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A B S T R A C T

Epilepsy is marked by hypersynchronous bursts of neuronal activity, and seizures can propagate variably to any
and all areas, leading to brain network dynamic organization. However, the relationship between the network
characteristics of scalp EEG and blood oxygenation level-dependent (BOLD) responses in epilepsy patients is still
not well known. In this study, simultaneous EEG and fMRI data were acquired in 18 juvenile myoclonic epilepsy
(JME) patients. Then, the adapted directed transfer function (ADTF) values between EEG electrodes were cal-
culated to define the time-varying network. The variation of network information flow within sliding windows
was used as a temporal regressor in fMRI analysis to predict the BOLD response. To investigate the EEG-de-
pendent functional coupling among the responding regions, modulatory interactions were analyzed for network
variation of scalp EEG and BOLD time courses. The results showed that BOLD activations associated with high
network variation were mainly located in the thalamus, cerebellum, precuneus, inferior temporal lobe and
sensorimotor-related areas, including the middle cingulate cortex (MCC), supplemental motor area (SMA), and
paracentral lobule. BOLD deactivations associated with medium network variation were found in the frontal,
parietal, and occipital areas. In addition, modulatory interaction analysis demonstrated predominantly direc-
tional negative modulation effects among the thalamus, cerebellum, frontal and sensorimotor-related areas. This
study described a novel method to link BOLD response with simultaneous functional network organization of
scalp EEG. These findings suggested the validity of predicting epileptic activity using functional connectivity
variation between electrodes. The functional coupling among the thalamus, frontal regions, cerebellum and
sensorimotor-related regions may be characteristically involved in epilepsy generation and propagation, which
provides new insight into the pathophysiological mechanisms and intervene targets for JME.

1. Introduction

Juvenile myoclonic epilepsy (JME) (Spencer, 2002) is traditionally
considered as an idiopathic generalized epilepsy, characterized by
myoclonic jerks, tonic-clonic seizures and infrequent typical absences
(Woermann et al., 1999; Genton et al., 2013), and stereotyped bilat-
erally synchronous spike-wave discharges (GSWDs) or polyspike-wave
activity (Panayiotopoulos et al., 1994; Koepp et al., 2014). In recent
studies, JME is no longer seen as a homogeneous disease but a system
disorder of the brain with ictogenesis in distributed bilateral networks
involving primarily the thalamus and other cortical areas (Baykan and
Wolf, 2017). Altered neuronal interactions and cortico-cortical network
re-arrangement were regarded to play a crucial role in triggering the

epileptic activity (Clemens et al., 2013; Jiruska et al., 2013). Therefore,
examining the abnormal dynamic network organization may provide
new insight enabling a further understanding of the epileptic brain.

For the initiation and propagation of generalized discharges, cu-
mulative evidences showed that aberrant thalamo-frontal circuit is the
key element that contributes to GSWDs generation (Blumenfeld, 2003;
Moeller et al., 2008; O'Muircheartaigh et al., 2011; Jiang et al., 2018).
Moreover, it was suggested that widespread hyperconnectivity in sen-
sorimotor and frontal cortex acts as the excitatory driver in discharge
propagation (Vollmar et al., 2011; Clemens et al., 2013; Lee et al.,
2017). Conversely, epileptic discharges, i.e., the sudden, transient dis-
turbances of brain activity, can lead to abnormal organization of the
diffuse brain networks (Engel et al., 2013). That is, the whole brain
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network is responsible for the electrographic phenomena associated
with epilepsy seizures (Spencer, 2002); meanwhile, the discharges may
be driven by the abnormal patterns of brain networks (Terry et al.,
2012). Previously, dynamic functional connectivity has been used to
accurately locate the seizure onset based on the intracranial or scalp
EEG (van Mierlo et al., 2011; Staljanssens et al., 2017). In our recent
study, according to the time-varying network patterns during different
stages of the interictal discharges, it was showed that the electrode node
close to the epileptogenic zone was initially involved with the strongest
out flows before the interictal discharges (Zhang et al., 2017). In ad-
dition, the highest temporal variation of network synchronization has
shown good performance as predictors of epilepsy-related fluctuations
(Abreu et al., 2018). The dynamic network reorganization was proved
to relate to the presence of epileptic activity through synchronous and
asynchronous neurophysiologic process (Jiruska et al., 2013;
Khambhati et al., 2015). Therefore, clinically, the knowledge of dy-
namic network-related brain fluctuations and functional couplings is
essential to understand the spatiotemporal dynamics underlying epi-
lepsy generation and propagation.

Technically, the combination of EEG and fMRI has been a powerful
approach to investigate the BOLD fluctuations associated with the
epileptic discharges. The common method is based on the visual in-
spection of the discharges of interest (i.e., the interictal epileptic dis-
charges (IEDs) and the seizures), with the purpose of obtaining a pre-
dictor of discharge-related BOLD responses. EEG-fMRI fusion has
provided a unique advantage in identifying epilepsy localization (Salek-
Haddadi et al., 2006; Tyvaert et al., 2008). Also, in generalized epi-
lepsy, spatial involvements associated with the generalized discharges
have been found, including BOLD activation in thalamus, mesial frontal
areas and deactivation in the parietal and anterior frontal regions
(Aghakhani et al., 2004; Gotman et al., 2005). However, traditional
EEG-fMRI fusion in the field of epilepsy has not fully explored the
temporal characteristics of EEG and the architecture of functional
network between electrodes that may provide important spatio-
temporal dynamics of the brain. Therefore, the BOLD activity asso-
ciated with the network dynamics of scalp EEG may extend the tradi-
tional discharge-informed fMRI analysis. In addition, previous studies
also showed that the functional couplings between the regions in cor-
tico-subcortical circuits may also interact with the cortical dynamics,
thus resulting in low-frequency epileptic oscillation (Destexhe et al.,
1999; Blumenfeld and McCormick, 2000). Therefore, we hypothesize
that functional couplings between BOLD responding regions can be
modulated by the cortical dynamic network organization, and the
modulatory effect may have important implications for understanding
the directional circuits in the dynamics of rapid spread of epileptic
discharges (Blumenfeld, 2003; Sinha et al., 2019).

The aims of the current study included: (1) determining the fMRI
activity associated with EEG dynamic network organization in JME; (2)
investigating the directional functional couplings among target regions
modulated by EEG dynamic network variation. Therefore, simultaneous
EEG-fMRI recordings were conducted, and time-varying scalp network
was generated based on the adapted directed transfer function (ADTF)
between EEG electrodes. Different levels of the network variation were
selected to predict the BOLD response. Furthermore, the EEG-depen-
dent functional couplings among BOLD responding regions were ana-
lyzed using an extended psychophysiological interaction (PPI) analysis,
which was a linear regression framework to identify the contribution of
one region to another and incorporated the modulation of a third region
or experimental factors (Friston, 1997). Finally, we evaluated the
clinical relevance of the modulatory effects in JME, and key nodes in
cortical and subcortical circuits were revealed.

2. Materials and methods

2.1. Participants

Eighteen JME patients (12 females; mean age: 21 years; standard
deviation: 7 years; age range: 15–34 years) were recruited in this study.
All patients were diagnosed by neurologists based on the clinical and
seizure semiology information consistent with International League
Against Epilepsy (ILAE) guidelines (Engel, 2001). No structural ab-
normalities were observed by routine examinations of CT and MRI
scanning. Additionally, 3–6 Hz generalized spike-wave or polyspike-
wave discharges were found by 24-h scalp EEG recordings. All parti-
cipants gave written informed consent in accordance with the De-
claration of Helsinki. This study was performed according to the
guidelines approved by the Ethics Committee of the University of
Electronic Science and Technology of China (UESTC). Data from all
participants were previously included in a prior article in which authors
demonstrated the linear and nonlinear discharge-affecting networks
using IEDs onset information in eigenspace maximal information ca-
nonical correlation analysis (Dong et al., 2016), whereas the present
study focused on the relationship between the network dynamic orga-
nization of EEG and voxel-level BOLD responses, as well as the network-
level functional coupling.

2.2. Simultaneous EEG-fMRI recording

In this study, all participants had simultaneous EEG-fMRI recording
in UESTC. FMRI data were collected using a 3-T MRI scanner
(Discovery MR750, GE) in the Center for Information in Medicine of
UESTC. All participants were instructed simply to keep their eyes closed
and remain still. High-resolution T1-weighted images were acquired
using a 3- dimensional fast spoiled gradient echo (T1-3D FSPGR) se-
quence (TR/TE=5.936ms/1.956ms, flip angle [FA]= 9°, ma-
trix= 256×256, field of view [FOV]= 25.6× 25.6 cm2, slice thick-
ness= 1mm, no gap, 152 slices). Resting-state functional MRI data
were acquired using gradient-echo echo planar imaging sequences (TR/
TE=2000ms / 30ms, FA=90°, matrix= 64×64,
FOV=24×24 cm2, slice thickness/gap= 4mm/0.4mm), with an
eight channel-phased array head coil. A 510-s resting-state scan was
collected for each run, and five repeated runs were conducted for each
JME patient.

Simultaneous EEG data of the JME patients were recorded using a
64-channel MR compatible EEG cap (Neuroscan, Charlotte, NC) ac-
cording to the 10–20 standard system with a reference at the Fcz po-
sition. The amplifier (Neuroscan, synAmps2) was placed outside the
scanning room, and the sampling rate was set at 5000 Hz. Electrode
impedances were lowered to below 10 kΩ prior to recording. The EEG
recording was synchronized with the MR scanner's internal clock to
ensure the removal of the gradient artifacts in the EEG analyses. During
the recording, all participants were instructed to close their eyes and
relax without falling asleep.

2.3. EEG-fMRI data preprocessing

All fMRI data were preprocessed using SPM12 (Statistical
Parametric Mapping, http://www.fil.ion.ucl.ac.uk/spm/) and NIT
(http://www.neuro.uestc.edu.cn/NIT.html) toolboxes (Dong et al.,
2018). The first five volumes were discarded for the magnetization
equilibrium from all fMRI scans. The remaining images were slice-time
corrected, and spatially realigned to the first volume. All subjects
have< 1mm for head movement and 1°for head rotation during MRI
scanning. The individual T1 images were coregistered to the functional
images, and then segmented and normalized to the Montreal Neuro-
logic Institute (MNI) space. Then, functional images were spatially
normalized using T1-based transformation, resampled to
3× 3×3mm3 voxels, and spatially smoothed with a 6mm full-width
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half maximum (FWHM) Gaussian kernel.
EEG data were preprocessed using Curry 7 software (Compumedics

Neuroscan). MR gradient artifacts were removed by subtracting the
averaged scanner artifact template from the continuous EEG recordings
based on the scanner markups (Allen et al., 2000); then, the EEG data
were bandpass filtered (1–45 Hz) and down-sampled to 250 Hz. The
ballistocardiogram (BCG) artifacts were corrected using the OBS-based
BCG correction using the ECG channel (Niazy et al., 2005). Then, we
used ICA to manually reject movement-related and residual ballisto-
cardiac artifacts (Luo et al., 2010). After the data were marked into
periods of 2 s (one fMRI volume acquisition), the sampling points with
obvious motion-related artifacts in each period were visually inspected
and excluded for further analysis. Finally, the preprocessed EEG were
re-referenced to the neutral reference using the reference electrode
standardization technique (REST, www.neuro.uestc.edu.cn) (Yao,
2001; Dong et al., 2017). Onsets of IEDs for each patient were marked
by two experienced neurologists. The run with the most global dis-
charges was selected for the following studies. 19 channels approx-
imating the standard electrode locations in the 10–20 system with the
labels FP1, FP2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T7, T8, P7, P8,
Fz, Pz, Cz were selected as nodes for the following network calculations.

2.4. Overview of EEG-fMRI analysis based on the network variation of scalp
EEG

The proposed scalp network variation-informed fMRI analysis can
be summarized as follows (Fig. 1). The time-varying scalp network was
first constructed from the preprocessed EEG using ADTF. Then, the
variation of the information flow of the ADTF networks over 1–20 Hz in
each 2 s window was extracted to construct the scalp network variation
time series. The values of the network variation time series above the

mean, as well as the values above one standard deviation from the
mean were used as the regressors in GLM-based EEG-fMRI analysis,
respectively. Thus, statistical contrast maps associated with different
levels of the network variation measure were obtained from the above
GLM analysis.

2.4.1. Time-varying network between electrodes using ADTF
The directed transfer function (DTF) was used to explore functional

connectivity between EEG channels. A multivariate autoregressive
model (MVAR) was constructed to represent the multivariate dataset as
a linear combination of its own past plus additional uncorrelated white
noise. The MVAR was characterized by the following:

∑= − +
=

X t A i t X t i E t( ) ( , ) ( ) ( )
i

p

1 (1)

where X(t) is the data vector over time, A(i, t) are the matrices of the
time-varying model coefficients established by the Kalman filter algo-
rithm (Arnold et al., 1998), E(t) is multivariate independent white noise
and p is the model order that was chosen by the Schwarz Bayesian
Criterion (Schwarz, 1978). The observation and state equations of this
algorithm were solved by the recursive least squares (RLS) algorithm
with forgetting factor (Campi, 1994).

As the function A(t) has been acquired, the DTF function, H(f), can
be obtained from the MVAR model by transforming Eq. (1) into the
frequency domain. The DTF is calculated by the following:
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The elements of the transfer matrix, Hij(f), represent the directional

Fig. 1. Overview of the proposed EEG-fMRI analysis based on the network variation of scalp EEG. (A): The time-varying scalp network was constructed from the
preprocessed EEG using ADTF. (B): Variation of the information flow of the ADTF between electrodes in each 2 s time window was extracted to construct the network
variation time series. (C): The values of network variation time series above the one standard deviation and the mean were used as the regressors in GLM-based EEG-
informed fMRI analysis, respectively. (D): Statistical maps were obtained from the above GLM analysis.
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causal interaction from the jth to the ith element at frequency f. The
normalized ADTF, which describes the directional information flow
from jth to ith, is defined by the elements of the transfer matrix in the
spectral domain as follows:

=
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To evaluate the total information flow from one single node, the so-
called integrated ADTF was defined by summing the ADTF values over
the frequency bands of interest, and normalized to be between (0,1).
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where the [f1, f2] is the frequency interval. In this paper, the frequency
band 1–20 Hz was selected according to the spectral distribution of the
IED trials (2 s before and after the IEDs onset for one trial), including
the main IEDs covering the spike waves and sharp waves (Supplemental
Material, Fig. S1).

2.4.2. Time-varying network variation extraction
After the time-varying network of scalp EEG was obtained, we cal-

culated the variation of information flow of each node (Fij) in successive
2 s windows, which was consistent with the fMRI temporal resolution.
Fij was calculated by the following:

=
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where Θij
2(t) is the information flow from node j to node i, and m is the

number of time points in each window (i.e. 500 in this study). Then, the
sum of Fij of all nodes (∑ ∑ Fij) in the network was used to generate the
new network variation time series (Supplemental Material, Fig. S2). In
this time series, larger value means higher network variation.
Therefore, in order to reduce temporal resolution of the network var-
iation series, we calculated the upper envelope of signals using linear
interpolation between the neighboring peaks. Thus, network variation
time series of scalp EEG were generated for each subject and used for
the following GLM-based EEG-fMRI analysis. In addition, to further
diminish head motion influence, we checked the FD (frame-wise dis-
placement) values during fMRI preprocessing, and time points with
large FD (FD > 0.5) in the network variation signal were further
processed through interpolation of the neighboring points (only 0.15%
time points were included in this step). FD is a measurement to evaluate
the head motion characteristics during fMRI scanning. Here FD was
calculated as suggested by Power et al. (Power et al., 2012). The FD
values of each subject were demonstrated in Supplemental Material,
Fig. S3.

2.4.3. EEG-fMRI analysis informed by network variation of scalp EEG
After the network variation time series of scalp EEG were con-

structed, two measurements denoting the variation and medium var-
iation were extracted from the time series (Supplemental Material, Fig.
S2). To identify the BOLD response when the scalp EEG network had
high temporal variation, the values above one standard deviation (i.e.,
higher than the mean plus the standard deviation) in the generated EEG
time series were selected and taken as the regressors in the GLM-based
EEG-informed fMRI analysis for each subject. In addition, the values
above the mean value, which denoted the medium widespread varia-
tion of the time-varying network, were also extracted from the time
series. The EEG-informed fMRI analysis was conducted using the
Neuroscience Information Toolbox (NIT v1.2, http://www.neuro.uestc.
edu.cn/NIT.html). The regressors related to different levels of scalp
network variation were included after convolving with 4 canonical

hemodynamic response functions (HRFs) peaking at 3, 5, 7, and 9 s.
Additionally, nuisance signals (six motion parameters, linear drift
signal, as well as the mean white matter and cerebrospinal fluid signals)
were regressed out through the design matrix. Slow signal drifts with a
period longer than 128 s were also removed (i.e., frequencies below
0.008 Hz). A one-sample t-test was then performed using the statistical
images resulting from single-subject contrasts to examine the effect on
the BOLD signal at the population level for the JME group. Statistical
parametric maps were thresholded at an uncorrected voxel height
P < 0.001.

In addition, traditional GLM-based discharge-informed fMRI ana-
lysis was conducted using the manually determined IEDs onsets as the
regressors. This analysis was performed to elucidate whether the scalp
EEG network variation-informed fMRI method provides extra in-
formation compared to the traditional EEG-fMRI analysis. Similarly,
nuisance signals (six motion parameters, and the linear drift signal, as
well as the mean white matter and cerebrospinal fluid signals) were
regressed out through the design matrix. One-sample t-test was also
conducted on the BOLD responses in the group with the threshold at
P < 0.001.

2.5. Functional coupling modulated by EEG variation

After the EEG-informed fMRI analysis, BOLD responses correlated
with the high level and medium level of dynamic EEG variation were
obtained. Then, the regions with significant high BOLD activation and
deactivation in the one-sample t-test were selected as the regions of
interest (ROI, 3*3*3 voxels), and the mean BOLD signals within the
ROIs were extracted. The EEG-dependent functional coupling for all
pairs of ROIs was examined based on the extended PPI analysis (Friston,
1997; Di et al., 2017), which was used to examine the modulatory in-
teraction for the EEG-network variation and the functional connectivity
between regions. PPI aims to identify the contribution of one region to
another with the modulation of other factors, and includes correlation
PPI terms and modulatory interaction term. In present study, the cor-
relation PPI terms were defined using the BOLD time series of the ROIs,
and the EEG-network induced signals generated by convolving the high
EEG-network variation signals with the canonical HRF. The modulatory
interaction term was the point-by-point multiplication between the
BOLD signal in one region and the EEG-network induced signals. In this
study, the BOLD-related terms were calculated without deconvolution
but with modulation signal centered (Di et al., 2017). The modulatory
interaction generation model was as follows:

= + ⋅ + ⋅ + ⋅ ⋅ +y β β x β x β x x ε( )region region EEG region EEG2 0 1 1 2 3 1 (7)

where xregion1and yregion2 represented the BOLD time series of the two
ROIs, and xEEG was the high EEG-network induced signal. β3 values
indicated the modulation effect resulting from xEEG on the functional
coupling from region1 to region 2. Therefore, positive modulation ef-
fects denoted increased functional coupling between regions modulated
by EEG, while negative modulation effects denoted decreased func-
tional coupling between regions because of EEG modulation.

All pairs of ROIs extracted from the EEG-informed fMRI analysis
were involved in the modulatory interaction analysis. Nuisance signals
(six motion parameters, and linear drift signal as well as the mean white
matter and cerebrospinal fluid signals) were regressed out. Then, group
statistical analysis using one-sample t-test was conducted for β3 values.
Before statistical analysis, the same regions in bilateral hemispheres, as
well as all cerebellum regions were grouped as new ROIs and the
averaged modulatory effects in one ROI was calculated. The statistical
threshold was set to P < 0.05, corrected for family-wise errors (FWE),
to show the significant EEG-based modulation effect on the functional
coupling between the new ROIs.
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2.6. Relationship between modulatory interaction and clinical features

Pearson correlation or Spearman correlation was conducted be-
tween the modulatory functional couplings and the clinical features
according to the data distribution. The clinical features included the age
of epilepsy onset, the duration, as well as the seizure frequency (times
per month) of the patients (Table 1). The EEG-fMRI modulation effect
included the input and output effect of all ROIs in the above modulatory
interaction analysis. The input effect for a particular ROI was the sum of
the modulation effects coming from the other ROIs to this ROI, while
the output effect of one ROI was the sum of the modulation effect from
this ROI to the other ROIs.

3. Results

3.1. BOLD response informed by temporal variation of scalp EEG network

As the time-varying network was acquired by the ADTF analysis
between EEG electrodes, two types of temporal network variation, i.e.,
high variation and medium variation, were extracted to perform the
GLM-based variation-informed BOLD response estimation. Group level
analysis showed that positive BOLD responses highly correlated with
the high EEG-network variation were mainly located in the sensory and
motor regions, i.e. middle cingulate cortex (MCC), supplemental motor
area (SMA), paracentral lobule, as well as the cerebellum, precuneus,
and inferior temporal lobe (Fig. 2, Table 2). At the subcortical level,
positive BOLD responses in the thalamus, and fewer voxels in the
caudate and bilateral insula were also found. In contrast, negative
BOLD responses associated with the medium EEG-network variation
were found in the bilateral frontal lobe, anterior cingulate cortex (ACC),
the postcentral, middle temporal, inferior parietal and occipital areas
(Fig. 3, Table 3). These positive and negative BOLD responses were
concordant with most of the previous IGE discharge-informed EEG-
fMRI reports (Aghakhani et al., 2004; Gotman et al., 2005; Hamandi
et al., 2006), but they were detected with different levels of scalp
network organization. Furthermore, traditional GLM-based EEG-fMRI
analysis using IEDs was also conducted, and the discharge-related BOLD
activations in the cortical and subcortical regions, including the MCC,
ACC, thalamus, putamen, and inferior temporal areas were found

(Supplemental Material, Fig. S4).

3.2. Functional couplings based on the modulatory interaction analysis

The regions representing significant BOLD activation and deacti-
vation were involved in the modulatory interaction analysis. Then,
group-level modulation-dependent functional couplings with statistical
significance between ROIs were illustrated in Fig. 4 (P < 0.05, cor-
rected for FWE). Generally, negative modulatory interactions domi-
nated the functional couplings between regions (Fig. 4 (A)). Under EEG
modulation, the frontal regions and ACC showed decreased functional
coupling to the SMA, paracentral lobule regions, and the cerebellum
showed decreased functional coupling to both the frontal (frontal_sup
and frontal_medial) and sensorimotor-related (SMA and paracentral
lobule) areas. Moreover, the thalamus showed decreased connectivity
to the frontal regions. In addition, a few positive modulation interac-
tions were also found (Fig. 4 B), which represented increased functional
coupling within the frontal regions (frontal_sup, frontal_medial, and
ACC), as well as the increased connectivity from the frontal regions to
the cerebellum.

Taken together, four important epileptic central districts, including
the thalamus, frontal regions, sensorimotor-related regions (i.e., SMA,
and paracentral lobule), and cerebellum were identified, and the
modulation-dependent functional couplings among them were shown
in Fig. 4 (C). The results demonstrated that the main circuit in JME was
associated with the epileptic dynamic network organization.

3.3. Relationship between modulatory interactions and clinical features

The EEG modulation effects were correlated with age of epilepsy
onset, the duration of epilepsy, and the seizure frequency (times per
month) (P < 0.05, Fig. 5). Significant negative relationships were
found between the negative output effects from the thalamus, ACC,
with the age of epilepsy onset, as well as the negative input effects into
precuneus with age of epilepsy onset. Moreover, more prominent ne-
gative input effects in cerebellum, the medial and superior frontal areas
were associated with longer epilepsy duration. In addition, frontal areas
also showed larger negative input effects together with the seizure
frequency increasing.

Table 1
Detailed demographic information and clinical characteristics of JME patients.

No. Gender Age (year) Frequency of GSWDs
(Hz)

No. of volumes with global GSWDs
in selected run

Age at seizure onset
(year)

Family history AEDs Seizure frequency (times per
month)

1 F 17 2Hz 1 10 – VPA 1
2 F 17 3Hz 20 14 – LTG 1
3 F 33 6Hz 6 20 – VPM 3
4 M 22 4Hz 3 8 – VPM 2
5 F 19 3Hz 6 12 Uncle with MgV 1

GTCS
6 F 20 2Hz 111 6 – VPM/LTG 6
7 M 15 3–3.5 Hz 12 5 – – 4
8 F 22 3Hz 2 14 – VPA 2
9 F 17 3–3.5 Hz 2 3 Sister with JME VPA 0.5
10 F 17 2Hz 8 13 Sister with JME VPA 0.5
11 F 29 3–3.5 Hz 2 10 – TCM/VPM 5
12 M 18 5Hz 2 14 – VPM 1
13 F 27 4Hz 3 16 Daughter with

GTCS
– 3

14 F 21 2Hz 117 11 – VPM 0.5
15 M 10 4Hz 2 5 Brother with JME VPM 1
16 M 13 3–3.5 Hz 4 9 – VPA 4
17 M 34 3.5–4Hz 4 14 – TCM/VPM 5
18 F 34 3Hz 6 18 – – 1

Note:
GSWDs: generalized spike-wave discharges; GTCS: generalized tonic-clonic seizures; AEDs: Antiepileptic drugs; VPA: valproic acid; LTG: lamotrigine; VPM: val-
promide;
MgV: magnesium valproate; TCM, traditional Chinese medicine.
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4. Discussion

In this study, temporal variation of the connectivity between EEG
electrodes was used for the first time to predict the BOLD response in
JME. BOLD activation and deactivation was associated with different
levels of network variation. Then, functional coupling between BOLD
responding regions was conducted based on the EEG network-depen-
dent modulatory interaction analysis, and predominantly directional
negative modulatory effects among the thalamus, cerebellum, frontal
and sensorimotor-related areas were found.

Combined EEG-fMRI has been successfully applied in epilepsy stu-
dies to capture the pathophysiological mechanisms associated with
epileptiform discharges. Generalized discharge-related BOLD changes
commonly showed thalamocortical activation and deactivation in the

posterior and anterior cortex (Aghakhani et al., 2004; Gotman et al.,
2005; Laufs et al., 2006). The thalamus, midfrontal and parietal areas
are known to play an important role in the generation and spread of
generalized epileptic activity (Meeren et al., 2002; Hamandi et al.,
2006), and the BOLD activations in these regions were supposed to stem
from the synchronized neuronal activity represented by the spike-and-
wave discharges (Gotman et al., 2005). In this study, consistent results
were found applying temporal variation of scalp EEG network to predict
the BOLD response. The results also showed that the BOLD response
was correlated with the level of network variation. The thalamus, and
sensorimotor areas, including the SMA, MCC, paracentral lobule were
involved with BOLD activation related to high temporal variation of the
scalp network. The high variation of the scalp network may be partly
due to the epileptic discharges, as we found about 47% IED onsets were
included with the high network variation (Supplemental Material, Fig.
S5) in this study. Moreover, comparing to a healthy group of 17 sub-
jects, significant larger network variation (two-sample t-test,
p= 0.0021), and increased activations in MCC, cerebellum, SMA in
JME group were found (Supplementary material, Tables S1, S2).
Therefore, we thought the high scalp network variation may be asso-
ciated with the neural activity synchronization and desynchronization
resulting from epileptic activity as well as the altered functional orga-
nization in JME. Compared with the results from the traditional IED-
informed fMRI analysis, the complementary network-informed BOLD
responses enabled a further understanding of the epileptic brain at the
level of dynamic functional organization. Another interesting finding
was the fMRI deactivations in bilateral frontal, parietal, and occipital
areas both in JME and healthy group, which were correlated with
medium EEG-network variation. The dominant deactivation may be
attributed to the rhythm oscillation. As previous studies have reported,
low frequency is negatively correlated with BOLD changes (Laufs et al.,
2006; Scheeringa et al., 2008; Scheeringa et al., 2011), which benefits
the normal network organization (Gotman et al., 2005). In the current
study, a broad low frequency band was selected, which may contribute
to the negative BOLD response. Therefore, the BOLD deactivation may
be a basic state of the human brain, which originated from rhythmic
oscillations and thus served for network reorganization and switching,
while in JME, the basic state was altered (Supplemental Material, Ta-
bles S3, S4).

Fig. 2. The BOLD response correlated with high EEG-network variation.

Table 2
Regions with significant BOLD response correlated with high EEG-network
variation in JME (P < 0.001).

MNI coordinates

Brain regions x y z Peak T-value Cluster voxels

Cingulum_Mid_R −1 18 33 7.2692 82
Cingulum_Mid_L −3 15 33 8.4792 74
Supp_Motor_Area_L -1 5 72 5.3883. 38
Supp_Motor_Area_R 1 3 71 5.2105 35
Paracentral_Lobule_L -3 −21 78 5.8027 31
Paracentral_Lobule_R 1 −42 70 5.2676 23
Precuneus_R 9 −48 78 6.0834 21
Precuneus_L −2 −78 47 5.1229 21
Thalamus_L −14 −7 4 5.0042 35
Caudate_L −10 3 12 4.1016 18
Insula_R 35 −12 4 5.002 18
Insula_L −33 −18 9 5.6433 18
Temporal_Inf_R 57 −60 −18 5.3501 34
Cerebelum_4_5_L −16 −45 −16 4.6384 71
Vermis_6 3 −67 −9 7.0837 67
Vermis_4_5 3 57 −9 8.8713 72
Cerebelum_4_5_R 12 −50 −16 5.585 47
Cerebelum_8_R 21 −62 −45 4.9414 55
Cerebelum_6_L −9 −64 −15 4.3198 43
Cerebelum_6_R 8 −64 −14 4.9946 36
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The modulatory functional coupling associated with network orga-
nization of scalp EEG provides new insight into understanding the
cortical and subcortical circuits in epileptic brain. In this study, the
modulatory interaction analysis identified the functional couplings
among four important epileptic central districts, including the tha-
lamus, frontal regions, sensorimotor-related regions, and cerebellum.
Predominantly negative modulation effects may be related to the net-
work inhibition hypothesis of subcortical structures in human epilepsy;
that is, generalized discharges disrupt function in thalamus and cere-
bellum, then leading to widespread inhibition to the other cortical re-
gions (Charlton et al., 1977; Norden and Blumenfeld, 2002). Interest-
ingly, correlations were found between the modulatory effect of
thalamus, cerebellum and clinical features, which points to the crucial
role for subcortical structures in epilepsy pathology (Norden and
Blumenfeld, 2002). Meanwhile, the deactivated frontal areas may act as
the relay in the epilepsy circuit providing the excitatory drive to cata-
lyze the disruption of the motor and premotor areas, resulting in the
myoclonic seizures in JME, while the cerebellum output may be

involved in controlling the generalized spike-wave discharge occur-
rences by regulating the GABA (Kros et al., 2015). The directional cir-
cuits integrated the mainstream ideas concerned in JME, and further,
the key nodes in these circuits with clinical features were linked. Cor-
relations between the negative modulatory effects of the high-order
association cortex (the ACC, precuneus) and clinical features may be
associated with the impaired consciousness and executive functioning
in JME (Blumenfeld, 2012), while the weakened modulation in the case
of earlier onset age may be related to neural plasticity during epileptic
brain development. Moreover, the medial and superior frontal gyrus
demonstrated more prominent modulation effect accompanied with
longer epilepsy duration as well as increased seizure frequency in epi-
lepsy patients. Here, epilepsy duration and seizure frequency in patients
have significant positive correlation (R=0.524, P < 0.05), re-
presenting two interdependent features of epilepsy. As the key area of
the cognitive system, frontal gyrus was consistently involved in JME
patients with functional and structural abnormality (Meschaks et al.,
2005; Cao et al., 2013), and the interaction between cognitive system
and motor system facilitates the seizures (Vollmar et al., 2011). The
functional couplings between frontal and other regions in this study
may be important biomarker of severity of the disease. Additionally, the
positive modulation within the frontal areas represented increased
functional coupling within one module, suggesting hyper-connectivity
in frontal areas in JME. The positive modulation effect from the frontal
areas to the cerebellum, may be associated with the feedback loop.
Therefore, we inferred that the epileptic modulation circuit may com-
mence within the thalamus and cerebellum, and then through in-
hibitory outputs to the frontal and frontoparietal area, consequently
leading to the dysfunction of cortex.

Here we investigated the correlation between BOLD activity and
EEG functional connectivity representing dynamic brain states. This
approach could be a supplement to the traditional EEG-fMRI applica-
tions in epilepsy, which mostly depends on the onsets of generalized
spike-wave discharges identified by neurologists. Moreover, the mod-
ulatory interaction analysis gave new insight to explore the functional
circuits in epilepsy. We envisage in the future these methods may be
incorporated with source imaging based on high-density EEG to infer on
the focus and directed propagation of the epileptic activity. Moreover,

Fig. 3. The BOLD response correlated with medium EEG-network variation.

Table 3
Regions with significant BOLD response correlated with medium EEG-network
variation in JME (P < 0.001).

MNI coordinates

AAL regions x y z Peak T-value Cluster voxels

Frontal_Sup_Medial_L −4 52 5 −6.4968 69
Frontal_Sup_Medial_R 12 51 15 −6.9962 64
Cingulum_Ant_R 5 52 13 −6.867 51
Cingulum_Ant_L −4 52 4 −6.3922 31
Frontal_Med_Orb_L −11 64 −5 −5.729 42
Frontal_Med_Orb_R 4 62 −2 −4.8874 37
Frontal_Sup_L −12 58 22 −4.68 42
Frontal_Sup_R 18 33 39 −5.6635 38
Postcentral_L −60 −15 24 −7.4313 46
Parietal_Inf_R 40 −58 48 −5.633 41
Angular_R 36 −60 48 −5.8183 32
Temporal_Mid_R 63 0 21 −6.4505 35
Occipital_Inf_L −41 −80 −6 −4.9689 46
Lingual_L −9 −78 −6 −5.4952 46
Fusiform_L −21 −80 −8 −5.2044 32
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this kind of multivariate, time-varying, and frequency-resolved mea-
surement may constitute a refinement of the brain dynamics before and
after discharge events, and provide new perspective for different sei-
zure types of the heterogeneous disorder. In addition, network varia-
tion-based epileptic activity identification may weaken its sensitivity to
MRI artifacts, which disturbs the simultaneously acquired EEG signals,
as the gradient and BCG artifacts are generally considered relatively
stable during the consecutive occurrences.

However, there are several methodological issues and limitations in
this study. The first limitation is the lack of a direct relationship be-
tween the scalp network variation and epileptogenicity. The scalp time-
varying network is an indirect measurement and the consequence may
be influenced by the epileptic discharges and other disturbance, such as
head motion. To verify the discharge detection ability of the network
variation, we compared the IEDs onsets and the time points of high
network variation for each subject, and about 47% IEDs onsets were
involved. In addition, although a lot of measures were taken to avoid
movement influence, correlations were still found in 4 subjects between
head movement signal and network variation. However, correlations
between head movement and IEDs onsets were also found in these

subjects. Therefore, removing the movement artifact completely from
the scalp dynamic network is hard, especially for epilepsy patients with
IEDs during MRI scanning. In the future studies, additional correction
using a motion-tracking system may provide promising results for re-
moval of the artifacts (Qin et al., 2009; LeVan et al., 2013). The second
possible concern is the selection of high and medium network variation
to predict BOLD responses. In addition to the standard deviation and
mean values chosen as different levels of the network variation, we also
constructed the time series by selecting different proportions of the
network variation (from 10% to 80%). Similar results were found with
the proportion of top 10%, 20%, and 30% network variation as the high
network variation, and the BOLD responses tended to be negative with
increasing proportions. In addition, we applied PPI analysis to detect
the modulation effect of the dynamic scalp network between EEG
electrodes on the BOLD connectivity. This is the first attempt in the
application of modulation interaction from one modality to another
modality. Finally, considering that most epileptic discharge power oc-
curred below 20 Hz and the narrow frequency bands may vary across
patients, a broad lower frequency band 1-20 Hz rather than the en-
dogenous EEG frequency bands (i.e. theta, alpha, beta, gamma) was

Fig. 4. Modulatory interaction for EEG-network variation and BOLD functional coupling. (A) Negative modulation effects exist from thalamus to frontal areas, from
cerebellum to frontal and sensorimotor areas, as well as from frontal to sensorimotor areas. (B) Positive modulation effects exist within frontal areas, and from frontal
to cerebellum. (C) Summarization of EEG-dependent functional coupling resulting from the modulatory interaction among four important epileptic central districts.
Abbreviations of the regions according to AAL atlas: Front_S: Frontal_Sup; Front_M: Frontal_Med_Orb; ACC: anterior cingulate cortex; Front_Sm: Frontal_Sup_Medial;
SMA: Supplementary motor area; Parac_l: Paracentral_lobule.
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extracted during time-varying EEG network construction. Additional
analyses in future work using narrow patient-specific frequency bands
would be interesting to explore epileptic activity.

5. Conclusion

In conclusion, the study provided a novel approach to predict fMRI
activity based on the inherent dynamic network characteristics of scalp
EEG, and BOLD responses correlated with different level of the network
variation were found. Furthermore, the functional couplings among the
thalamus, frontal regions, cerebellum, and sensorimotor-related regions
were involved associating with dynamic EEG organization, which may
be an important representation in epilepsy generation and propagation.
This study extended the traditional EEG-fMRI fusion in epilepsy, and
may provide new insight into the understanding of the pathophysio-
logical mechanism and intervene target for JME.
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