study protocol was approved by the Sichuan Regional Ethics
Review Committee on Traditional Chinese Medicine (2016KL-
005) and carried out in accordance with the Declaration of
Helsinki. All enrolled participants voluntarily participated in the
study and signed informed consent forms before inclusion.

Sixty participants (30 individuals with IA and 30 HCs) aged
between 18 and 30 were initially recruited from universities.
Three individuals with IA failed to complete the CBT sessions
due to scheduling conflicts or personal issues. Thus, the final
dataset included data obtained from 27 individuals with IA and
30 HCs. Fifteen of 27 individuals with IA had participated in
our former fMRI study detecting functional abnormalities in IA
(Wang et al., 2019) and further consented to take part in the
present CBT study. Each individual with IA met the diagnostic
criteria for IA (assessed by the Internet Addiction Questionnaire),
while all the demographically matched HCs did not meet the
criteria for IA. The Internet Addiction Questionnaire developed
by Young was the first diagnostic tool for IA (Young, 1998). Based
on the original version of Young, Beard proposed a wider applied
questionnaire (Beard and Wolf, 2001), which was composed of
eight items. The first five items were characteristics of IA, and
the other three were negative consequences of IA. All of the first
five items and at least one of the last three items were required
for a diagnosis of IA. Young’s Internet Addiction Test (IAT) was
used to assess the severity of IA, and a score greater than 50
was required in the IA group (Yoon et al., 2017). Participants
with organic diseases or a history of substance abuse (such
as alcohol dependence, nicotine addiction or any other drug
addictions) were excluded from our study. Additionally, we also
excluded pregnant or lactating females.

Questionnaire
In addition to IAT, the Self-rating Depression Scale (SDS) and
Self-rating Anxiety Scale (SAS) were completed by all participants
and were applied to assess depression and anxiety, respectively.
All these clinical scales were translated into Chinese versions. We
also collected information on sex, age, and years of education by
a self-designed questionnaire.

Cognitive Behavior Therapy
The complete procedure of this study is shown in Figure 1.
After baseline assessment and fMRI scan, all individuals with IA
were treated with CBT, which was led by an experienced licensed
psychotherapist. A total of 27 individuals with IA completed
the 8-week CBT protocol. The CBT protocol consisted of 8
sessions, and each session lasted 1.5–2 h. According to the
modularized CBT protocol slightly modified from Park’s version
(Park et al., 2016), the following topics were discussed in the
8 sessions: (1) an introduction of the negative consequences of

excessive use of the internet, (2) the motivation behind excessive
internet use, (3) techniques for managing pressure, (4) techniques
for recognizing addiction when it happens, (5) five steps to
change, (6) techniques to deal with problems, (7) techniques to
recover family relationships; and (8) future plans. One topic was
discussed in each session.

To ensure the pure effect of CBT, individuals with IA were
informed not to take any other medicines or interventions during
the research term. Within 3 days after CBT sessions, we assessed
symptom severity again by IAT.

Resting-State fMRI Data Acquisition
All fMRI images were acquired by a 3.0 T MR imaging system
(GE Discovery MR 750, United States) with a standard 8-channel
head coil. The HC group took part in only one fMRI scan,
while the IA group participated in two scans, one within 3 days
before CBT treatment and the other within 3 days after CBT
sessions. During data collection, ear plugs and soft pads were
used to restrict noise and displacement of head, respectively.
The participants were instructed to keep their eyes closed and
remain awake with nothing in mind during the whole scanning
term. A standard echo planar imaging sequence was adopted to
collect functional images, with the following parameters in our
prior study (Wang et al., 2020a): repetition time = 2000 ms, echo
time = 30 ms, flip angle = 90◦, field of view = 24 cm × 24 cm,
image matrix = 64 × 64, no gap, and voxel size = 3.75 mm
× 3.75 mm× 4.4 mm. For this scan sequence, 255 volumes were
obtained, and each volume included thirty-five transverse slices.

Date Preprocessing and FCD Calculation
The Neuroscience Information Toolbox (NIT)1 was used for
data preprocessing. To minimize the influence of an unstable
magnetic field in the initial scanning, the first 5 volumes
of each participant were discarded. Subsequently, slice timing
and spatial realignment were conducted to correct time delay
and head motion, respectively. Participants with more than 2◦
rotation or more than 2 mm displacement were excluded from
the present study. The functional images were then spatially
normalized to a standard Montreal Neurological Institute (MNI)
template and resampled to 3 mm × 3 mm × 3 mm. After
that, we regressed out nuisance signals, including 24 head
motion parameters and signals from cerebral spinal fluid and
white matter. Ultimately, to reduce the interference of low-
frequency drift and high-frequency noise, bandpass filtering
(0.01–0.08 Hz) was conducted.

To address concerns about the influence of head motion on
fMRI analysis, voxel-specific framewise displacement (FD) was
computed (Jenkinson et al., 2002; Power et al., 2012; Yan et al.,
2013). Two-sample t-test showed that there was no significant
intergroup difference at baseline (P > 0.05, mean ± SD:
0.0407 ± 0.0123 for HCs and 0.0419 ± 0.0172 for the IA
group). Additionally, no significant difference before and after
CBT in the IA group was observed based on the paired t-test
(P > 0.05, mean ± SD: 0.0419 ± 0.0172 for pretreatment and
0.0436 ± 0.0189 for posttreatment). Furthermore, to rule out the

1http://www.neuro.uestc.edu.cn/NIT.html
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effect of head motion on the following analyses, we also calculated
FCD with and without scrubbing the frames with FD > 0.5
(Yamashita et al., 2020).

In our study, the FCD was calculated using the NIT according
to the method proposed by Tomasi and Volkow (2010a,b).
Initially, Pearson correlations between the time course of each
voxel and those of other voxels were calculated. The connections
between two voxels with a correlation coefficient of R > 0.6 were
considered as significant connections according to the previous
study (Tomasi and Volkow, 2010a). The gFCD was defined as

the total number of efficient functional connections between a
given voxel and all other voxels. The lFCD was defined as the
total number of efficient functional connections between a given
voxel and its neighboring voxels. The lrFCD was defined as the
number of efficient functional connections between a given voxel
and other distant voxels. Thus, the combination of gFCD, lFCD,
and lrFCD can well describe the role of a given voxel hub in
global, local and long-range information transmission. Finally,
the whole-brain gFCD, lFCD, and lrFCD maps were spatially
smoothed with a Gaussian kernel of 6 mm.

FIGURE 1 | Flow diagram of study procedure. At baseline, fMRI images were acquired from both the HC and IA groups. Based on informative FCDs, the SVC model
was applied to the identification of individuals with IA. After 8-week CBT sessions, individuals with IA were rescanned for fMRI data. The change in informative FCDs
was used to evaluate symptom improvement by the SVR model. IA, internet addiction; HC, heathy control; SVC, support vector classification; SVR, support vector
regression; IAT, Young’s Internet Addiction Test; CBT, cognitive behavior therapy.

FIGURE 2 | The SVM schematic flow. (A) In the SVC model, the gFCD, lFCD, and lrFCD differences between the HC and IA groups (pretreatment) were used as
features for pattern identification. Leave-one-out cross-validation was applied to performance assessment. (B) In the SVR model, the alterations of discriminative
gFCD, lFCD, and lrFCD were used as features to predict the improvement of IAT. The performance of the SVR model was represented by the correlation of actual IAT
scores to predict IAT scores collected in each leave-one-out-cross-validation fold. IA, internet addiction; HC, heathy control; SVC, support vector classification; SVR,
support vector regression; IAT, Young’s Internet Addiction Test; CBT, cognitive behavior therapy; ACC, accuracy; R, correlation coefficient.
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SVM Modeling
The main steps of SVM modeling are described in Figure 2,
comprising feature selection, model building, and performance
evaluation (Jie et al., 2018; Wang et al., 2020b). Due to the
vast amount of data, the selection of informative features
from tremendous neuroimaging data is necessary in ML studies
that are based on neuroimaging (Chiang et al., 2015) since
it decreases the computational burden and improves the
performance of SVM models. As in previous study, the two-
sample t-test (p < 0.005) was used to select features in the current
study (Suk et al., 2015; Kwak et al., 2020). After the features with
discriminative information were selected, we adopted the Fisher
score as the feature weight in the SVC model (Germond et al.,
2018), which is defined in the following equation:

FS (i) =
n1(m1i −mi)

2
+ n2(m2i −mi)

2

n1σ
2
1i + n2σ

2
2i

Here, mi represents the average of the i-th feature in all samples,
n1 and n2 are the number of samples in the HC and IA
groups, m1i and m2i are the respective mean values of the i-th
feature in each group, and σ2

1i and σ2
2i represent the respective

variance of the i-th feature in each group. Since the Fisher
score ranks features in order of how discriminate they are,
consequently, a higher Fisher score value contributes more
information to the SVC model.

To further confirm the selected FCDs as potential biomarkers,
the ratio of changes in the informative FCDs in IA group
was introduced into the SVR model as features to assess the
efficacy of CBT. The contribution of each feature to the SVR
model was evaluated by mutual information, which weighs the
features by the correlation and redundancy of features. High
mutual information represents a high prediction ability and low
redundancy (Gan et al., 2019).

LIBSVM2 was implemented in this study to build SVC and
SVR models (Chang and Lin, 2011). For classification, the
binary SVC model with a radial basis function (RBF) kernel
was built according to the extracted discriminative FCDs of the
IA (pretreatment) and HC groups. To optimize the classifier
and evaluate the performance of SVC, we used leave-one-
out cross-validation (LOOCV) and grid search (hyperparameter
optimization for C and gamma) to train the data. The
performance of the classification was described as the mean
accuracy in LOOCV and area under the curve (AUC). In
addition, a permutation test was applied with 1000 rounds to
assess the significance of classification accuracy (P < 0.05).

Through building the SVR model, we aimed to evaluate
symptom improvement by FCD changes after CBT in individuals
with IA. Thus, the ratio of FCD changes (change/baseline
of FCD) and IAT score improvement (change/baseline of
IAT score) were introduced into the SVR model as features
and labels, respectively. Grid search and LOOCV were
also used to optimize and assess the performance of SVR.
Pearson’s correlation coefficient was computed between
the actual IAT scores and the predictive scores collected

2https://www.csie.ntu.edu.tw/~cjlin/libsvm/

in all LOOCV folds. A 1000 times permutation test with
a P-value < 0.05 was further performed to ensure the
significance of the result.

Statistical Analysis
Demographic characteristics and treatment response were
analyzed by SPSS 18. Continuous variable (e.g., age, IAT
score) differences between HCs and individuals with
IA at baseline were compared by two sample t-test,
while the difference within the IA group before and
after CBT was compared by paired t-test. Categorical

TABLE 1 | Demographic characteristics and treatment response.

Healthy
control group

(n = 30)

IA group
pretreatment

(n = 27)

IA group post
treatment

(n = 27)

M ± SD M ± SD M ± SD

Age (years) 21.73 ± 2.08 20.74 ± 1.95# 20.74 ± 1.95

Sex (male/female) 22/8 22/5# 22/5

Education (years) 15.77 ± 1.82 14.70 ± 1.84# 14.70 ± 1.84

Internet Addiction
Test Scale

29.90 ± 7.18 62.89 ± 11.57N 46.56 ± 11.83*

Self-rating
Depression Scale

37.70 ± 7.87 55.74 ± 9.09N 50.22 ± 10.28*

Self-rating Anxiety
Scale

35.00 ± 6.79 50.11 ± 11.05N 44.22 ± 9.61*

#Comparison between individuals with IA and HCs at baseline, P > 0.05.
NComparison between individuals with IA and HCs at baseline, P < 0.05.
*Comparison in the IA group before and after CBT, P < 0.05.

TABLE 2 | Discriminative gFCD, lFCD and lrFCD between HCs and
individuals with IA.

FCDs Brain Cluster MNI Peak P value

regions voxels coordinates T-value

X Y Z

gFCD Cerebellum_R 26 28 −46 −30 3.9005 < 0.005

AG_L 29 −39 −57 27 −3.6592 <0.005

SFC_L 98 −6 33 57 −3.6342 <0.005

lFCD Cerebellum_R 129 9 −48 −15 4.3797 <0.005

MCC_R 23 6 −27 42 3.6251 <0.005

PMC_R 31 21 −9 61 3.5222 <0.005

Cerebellum_L 36 −15 −39 −21 3.2990 <0.005

lrFCD OFC_L+R 43 0 48 −21 3.3400 <0.005

IFC_L 25 −51 19 0 −4.3605 <0.005

SFC_L 125 −3 42 51 −4.0600 <0.005

SFC_R 24 18 48 48 −3.8860 <0.005

AG_L 28 −39 −60 30 −3.7300 <0.005

MFC_L 46 −42 15 45 −3.5797 <0.005

MNI, Montreal Neurological Institute; L, left; R, right; PMC, premotor
cortex; IFC, inferior frontal cortex; SFC, superior frontal cortex; AG, angular
gyrus; MCC = middle cingulate cortex; OFC, orbitofrontal cortex; MFC,
middle frontal cortex.
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variable (e.g., gender) differences were compared by the
chi-squared test.

As described in section “SVM Modeling,” the findings of two-
sample t-test were applied to feature selection using the Resting-
State fMRI Data Analysis Toolkit plus (RESTplus V1.24)3

(Jia et al., 2019).

3http://www.restfmri.net/forum/restplus

RESULTS

Demographic Characteristics and
Treatment Response
A total of 57 participants (27 individuals with IA and 30 HCs)
were included in the final data analysis. No statistically significant
differences were observed in sex, age, or years of education
between the IA group and the HC group (P > 0.05). Individuals
with IA exhibited higher IAT, SDS, and SAS scores (P < 0.05).

FIGURE 3 | Discriminative gFCD, lFCD, and lrFCD between HCs and individuals with IA. (A) Discriminative gFCD. (B) Discriminative lFCD. (C) Discriminative lrFCD
and (D) The summary of these discriminative FCDs based on BrainNet Viewer (http://www.nitrc.org/projects/bnv/) (Xia et al., 2013). The red nodes represent the
interoceptive reward awareness system, the blue nodes represent the impulsive habit system, and the yellow nodes represent the reflecting system. The red up
arrows represent increased FCDs, while the blue down arrows represent decreased FCDs. g, gFCD; l, lFCD; lr, lrFCD; L, left; R, right; SFC, superior frontal cortex;
OFC, orbitofrontal cortex; MFC, middle frontal cortex; IFC, inferior frontal cortex; PMC, premotor cortex; MCC, middle cingulate cortex; AG, angular gyrus.

FIGURE 4 | The classification performance of SVC model. (A) The classification results between the IA and HC groups. (B) The receiver operating characteristic
curve of the SVC model.
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After 8 weeks of CBT, significant decreases in IAT, SDS, and SAS
scores were observed in the IA group (P < 0.05) (see Table 1).

Feature Selection
Two-sample t-test was used to select informative features for
subsequent model building. The indiscriminative FCDs were
filtered out, and only FCDs with a P-value < 0.005 were selected
as feature vectors (see Table 2). As shown in Figure 3A, in
comparison to HCs, individuals with IA exhibited increased
gFCD in the right cerebellum and decreased gFCD in the
left angular gyrus (AG) and superior frontal cortex (SFC).
Figure 3B shows the enhanced lFCD of individuals with IA in
the right PMC, middle cingulate cortex (MCC), and the bilateral
cerebellum. The IA group also showed higher lrFCD in the
left/right orbitofrontal cortex (OFC) as well as lower lrFCD in the
left AG, inferior frontal cortex (IFC), and middle frontal cortex
(MFC) and the bilateral SFC, as shown in Figure 3C.

According to the tripartite neurocognitive model (Wei
et al., 2017), these results can be summarized as hyperactive
impulsive habit system, hypoactive reflecting system, and
sensitive interoceptive awareness system, which were proposed as
the main pathological mechanism of IA (Figure 3D). With all bad
frames scrubbed, the reanalysis produced similar results, which
are shown in Supplementary Figure 1.

SVC Results
Using gFCD, lFCD and lrFCD, the binary SVC successfully
discriminated individuals with IA from HCs with a mean
accuracy of 82.5% (Figure 4A), which was ensured by a
permutation test (P < 0.05). Figure 4B shows the receiver
operating characteristic (ROC) curve of this SVC model, the AUC
of which is 0.91. Similar results were also obtained after scrubbing
the bad frames (Supplementary Figure 2).

SVR Results
As shown in Figure 5, the SVR model successfully predicted
symptom improvement after CBT. Based on the variation ratio of
FCDs (change/baseline), the SVR model predicted an IAT score

FIGURE 5 | The regression performance of SVR model. Correlation analysis
between the actual IAT change ratio and the predictive change ratio predicted
by SVR.

decrease after treatment with a correlation efficient of 0.59. The
results were validated by a permutation test (P < 0.05). The
repeated analysis after the bad frames were scrubbed produced
similar results (Supplementary Figure 3).

Feature Contribution
The contribution of each feature to the SVM models is ranked
in Figure 6. According to the Fisher scores, the lFCD of the
right cerebellum and the lrFCD and gFCD of the left SFC were
the most important features in the SVC model (Figure 6A). The
lFCD of the left cerebellum and the lrFCD of the bilateral SFC
contributed most to the SVR model, since those features had the
highest mutual information (Figure 6B).

DISCUSSION

Using data-driven SVM models, we successfully identified
individuals with IA and evaluated the effectiveness of CBT. To
our knowledge, the present study is the first to explore unified
biomarkers for both diagnosis and therapy efficacy evaluation
in psychological neuroimaging using SVM models. The brain
regions contributing to IA classification and the evaluation of
CBT efficacy were the left IFC, MFC and AG, the right PMC
and MCC, and the bilateral SFC, OFC and cerebellum, which
were compatible with the tripartite neurocognitive model of IA
(Wei et al., 2017). In the well-accepted tripartite neurocognitive
model, the pathological mechanism of IA was attributed to
three key abnormal systems — hyperactive impulsive habit
system, hypoactive reflecting system, and sensitive interoceptive
awareness system (Wei et al., 2017).

Hyperactive Impulsive Habit System
The impulsive habit system in the tripartite neurocognitive
model is responsible for fast, automatic, unconscious, and
habitual behaviors (Wei et al., 2017). In the current study,
the hyperfunction of the right PMC and bilateral cerebellum
in individuals with IA, which were thought to contribute to
the habitual or compulsive use of the internet, was detected
and further found to contribute to IA identification and the
evaluation of CBT efficacy (Wang et al., 2020a).

As a key neural system that generates automatized behavior
to adapt to circumstances, the habit system is dedicated to
transiting goal-directed behavior to response-stimulate habitual
behavior (Everitt and Robbins, 2005). The hyperactive habit
system is considered part of the mechanism underlying substance
dependence (Zilverstand et al., 2018), accounting for the
transition from voluntary drug use (response-outcome goal-
directed behavior) to habitual and compulsive drug abuse
(response-stimulate habitual behavior) (Everitt and Robbins,
2005). As a behavioral addiction, IA manifests with habitual
and compulsive use of the internet (Seo and Ray, 2019).
Under the framework of associative learning theory, previous
psychological studies have revealed the aberrant transition
process from goal-directed behavior to habit-based behavior
in individuals with IA (Zhou et al., 2018; Gong et al., 2020),
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FIGURE 6 | The feature contribution. (A) The Fisher score of each feature in the SVC model. (B) The mutual information of each feature in the SVR model.

demonstrating the abnormal habit behavioral pattern built by
continuous online playing.

Neuroimaging evidence of aberrant habit system in IA was
also revealed by neuropathology studies. A number of studies
have found altered function of the PMC in IA (Cheng and Liu,
2020; Shin et al., 2020), which is a key region of the habit system
accounting for the transformation of memory into a particular
response sequence (Abe and Hanakawa, 2009). The cerebellum,
traditionally considered a pure motor center, is now concerned
for its various cognitive functions, including habit formation.
The cerebellum is involved in rapid and automatic behavioral
responses in substance dependence, accounting for the habitual
and compulsive drug abuse (Miquel et al., 2019, 2020). In IA
studies, increased activations in the cerebellum were also found
in individuals with IA when exposed to internet cues, implicating
automatic habitual reactions to internet (Schmitgen et al., 2020).
Furthermore, the hyperactivity of the PMC-cerebellar loop was
found both in IA and substance addiction (Yalachkov et al., 2009;
Wang et al., 2020a), suggesting the common pathological changes
in the habit system in IA and substance dependence.

In line with the tripartite neurocognitive model, the
hyperactive impulsive habit system was found valuable in IA
identification and the evaluation of therapy efficacy in our
study, further clarifying the abnormal habit formation process
in habitual and compulsive use of the internet. According to
the Fisher scores, the right cerebellum was one of the most
contributive regions to the SVC model, indicating that the
hyperconnected right cerebellum might be the discriminative
characteristic of IA. The mutual information further revealed
that the reduced connectivity of the left cerebellum contributed
most to the SVR model, implicating that the effect of CBT on
IA was closely associated with the compensatory decrease in left
cerebellum connectivity. Thus, the impulsive habit system might
be the key factor for IA diagnosis and treatment.

Hypoactive Reflecting System
According to the tripartite neurocognitive model, the reflecting
system is involved in planning, problem solving, and inhibition
control (Wei et al., 2017). In the present study, hypoactive FCDs
in the right DLPFC (comprising the SFC and MFC) and the left

AG, IFC and DLPFC were revealed and further demonstrated
to be conducive to IA identification and treatment efficacy
prediction. All these regions were included in the reflecting
system in the tripartite neurocognitive model.

Containing the most cognitive structures in the
brain, the reflecting system is involved in a variety of
advanced cognitive functions, including inhibition and problem
solving, so it is also known as cognitive control system in other
studies. The ability to suppress inappropriate behavior is a main
function of the reflecting system, the impairment of which was
proposed as a key determinant for uncontrolled internet and
drug use (Volkow et al., 2010; Brand et al., 2019). The reflecting
system in IA and substance addiction was consistently found
to be dysfunctional when performing inhibition control tasks
(Darnai et al., 2019; Antons and Matthias, 2020; Suarez-Suarez
et al., 2020); therefore, it was regarded as a therapeutic target for
addiction. After noninvasive treatment targeted to the system,
the addiction symptoms were significantly relieved (Newman-
Norlund et al., 2020; Su et al., 2020), indicating the critical role of
the reflective system in addiction.

The IFC and DLPFC, responsible for inhibiting response
habits and impulsive behavior, are acknowledged as key
components of the reflecting system. Impairments in the IFC
and DLPFC are thought to be directly related to uncontrolled
drug abuse (Ely et al., 2020; Qian et al., 2020), and the
stimulation of these regions was demonstrated to be effective
in relieving addictive symptoms (Chen et al., 2020b; Newman-
Norlund et al., 2020). In IA, a close association between
the dysfunction of IFC and DLPFC and the uncontrolled
online playing has also been demonstrated (Dong et al., 2020).
Although the AG is not typically associated with executive
control function, the crucial role of the AG in inhibition control
has been well demonstrated by previous studies (Castelluccio
et al., 2014; Nobusako et al., 2017; Lewis et al., 2019). In
substance dependence research, dysfunction of AG in response
inhibition tasks were found to be related to addiction severity
(Herman et al., 2019) and could even predict potential substance
abuse in the future (Mahmood et al., 2013), demonstrating
the importance of AG in inhibiting uncontrolled addictive
behavior. In individuals with IA, dysfunctional AG was also
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a key characteristic change correlating to symptom severity
(Lemenager et al., 2016; Chen et al., 2020a), implicating the
defective inhibition control function in IA.

In the tripartite neurocognitive model, the reflecting system
was described as the controller of the impulsive habit system
(Wei et al., 2017). Hence, it is not surprising that the hypoactive
reflecting system in our study contributed to IA diagnosis
and evaluation of therapy effectiveness. Through Fisher score
ranking, the critical role of the DLPFC in IA diagnosis
was well demonstrated in the SVC model. Furthermore, the
key contribution of the DLPFC to CBT efficacy assessment
was revealed by mutual information ranking. Thus, the
hypoconnection of the reflecting system might be the main
characteristic of IA, and activation connectivity of the reflecting
system might be the main effect of CBT on IA.

Sensitive Interoceptive Awareness
System
According to the tripartite neurocognitive model, the sensitive
interoceptive awareness system potentiates the activity of the
impulsive habit system and undermines the activity of the
reflecting system, thus playing an important role in developing
and maintaining IA (Wei et al., 2017). Reward awareness
plays an important part in interoceptive awareness. In our
study, the well-known reward regions OFC and MCC were
demonstrated to contribute to IA diagnosis and treatment
efficacy evaluation, validating the critical role of sensitive reward
awareness in IA.

Comprising of two major dopamine pathways (mesolimbic
and mesocortical pathways) in the brain, the reward network
plays a decisive role in substance addiction. Previous research
has revealed that independent of the drugs used and the tasks
performed, the hyperactive reward network was consistently
related to craving, addiction severity, and the use duration and
frequency of drug use. Consequently, the dysfunction of the
reward network was proposed as a fundamental pathological
change in substance dependence (Zilverstand et al., 2018). Similar
to that in substance addiction, sensitive reward awareness was
also demonstrated in IA and thought to be a critical pathological
characteristic of IA (Li et al., 2015). The mesocortical dopamine
pathway, including the MCC and OFC, is responsible for the
cognitive component of reward processing (Leroy et al., 2012).
The dysfunction of these two regions was thought to be involved
in excessive craving for addictive substances. Analogously, the
abnormal microstructure and function of the MCC and OFC
have also been found to be closely associated with internet craving
(Ko et al., 2009; Lee et al., 2017, 2019), implicating the common
foundation of IA and substance dependence.

Compatible with the tripartite neurocognitive model, the
sensitive interoceptive awareness system was found in individuals
with IA in the present study. In addition, similar to a
previous study, the functional connectivity indexes of the reward
awareness system were successfully applied to IA classification,
verifying the reward awareness system as the key characteristic
of IA (Wen et al., 2020). Moreover, we successfully evaluated the
effectiveness of CBT using FCD changes in the reward awareness

system, further confirming the potential of sensitive reward
system as biomarkers of IA.

CONCLUSION

In summary, based on individual FCD data, this study
successfully differentiated individuals with IA from HCs
and further evaluated the effectiveness of CBT. These findings
suggested the FCDs of hyperactive impulsive habit system,
hypoactive reflecting system, and sensitive interoceptive
awareness system as potential neuroimaging biomarkers of IA,
providing objective indexes for the diagnosis of IA and the
evaluation of treatment efficacy.

LIMITATIONS

Although providing robust and explainable results, our study
still has several limitations to be noted. First, to include more
participants, we included all types of IA in this study. Further
research on specific IA subtypes (such as internet gaming
disorder) should be conducted in the future. Second, the clinical
endpoint was set at the end of treatment in the present study
but should be extended to explore the long-term effect of
CBT and study the reduction in online time/week by CBT.
Third, due to the limited sample size, these findings need to
be validated in other larger datasets. In addition, our SVM
models were built on discriminative features. The excluded brain
areas may also contain valuable information, which should be
considered in future studies. Last, multimodal neuroimaging
data (such as structural data) may provide complementary
information; thus, multiple modalities are needed to improve the
performance of models.
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