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Abstract

Background. Neuroimaging characteristics have demonstrated disrupted functional organiza-
tion in schizophrenia (SZ), involving large-scale networks within grey matter (GM). However,
previous studies have ignored the role of white matter (WM) in supporting brain function.
Methods. Using resting-state functional MRI and graph theoretical approaches, we investi-
gated global topological disruptions of large-scale WM and GM networks in 93 SZ patients
and 122 controls. Six global properties [clustering coefficient (Cp), shortest path length
(Lp), local efficiency (Eloc), small-worldness (σ), hierarchy (β) and synchronization (S) and
three nodal metrics [nodal degree (Knodal), nodal efficiency (Enodal) and nodal betweenness
(Bnodal)] were utilized to quantify the topological organization in both WM and GM
networks.
Results. At the network level, both WM and GM networks exhibited reductions in Eloc, Cp

and S in SZ. The SZ group showed reduced σ and β only for the WM network.
Furthermore, the Cp, Eloc and S of the WM network were negatively correlated with negative
symptoms in SZ. At the nodal level, the SZ showed nodal disturbances in the corpus callosum,
optic radiation, posterior corona radiata and tempo-occipital WM tracts. For GM, the SZ
manifested increased nodal centralities in frontoparietal regions and decreased nodal central-
ities in temporal regions.
Conclusions. These findings provide the first evidence for abnormal global topological prop-
erties in SZ from the perspective of a substantial whole brain, including GM and WM. Nodal
centralities enhance GM areas, along with a reduction in adjacent WM, suggest that WM
functional alterations may be compensated for adjacent GM impairments in SZ.

Introduction

Schizophrenia (Sz) is a severe psychiatric disorder that involves ineffective or inefficient com-
munication between brain regions from neuroimaging evidence (Dong, Wang, Chang, Luo, &
Yao, 2018). Although the pathological mechanism of SZ is unclear, the results of accumulated
evidence have suggested widespread local abnormalities in several brain regions, including the
insula (Moran et al., 2013), hippocampus (Ho et al., 2017), thalamus (Pergola, Selvaggi, Trizio,
Bertolino, & Blasi, 2015; Wang et al., 2020), striatum (Duan et al., 2015; McCutcheon,
Abi-Dargham, & Howes, 2019), frontal lobes (Chen et al., 2017a), temporal regions (Jiang
et al., 2018) and cerebellum (Dong et al., 2020). Previous studies have also reported that
some neural circuits or pathways, such as the prefrontal-thalamic-cerebellar pathway (Gong
et al., 2019; Guo et al., 2015; Jiang et al., 2019a) and the triple network circuit of the salience,
default mode and central executive networks (Dong et al., 2018; Menon, 2011), play important
roles in the pathophysiology of SZ. These findings suggest that this disease is associated with
global topological disruptions of large-scale brain networks in patients with SZ.

In general, large-scale brain networks can be summarized into structural networks
(anatomical connectivity) and functional networks (temporal synchronization) (Bullmore &
Sporns, 2009). Using diffusion tensor imaging (DTI), anatomical connections (i.e. fibre tracts)
between distinct brain regions can be estimated to build a structural network, which uncovers
the structural architecture in brain white matter (WM). However, it fails to provide temporal
dynamic information, which may carry functional significance in WM. Based on the blood
oxygen level-dependent (BOLD)-functional magnetic resonance imaging (fMRI), the
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functional network is usually calculated by temporal correlations
between BOLD-fMRI signals among distributed brain regions,
which is thought to reflect neural activity or relevant functions
that occur in grey matter (GM). Investigations on the WM struc-
tural network or GM functional network have ignored the pres-
ence of potential functional information in WM, although they
provide precise details concerning brain network architecture.

In recent years, increasingly more works have indicated that
brain functional activation in WM can be detected by using
BOLD-fMRI. For instance, specific regions of the corpus callosum
were shown to be functionally activated in multiple tasks, such as
interhemispheric transfer tasks (Courtemanche, Sparrey, Song,
MacKay, & D’Arcy, 2018; Gawryluk, Mazerolle, Beyea, &
D’Arcy, 2014a). Low-frequency BOLD fluctuations in specific
WM tracts can be modulated by different behaviour tasks
(Huang et al., 2018; Marussich, Lu, Wen, & Liu, 2017; Wu
et al., 2017). In particular, recent work demonstrated that com-
pared with cortical GM, WM tracts exhibited reduced magni-
tudes, delayed onsets and prolonged initial dips in
haemodynamic response function (Li, Newton, Anderson, Ding,
& Gore, 2019b). More than task-state fMRI, resting-state
BOLD-fMRI signals within WM showed an intrinsic functional
organization rather than random noise, similar to GM functional
networks (Jiang et al., 2019b; Peer, Nitzan, Bick, Levin, & Arzyt,
2017). Moreover, specific WM tracts, identified from BOLD-fMRI
signals, showed a similar pattern with the fibre bundles from DTI
tracking in the human brain (Marussich et al., 2017; Peer et al.,
2017). Furthermore, histological evidence reconfirmed the simi-
larities between functional connectivity and anatomical connect-
ivity in non-human primate brains (Wu et al., 2019). In
addition to healthy brains, WM functional connectivity has
been reported to be altered in abnormal brains, including in indi-
viduals with mild cognitive impairment, epilepsy, schizophrenia,
Alzheimer’s disease and Parkinson’s disease (Chen et al., 2017b;
Ji et al., 2019; Jiang et al., 2019c; Makedonov, Chen, Masellis,
MacIntosh, & Alzheimer’s Disease Neuroimaging, 2016). This
evidence from multi-state (tasks and resting-state) and multi-
modal MRI (BOLD-fMRI and DTI) findings in multiple brain
types (healthy, abnormal and non-human brains) converges to
support WM functional information revealed by BOLD-fMRI.

While previous studies investigated functional interactions
among specific WM tracts, we wanted to further examine the fea-
tures of the functional connectome of large-scale networks in
WM, which could reflect some differences in brain network archi-
tectures or mechanisms. Graph theoretical analysis is an effective
approach to characterize topological features of brain networks
(Bullmore & Sporns, 2009). Findings revealed after applying
graph theory to GM functional networks have suggested that
GM functional networks are organized to allow optimized effi-
ciency, such as that observed in small-worldness (Bullmore &
Sporns, 2009). Combined with graph-theoretical analyses, a
large-scale WM functional network has promised a new way to
characterize the topological properties of functional networks in
WM and has improved our understanding of WM dysfunctions
that underlie the clinical symptoms of SZ. In addition, while pre-
vious studies used resting-state fMRI and graph theory
approaches to investigate the topological organization of the func-
tional connectome in patients with SZ (Yu et al., 2017), they
ignored WM functional information that was potentially avail-
able. Here, to extend our understanding of schizophrenia from
the topological organization of brain WM network architectures,
we investigated the resting-state large-scale WM functional

network in a large cohort of patients with SZ (n = 97) and healthy
subjects (n = 126). Graph theoretical analysis was utilized to
quantify the topological organization in the WM functional net-
work. By comparing the differences in topological properties
between patients and controls, we explored the disorganisation
of the WM functional connectome within schizophrenia
pathophysiology.

Methods

Subjects and MRI acquisition

In total, 97 patients with SZ (29 females; age: 41.0 ± 11.5 years)
and 126 healthy subjects (HC) (42 females; age: 38.0 ± 14.9
years) who matched in age, gender and education were recruited
from the Clinical Hospital of Chengdu Brain Science Institute
(CHCBSI) of China. All of the SZ patients were diagnosed accord-
ing to the Diagnostic and Statistical Manual of Mental Disorder,
Fourth Edition (DSM-IV). Of the 97 SZ patients, two were first-
episode patients and 95 were chronic patients. All patients
received antipsychotics medication [Chlorpromazine (CPZ)
equivalents = 324.5 ± 157.1 mg/day]. Clinical symptoms were
evaluated by the Positive and Negative Syndrome Scale
(PANSS). Participants with a history of major medical or neuro-
logical abnormalities, substance abuse, or other contraindications
to MRI were excluded from the current study. To further elimin-
ate the potential familial effects, we also excluded the healthy sub-
jects whose first- and second-degree relatives have a history with
mental disorders. Written informed consent was signed from each
participant before the MRI scanning. The Ethics Committee of
CHCBSI approved this current study.

High-resolution T1-weighted images, resting-state fMRI and
diffusion-weighted images were acquired in a 3.0 Tesla GE MRI
scanner (DISCOVERY MR 750, USA) at the Centre for
Information in Medicine of University of Electronic Science and
Technology of China. Details of scanning parameters were
obtained from our previous studies (Jiang et al., 2019b).

Diffusion data processing

Diffusion images were analysed using the tract-based spatial sta-
tistics (TBSS) method in the FSL software (https://www.fmrib.
ox.ac.uk/fsl). First, eddy current distortions and head motion cor-
rection, as well as brain extraction, were performed. For each sub-
ject, the fractional anisotropy (FA) map was estimated by fitting
the diffusion tensor model. All subjects’ FA maps were non-
linearly transformed into the MNI template. Subsequently, the
averaged FA map across all subjects was thinned to create a FA
skeleton image, which represented the major WM tracts common
to the group. Finally, individual FA image was projected into the
FA skeleton.

Functional image pre-processing

Functional images processing was performed using the
SPM12 (http://www.fil.ion.ucl.ac.uk/spm/software/spm12), DPABI
(http://www.restfmri.net) and FSL software. Image preprocessing
was similar to our previous studies (Jiang et al., 2019b). The first
five volumeswere removed. Slice timing correction and realignment
was performed. Subjects with maximummotion >2 mm or 2° were
excluded. The mean frame displacement (FD) was also calculated
for each subject. Subsequently, a linear trend was removed for the
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signal drift correction. Nuisance signals, including the
24-parameter head motion, the mean CSF signal and scrubbing
time points (FD >0.5 mm), were further regressed out by a multiple
linear model. Then, the band-pass filtering (0.01–0.10 Hz) was per-
formed to reduce potential physiological signals. Spatial smoothing
(FWHM= 4mm) was performed separately within the white mat-
ter or grey matter masks, which were obtained from the individual
T1 images segmentation. Finally, functional images were normal-
ized onto the MNI space and resampled into 3 mm3. It’s important
to be clear that theWMnetwork constructionwas performed on the
unsmoothed pre-normalized functional data. In addition, data
quality control pipeline is also described in the online
Supplementary Material.

Large-scale functional network in GM and WM

According to the Harvard-Oxford atlas (Desikan et al., 2006), the
cortical grey matter was divided into 96 regions of interest (ROIs).
The averaged time series of each ROI was extracted from the nor-
malized functional images for each subject. Then, Pearson’s cor-
relation coefficient was calculated between any two paired ROIs
and further transformed to Fisher’s z score. This resulted in a
96 × 96 correlation matrix for the GM of each participant.

For the WM, the JHU WM atlas was used to yield 48 tracts (21
tracts in each hemisphere and six commissure tracts). For each
subject, the pre-normalization unsmoothed functional images
were filtered (0.01–0.15 Hz) (Jiang et al., 2019b; Peer et al.,
2017), then registered to the corresponding diffusion b0 image
and then nonlinearly projected onto the FA skeleton using the
transformation function from the TBSS analysis. This resulted
in a series of skeletonized functional images. The averaged time
series of each WM tract was extracted from the skeletonized func-
tional images. A 48 × 48 correlation matrix for the WM was also
produced using Pearson’s correlation between each paired WM
tract for each subject.

Network properties

We used GRETNA (http://www.nitrc.org/projects/gretna/) to ana-
lyse the network properties using graph theory.

First, each correlation matrix was further transformed into an
undirected binarized matrix using a sparsity threshold. The spars-
ity of a network was computed as the ratio of the existing number
of edges divided by the maximum possible number of edges for a
given network. According to previous research (Yu et al., 2017),
we used a wide range of sparsity thresholds to binarize the correl-
ation matrix. The range of the sparsity threshold was defined as
follows: (1) the averaged degree (the degree of a node is the num-
ber of connections linked to the node) over all nodes of each
binarized network was larger than 2 × log(N ), where N is the
number of nodes; and (2) the small-worldness of the binarized
networks was larger than 1.1 for 90% of the subjects. A range
of sparsity thresholds (WM network: 0.19–0.52, GM functional
network: 0.11–0.46) could be preselected. To achieve a unified
standard, we finally chose an overlapping range (0.19–0.46, with
a step of 0.01) between the WM and GM networks.

Second, to characterize the topological properties of WM and
GM networks, six global network parameters, including the clus-
tering coefficient (Cp), shortest path length (Lp), local efficiency
(Eloc), small-worldness metric (σ), hierarchy (β) and synchroniza-
tion (S ), were calculated for the WM and GM network at each
sparsity threshold. According to previous studies (Barahona &

Pecora, 2002), network synchronization is quantified by the
eigenratio of the Laplacian matrix (coupling matrix) of the net-
work. The lower eigenratio represents a more easily synchronized
network. In addition, three nodal metrics, including the nodal
degree (Knodal), nodal efficiency (Enodal) and nodal betweenness
(Bnodal), were utilized for regional topological measures. The
rationale for each graphic parameter is listed in the online
Supplementary Materials. The uses and interpretations of these
complex network properties have been described in previous
research (Chen, Hu, Chen, & Feng, 2019; Rubinov & Sporns,
2010).

Third, to validate the nonrandomness of topological proper-
ties, WM and GM networks were compared to random networks.
In line with previous studies, the generation of random networks
was accomplished using a Markov chain algorithm, which could
yield the same number of nodes, edges and degree of distribution
as the matched actual brain networks. Furthermore, the z-score of
each network parameter was calculated by subtracting the average
of each parameter across random networks and then dividing it
by the standard deviation of random networks.

Finally, the area under the curve (AUC) for each network par-
ameter was calculated to yield a summarized scalar for the topo-
logical characterization of brain networks independent of a single
threshold selection.

Statistical analysis

To investigate the differences of network topological properties
between the SZ and HC groups, nonparametric permutation
tests were performed. In brief, for each network parameter, we
calculated the real difference value between the two groups.
Then, we randomly assigned the group labels across all subjects
and recalculated the difference value between the two randomized
groups. This randomization procedure was repeated 100 000 times
and thus yielded a distribution of the null hypothesis. According
to the location of the real difference value within the distribution
of the null hypothesis, a p value was assigned to the real differ-
ence. Statistical significance was assessed by the 95th percentiles
of each distribution of the null hypothesis, corresponding to a
type I error probability of 0.05 for a two-tailed test.

To further examine the associations between the altered nodal
metrics (Knodal, Enodal and Bnodal) and FA values, the WM tracts
with altered nodal metrics were extracted and then Spearman
rank correlation analysis was used to evaluate the correlation
between the nodal metrics and FA for altered WM tracts in
each group. Non-parametric permutation tests were performed
to test the group interaction that whether the difference in corre-
lations between SZ and HC groups is significant (online
Supplementary Materials).

For the abnormal network metrics in the SZ group, we further
explored the relationships between these metrics and PANSS
symptom scores as well as illness duration by using Spearman
rank correlation analysis.

Results

Demographic and clinical characteristics

Four SZ patients and four HC were excluded because they failed
to accomplish all of T1, resting-state fMRI and DTI data acquisi-
tions, or their head-motion beyond 2 mm or 2°. The remaining
93 patients with SZ (28 females; age: 40.01 ± 11.49 years) and
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122 HC (41 females; age: 37.95 ± 14.74 years) were matched in age
( p = 0.267), gender ( p = 0.586) and education ( p = 0.299).
Demographic and clinical characteristics of these subjects is
provided in Table 1.

Global topological properties of functional brain networks
in schizophrenia

For both the WM and GM networks, the small-worldness scalars
in the two groups were larger than 1 at a sparsity threshold range
of 0.19–0.46; i.e. the functional networks exhibited higher
clustering coefficients, such as those associated with regular lat-
tices, yet small shortest path lengths, such as those associated
with random graphs. This indicated that both the WM and GM
functional connectomes exhibited typical small-worldness
topology.

Between-group comparisons on the AUC of network
properties showed that compared with the HC group, patients
with SZ showed significantly lower values in Eloc ( p = 0.021), Lp
( p = 0.019), Cp ( p = 0.031) and synchronization ( p = 0.003) for
the GM functional network (Fig. 1a). No significant differences
were observed in small-worldness ( p = 0.248) and hierarchy
( p = 0.424).

For the WM functional connectome, the SZ group exhibited
significant reductions in Eloc ( p = 0.028), Cp ( p = 0.047), small-
worldness ( p = 0.025), hierarchy ( p = 0.009) and synchronization
( p = 0.042) compared with the HC group (Fig. 1b). There was no
significant difference in Lp ( p = 0.286).

These group differences were further validated through an
additional stability analysis (online Supplementary Material).

Regional topological organization in schizophrenia

We further identified the cortical GM regions or WM tracts exhi-
biting significant group differences in nodal metrics (Knodal, Enodal
and Bnodal) in patients with SZ. Knodal and Enodal values showed a

similar alteration pattern in the patient group (Fig. 2). No signifi-
cant group difference was identified for the Bnodal values.

For cortical GM, regions showing significant group differences
in Knodal or Enodal values were localized primarily in the frontal,
parietal and temporal lobes (Fig. 2a and Table 2). Specifically,
in comparison with the HC group, the SZ group showed increased
Knodal or Enodal values in the bilateral frontal lobes (superior
frontal gyrus and middle frontal gyrus), bilateral parietal lobes
(angular gyrus, posterior supramarginal gyrus and precuneus cor-
tex), bilateral occipital lobes (superior lateral occipital cortex) and
limbic regions (posterior cingulate gyrus) ( p < 0.05, Bonferroni
corrected) (Fig. 2a and Table 2). Additionally, lower Knodal or
Enodal values were found in most of the temporal lobes (temporal
pole, superior temporal gyrus, middle temporal gyrus, parahippo-
campal gyrus, temporal fusiform cortex, planum polare, Heschl’s
gyrus and planum temporale), subcallosal cortex, parietal opercu-
lum cortex and left central opercular cortex ( p < 0.05, Bonferroni
corrected) (Fig. 2a and Table 2).

For the WM tracts, the patients with SZ exhibited increased
nodal topology (Knodal or Enodal) in the following brain regions:
the body of the corpus callosum, left medial lemniscus, left super-
ior cerebellar peduncle, right posterior limb of internal capsule
and right external capsule ( p < 0.05, Bonferroni corrected)
(Fig. 2b and Table 3). Regions showing reduced nodal topology
were found in the splenium of the corpus callosum, left anterior
corona radiata, bilateral posterior corona radiata, bilateral optic
radiation, left sagittal stratum and bilateral tapetum ( p < 0.05,
Bonferroni corrected) (Fig. 2b and Table 3). These group
differences were further validated through an additional stability
analysis (online Supplementary Material).

We also found correlations between the Enodal and FA values
in the right posterior limb of the internal capsule (r =−0.234,
p = 0.010, FDR corrected), left (r = −0.180, p = 0.048, uncor-
rected) and right optic radiation (r = −0.199, p = 0.029, uncor-
rected) in the HC group (Fig. 2c). However, these correlations
were not significant in the SZ group (all p > 0.05). Furthermore,
these correlations between the Enodal and FA values in the right
posterior limb of the internal capsule ( p = 0.001, Bonferroni
corrected) and right optic radiation ( p = 0.008, Bonferroni
corrected) showed significant differences between two groups
using nonparametric permutation tests.

Relationships between network measures and clinical
variables

After multiple comparisons correction by the false discovery rate
( p < 0.05, FDR corrected), the lower Cp (r =−0.275, p = 0.010), Lp
(r =−0.260, p = 0.016) and Eloc (r = −0.288, p = 0.007) of the GM
network showed significantly negative correlations with illness
duration in the SZ group (Fig. 3a). In addition, the lower Cp

(r =−0.294, p = 0.019), Eloc (r =−0.301, p = 0.017) and synchron-
ization (r = −0.311, p = 0.013) of the GM network exhibited
significant negative correlations with the PANSS negative scores
(Fig. 3b). For WM, there was no significant correlation between
network properties and clinical variables after FDR multiple
comparisons correction.

Discussion

Using The graph theory approach, this study presented a novel
network perspective for investigating how the resting-state WM
and GM function altered for SZ patients in a comprehensive set

Table 1. Demographic and clinical characteristics of subjects

Characteristic
SZ

Mean (S.D.)
HC

Mean (S.D.)
p

value

Numbera 93 122

Gender (M/F) 28/65 41/81 0.586b

Age (years) 40.01 (11.49) 37.95 (14.74) 0.267c

Education (years) 11.47 (2.51) 11.07 (3.22) 0.299c

Illness duration (years) 15.22 (10.27) – –

Chlopromazine equivalents
(mg/day)

337.96 (145.26) – –

PANSS score

Total 62.21 (13.26) – –

Positive 13.32 (5.89) – –

Negative 20.70 (6.06) – –

General 28.19 (5.86) – –

aRepresents that four SZ patients and four HC were excluded from original database (97 SZ
and 126 HC) because they failed to accomplish all of the T1, resting-state fMRI and DTI data
acquisitions, or their head-motion beyond 2mm or 2°.
bp value was obtained by the χ2 test..
cp value was obtained using the two-sample t test.
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at both global and nodal levels. At the global level, both the WM
and GM networks exhibited reductions in the local efficiency,
cluster coefficient and synchronization in the SZ group relative
to the values observed for the controls. In addition, patients
with SZ showed reduced small-worldness and hierarchy only for
the WM network. Furthermore, the cluster coefficient, local effi-
ciency and synchronization of the WM network were significantly
negatively correlated with the PANSS negative score in patients
with SZ. At the nodal level, the SZ group showed specific WM
nodal disturbances in the corpus callosum, optic radiation, pos-
terior corona radiata and tempo-occipital WM tracts. Regarding
GM, the SZ group manifested increased nodal topology in fronto-
parietal regions and decreased nodal topology in temporal
regions. These findings advance our understanding of disrupted
WM function underlying the pathological mechanism of SZ
from a functional topology perspective.

Abnormalities in functional segregation (Eloc and Cp) and
functional integration (Lp) are key features of brain network dis-
organization in SZ. Eloc represents the efficiency of information
exchange within a local subnetwork or among adjacent regions,
while Cp measures the degree of nodes tending to cluster together
(Rubinov & Sporns, 2010). This study observed that both GM and
WM functional networks showed reduced Eloc and Cp in SZ,
which was compatible with prior studies reporting lower local
information transfer in SZ (Fornito, Zalesky, Pantelis, &
Bullmore, 2012). These findings further supported that decreased
functional segregation might be a common feature of brain net-
work disorganization in SZ, regardless of GM and WM.
Reduced efficiency in local communication (i.e. functional segre-
gation) of brain networks may arise from neurodevelopment
impairments, which were demonstrated not only in cortical GM
(including excessive synaptic elimination) (Sellgren et al., 2019),

but also by abnormal WM neurobiology (including impaired
WM integrity) (Kochunov & Hong, 2014) in SZ. As one of the
metrics in functional integration, Lp measures the shortest dis-
tance from one node to other nodes in a network (Rubinov &
Sporns, 2010). The lower Lp reveals enhanced functional integra-
tion for information transfer in the brain network. Consistent
with previous studies (Yu et al., 2017), patients with SZ also
exhibited increased functional integration in the large-scale GM
functional network. It is thought that the enhanced functional
integration in SZ indicates greater resilience to focal neural dam-
age in GM (Lo et al., 2015; Lynall et al., 2010). In neuroimaging
studies, focal damage could be referred to as ‘lesions’ of GM and
WM, and included observations such as reduced GM volume,
thinner cortical thickness or impaired myelination measured by
diffusion MRI. Brain network topological resilience has been
assumed to protect the integrity of the network from pathological
attack in SZ (Lo et al., 2015). However, in the current study,
greater functional integration in SZ was only observed in GM,
not in the WM network, which indicated that WM did not pre-
sent greater resilience to focal damage. We hypothesized that
within WM, abnormal functional information from focal damage
is more likely to spread to other WM areas along the fibre tracts.
Furthermore, the present study found negative correlations
between the Eloc, Cp and PANSS negative scores, indicating that
the brain topological network was associated with the severity
of illness. This result implied that the brain topological network
may predict SZ clinical symptoms. These brain network features
were also correlated with illness duration, which provided evi-
dence that progressive abnormalities of the brain topological net-
work occurred in SZ.

Synchronization plays a crucial role in precise information
processing of the brain (Fries, 2009). Accumulated evidence

Fig. 1. Group differences in the topological properties of
functional (a) greymatter and (b) whitematter networks
between the schizophrenia patients and healthy con-
trols. In the grey matter network, the area under curve
of local efficiency ( p = 0.021), shortest path length
( p = 0.019), cluster coefficient ( p = 0.031) and synchron-
ization ( p = 0.003) were significantly lower in the schizo-
phrenia group compared to the healthy control group
(according to the nonparametric permutation test). No
significant differenceswere observed in small worldness
( p = 0.248) and the hierarchy ( p = 0.424) between the
two groups. In the white matter network, the area
under curve of local efficiency ( p = 0.028), cluster coeffi-
cient ( p = 0.047), small worldness ( p = 0.025), hierarchy
( p = 0.009) and synchronization ( p = 0.042) were signifi-
cantly lower in the schizophrenia (SZ) group compared
to the healthy control (HC) group (according to the non-
parametric permutation test). No significant differences
were identified in the shortest path length ( p = 0.286)
between the two groups. Note: GM, grey matter; WM,
white matter; SZ, schizophrenia; HC, healthy controls;
AUC, area under curve.
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from EEG, MEG and fMRI studies has suggested that SZ is related
to impaired neural synchrony (Ford, Krystal, & Mathalon, 2007;
Uhlhaas & Singer, 2010). These synchrony disruptions have
been also demonstrated to be associated with the core cognitive
impairments and symptom severity, suggesting abnormal neuro-
biological processes in SZ (Uhlhaas, Haenschel, Nikolic, &
Singer, 2008). However, most studies evaluated brain synchron-
ization using the temporal correlation in local oscillations or the
functional connectivity of distributed brain regions, rather than
whole-brain network features. The eigenratio of the graph
Laplacian matrix is believed to be a frequently used indicator of
synchronizability in complex networks (Barahona & Pecora,
2002). Using this approach, the present study found that both
WM and GM functional networks of SZ patients exhibited exces-
sive synchronizability (i.e. decreased eigenratio). Moreover, the
altered synchronization of the WM network was associated with

more severe negative symptoms in SZ. These findings provide evi-
dence of disrupted brain network synchronizability in SZ.

In addition, abnormalities of hierarchy and small-worldness of
brain networks have been widely reported in substantial neuroi-
maging studies, although the alterations were not always consist-
ent in SZ. For example, Bassett et al. (2008) reported less
hierarchy in a sample of 203 people with SZ, while Lynall et al.
(2010) found enhanced hierarchy in patients with SZ compared
to that in healthy volunteers. Additionally, several studies found
that people with SZ showed reduced small-worldness (Liu et al.,
2008); however, some studies observed that there were no signifi-
cant differences in small-worldness between patients and controls
(Yu et al., 2017). In the current study, patients with SZ showed
reduced hierarchy and small-worldness only in the WM func-
tional network but not in the GM network. One possible explan-
ation is that the possible physiological base of BOLD signals in the

Fig. 2. Cortical grey matter regions (a) and white mat-
ter tracts (b) exhibiting abnormal nodal degree and
nodal efficiency in patients with schizophrenia by
using the nonparametric permutation test ( p < 0.05,
Bonferroni corrected). The colour bar indicates the
between-group difference values; the yellow regions
represent higher and blue regions represent lower
nodal degree or nodal efficiency in the patient group
compared with the control group. (c) Significant corre-
lations between the Enodal and the FA values in the
right posterior limb of internal capsule, left and right
optic radiation in the HC group. Note: GM, grey matter;
WM, white matter; SZ, schizophrenia; HC, healthy con-
trols; L, left; R, right; FA, fractional anisotropy.
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Table 2. Cortical grey matter regions that exhibited altered nodal topological organization in patients with schizophrenia v. healthy control subjects

Region

Nodal betweenness Nodal degree Nodal efficiency

Difference p values Difference p values Difference p values

Frontal regions

Left Superior frontal gyrus 1.18 0.3290 1.74 <0.0001* 0.010 0.0002*

Right Superior frontal gyrus 0.98 0.5314 1.94 <0.0001* 0.012 0.0001*

Left Middle frontal gyrus 2.66 0.0103 2.33 <0.0001* 0.014 <0.0001*

Right Middle frontal gyrus 1.92 0.0440 2.26 <0.0001* 0.014 <0.0001*

Left Subcallosal cortex 0.70 0.3287 −1.09 0.0039 −0.016 0.0002*

Right Subcallosal cortex 1.40 0.1907 −0.93 0.0181 −0.013 0.0004*

Temporal regions

Left Temporal pole −0.64 0.8224 −2.08 0.0005* −0.015 0.0004*

Right Temporal pole −0.56 0.8072 −2.15 <0.0001* −0.017 0.0001*

Left Superior temporal gyrus, anterior division −0.75 0.6333 −1.67 0.0002* −0.013 <0.0001*

Right Superior temporal gyrus, anterior division −0.09 0.9618 −2.03 <0.0001* −0.015 <0.0001*

Left Middle temporal gyrus, anterior division −1.78 0.1497 −1.27 0.0023 −0.012 0.0002*

Right Middle temporal gyrus, anterior division −2.74 0.0343 −1.48 0.0009 −0.014 <0.0001*

Left Parahippocampal gyrus, anterior division −2.02 0.0977 −1.72 0.0003* −0.017 0.0001*

Right Parahippocampal gyrus, anterior division −4.95 0.0016 −2.33 <0.0001* −0.019 <0.0001*

Right Parahippocampal gyrus, posterior division −2.49 0.0172 −1.36 0.0007 −0.015 0.0001*

Left Temporal fusiform cortex, anterior division −2.25 0.0226 −1.69 0.0001* −0.018 <0.0001*

Left Planum polare −0.97 0.3287 −1.78 <0.0001* −0.016 <0.0001*

Right Planum polare −0.91 0.2968 −1.84 <0.0001* −0.015 0.0001*

Left Heschls gyrus −2.13 0.0086 −1.90 <0.0001* −0.015 <0.0001*

Right Heschls gyrus −1.88 0.0406 −2.18 <0.0001* −0.017 <0.0001*

Left Planum temporale −1.22 0.3539 −1.17 0.0026 −0.009 0.0002*

Right Planum temporale −0.69 0.5211 −1.33 0.0005 −0.010 <0.0001*

Parietal regions

Left Angular gyrus 1.16 0.2526 1.46 <0.0001* 0.009 0.0001*

Right Angular gyrus 1.18 0.0965 1.89 <0.0001* 0.013 <0.0001*

Right Supramarginal gyrus, posterior division 0.95 0.3389 1.82 <0.0001* 0.011 <0.0001*

Left Precuneus cortex 0.92 0.3257 1.68 0.0001* 0.010 0.0001*

Left Parietal operculum cortex −1.53 0.1329 −1.36 0.0001* −0.010 <0.0001*

Right Parietal operculum cortex −0.93 0.3339 −1.21 0.0011 −0.009 0.0001*

Occipital regions

Left Lateral occipital cortex, superior division −0.72 0.6529 1.49 0.0002* 0.008 0.0003*

Right Lateral occipital cortex, superior division −0.24 0.8714 1.42 0.0005* 0.008 0.0012

Limbic regions

Left Cingulate gyrus, posterior division 2.24 0.0583 1.74 <0.0001* 0.011 0.0003*

Right Cingulate gyrus, posterior division 2.15 0.0103 2.05 <0.0001* 0.013 <0.0001*

Frontoparietal junction

Left Central opercular cortex −0.97 0.4044 −1.20 0.0013 −0.009 0.0003*

Note: * represents p < 0.05, Bonferroni correction.
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WM network is different from that in GM. In GM, postsynaptic
potentials give rise to BOLD signals, whereas the precise source of
BOLD signals in WM is complex. Previous studies put forward
two possible interpretations for WM BOLD signals:
spiking-related metabolic demands (Smith et al., 2002) and the
activity of astrocytes and NO-producing neurons (Barbaresi,
Fabri, & Mensa, 2014; Petzold & Murthy, 2011). This may suggest
that the WM network may carry specific functional information
that is different from the GM. Compared to the GM functional
network, the WM functional network showed lower small-
worldness, suggesting weaker segregation and a preference for
global integration (Li et al., 2019a). WM tracts exhibited reduced
magnitudes, delayed onsets and prolonged initial dips in haemo-
dynamic response function compared with cortical GM (Li et al.,
2019b). Additionally, WM functional networks were found to be
organized in three layers (superficial, middle and deep), suggest-
ing a possible hierarchical organization in information transfer
within WM (Peer et al., 2017). Furthermore, recent studies have
also found that the functional interactions among the three layers
of WM networks were disrupted in SZ (Fan et al., 2020). Taken
together, these findings were compatible with previous studies
reporting less hierarchy and less small-worldness in patients
with SZ, which might be expected to disrupt demands in higher-
order cognitive processing.

At the nodal level, abnormalities in nodal attributes of GM,
involving frontal, parietal, temporal, occipital and limbic regions,
were found in the SZ group. These GM regions have been widely
reported to show disrupted functional activations and structural
deficits in SZ patients (Jiang et al., 2018; Luo et al., 2019).
Moreover, abnormalities in these GM regions have also been
reported to be associated with impairments of high-order cogni-
tive function in SZ (Menon, 2011). In addition to the altered GM
regions, specific WM regions involving the corpus callosum, pos-
terior corona radiata, optic radiation and tempo-occipital WM
tracts exhibited aberrant nodal centralities in SZ patients.
Disrupted WM integrity in these regions has been previously

demonstrated in first-episode and chronic patients (Aydin,
Ucok, & Guler, 2008; Bora et al., 2011) and has been associated
with disease duration, symptom severity and cognitive functions
(Rosenberger et al., 2012; Whitford et al., 2010). As an interhemi-
spheric WM tract, the corpus callosum plays an essential role in
maintaining stable information transfer between hemispheres
(Shen et al., 2015). The abnormalities of the corpus callosum
may disrupt interhemispheric functional communication in SZ
(Agcaoglu et al., 2018; Wang et al., 2019). Several WM functional
studies have also shown altered low-frequency oscillation ampli-
tudes and functional connectivity in the corpus callosum for SZ
patients (Jiang et al., 2019b; Yang et al., 2019). Consistent with
these findings, the current results implied that the corpus callosum
may play a notable role in maintaining stable functional interac-
tions in the WM network, which was disrupted in SZ patients.
Furthermore, prior studies suggested that WM functional changes
may also be associated with GM function in SZ patients (Jiang
et al., 2019b; Yang et al., 2019). Interestingly, this study observed
abnormal functional increases in parietal and occipital GM areas
in SZ, and these GM regions were connected to the posterior cor-
ona radiata and splenium of the corpus callosum. However, the
posterior corona radiata and splenium of the corpus callosum
exhibited functional decreases in SZ patients, which suggested
that WM functional alterations may play a possible compensatory
role for the adjacent GM impairments in SZ. Although non-
invasive transcranial magnetic stimulation (TMS) has shown
potential as a treatment for SZ, its mechanism remains unclear.
Most TMS equipment can effectively act on the superficial cortical
region. It has been hypothesized that TMS effects could reach dis-
tant areas via WM fibre tracts; thus, investigating the WM func-
tional network may improve the present understanding of the
mechanism of TMS in SZ treatment. In general, these abnormal-
ities in WM extended the understanding of the pathophysiology
of SZ from the perspective of the WM functional network.

The relationship between structure and function in WM is still
inconclusive. Several studies have reported a significant

Table 3. White matter tracts that exhibited altered nodal topological organization in patients with schizophrenia v. healthy control subjects

Region

Nodal betweenness Nodal degree Nodal efficiency

Difference p values Difference p values Difference p values

Body of corpus callosum 2.32 0.0349 0.92 0.0001* 0.013 0.0001*

Splenium of corpus callosum 1.07 0.4783 −0.73 0.0002* −0.011 0.0001*

Left Medial lemniscus −0.20 0.7150 0.61 0.0007* 0.006 0.1704

Left Superior cerebellar peduncle 1.42 0.1607 0.72 0.0002* 0.012 0.0016

Right Posterior limb of internal capsule 2.62 0.0155 0.60 0.0002* 0.005 0.0280

Left Anterior corona radiata −0.84 0.3276 −0.55 0.0100 −0.011 0.0008*

Right Posterior corona radiata 1.02 0.0664 −0.56 0.0001* −0.011 0.0001*

Left Posterior corona radiata 0.52 0.4218 −0.65 0.0001* −0.011 0.0002*

Right Optic radiation 1.44 0.0148 −0.61 0.0001* −0.012 <0.0001*

Left Optic radiation 1.23 0.0637 −0.58 0.0003* −0.011 0.0001*

Left Sagittal stratum −2.10 0.0448 −0.72 0.0011 −0.012 0.0005*

Right External capsule 0.04 0.9656 0.58 0.0004* 0.006 0.0087

Right Tapetum −0.29 0.3052 −0.93 <0.0001* −0.020 <0.0001*

Left Tapetum −0.05 0.5965 −0.59 0.0004* −0.015 0.0001*

Note: * represents p < 0.05, Bonferroni correction.
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correlation between WM activation and the FA value (Ji, Liao,
Chen, Zhang, & Wang, 2017; Ji et al., 2019), whereas Yang’s
study showed no relationship of this structure and function in
WM (Yang et al., 2019). Additionally, previous studies have sug-
gested that the functional features detected by BOLD-fMRI can
be partly explained by structural properties (Ji et al., 2017; Wu
et al., 2019). We also found a negative correlation between the
Enodal and FA values at the posterior limb of the internal capsule
and optic radiation in HCs. FA reflects the axonal density and
myelination degree (Beaulieu, 2002). In WM, axons act as the
pathway for information transfer. The transfer speed is improved
by the myelin sheath produced by oligodendrocytes. In addition
to oligodendrocytes, microglia and astrocytes are also present in
WM. They provide nutrients and oxygen to neurons. In addition,
astrocytes, which mediate neurovascular coupling in GM, are also
found in WM (Rash, 2010). Taken together, these findings provide
extended evidence on the association of structure and function in
WM, suggesting a structural basis for BOLD-fMRI signals in WM.

Regarding the methodological aspect, although both GM and
WM networks were constructed by using the correlations of
resting-state fMRI BOLD signals, there were several differences
in the data processing procedures for GM and WM. First, the
ways to extract the time series data from WM and GM are differ-
ent from each other. The traditional average calculated across vox-
els (equal weight) within an ROI was used for GM regions,
whereas the TBSS weighted method (unequal weight) was used
for WM regions. Second, in our previous study (Jiang et al.,
2019b), the middle and deep WM exhibited the maximal ampli-
tude at the frequency of 0.07 Hz and the main frequency compo-
nent located at the frequency band of 0.01–0.15 Hz. Thus, the
filtering band is different when building WM and GM networks.
The main findings in the current study were the differences
between the SZ and HC groups. It should be further investigated
how the differences in the frequency band could have influenced

WM and GM networks. Finally, previous methods had substantial
issues due to spatial smoothing, which exacerbated the possible
contribution of GM (or other issues) to WM due to partial-
volume effects. By projecting the functional BOLD signals onto
the structural FA skeleton of WM, this approach may hopefully
resolve the issue of spatial smoothing in WM function analysis.

Several limitations should be considered when interpreting our
findings. First, most patients had chronic SZ and were taking anti-
psychotics. It is difficult to rule out the potential effect of the
medication. Second, cognitive measures were not evaluated;
thus, we can only speculate possible associations between disrup-
tions in WM network function and cognitive deficits in SZ. Third,
as impaired information processing, such as lower intelligence
quotient (IQ), which is related to educational level and brain mea-
sures, is likely part of the illness, matching on the educational
level between patients and healthy controls may lead to an under-
estimation of effects and loss of some of the relevant information.
Thus, matching on parental level of education (Ray et al., 2017) is
more appropriate in the future work. In addition, the current
study has a cross-sectional design and could not uncover the
dynamic changes over time in SZ. In addition, the association
between observed BOLD signals in WM and neuron-related activ-
ity remains unclear (Gawryluk, Mazerolle, & D’Arcy, 2014b). As
WM tracts cross each other, it is extremely difficult to locate
the precise source of the functional signals in WM. In node def-
inition, we used a verified WM atlas to segment the WM tract
rather than data-driven methods (such as cluster analysis and
independent component analysis) or a random segmentation
strategy because of its inherent practicality, comparability and
anatomical information. Finally, the conclusions of this study
are from only one cohort, which needs to be further verified by
other samples in future work.

In summary, our findings provide evidence for abnormal glo-
bal topological properties in SZ, involving reduced local

Fig. 3. The relationships between network metrics and clinical variables in patients with schizophrenia by using Spearman rank correlation analysis ( p < 0.05, false
discovery rate corrected). (a) The cluster coefficient, shortest path length and local efficiency were significantly negatively correlated with the illness duration. (b)
The cluster coefficient, local efficiency and synchronization exhibited significant negative correlations with the PANSS negative scores.
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efficiency, cluster coefficients, hierarchy, small-worldness and
increased synchronization, from the perspective of the WM func-
tional network in the brain. Interestingly, patients with SZ showed
enhanced centralities in parietal and occipital GM areas; however,
adjacent WM tracts (optic radiation, posterior corona radiata and
splenium of corpus callosum), which connect those GM regions,
exhibited reduced nodal centralities, suggesting that WM func-
tional alterations may play a possible compensatory role for adja-
cent GM impairments in SZ.
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