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A B S T R A C T   

High co-morbidity and substantial overlap across psychiatric disorders encourage a transition in psychiatry 
research from categorical to dimensional approaches that integrate neuroscience and psychopathology. 
Converging evidence suggests that the cerebellum is involved in a wide range of cognitive functions and mental 
disorders. An important question thus centers on the extent to which cerebellar function can be linked to 
transdiagnostic dimensions of psychopathology. To address this question, we used a multivariate data-driven 
statistical technique (partial least squares) to identify latent dimensions linking human cerebellar connectome 
as assessed by functional MRI to a large set of clinical, cognitive, and trait measures across 198 participants, 
including healthy controls (n = 92) as well as patients diagnosed with attention-deficit/hyperactivity disorder (n 
= 35), bipolar disorder (n = 36), and schizophrenia (n = 35). Macroscale spatial gradients of connectivity at 
voxel level were used to characterize cerebellar connectome properties, which provide a low-dimensional rep-
resentation of cerebellar connectivity, i.e., a sensorimotor-supramodal hierarchical organization. This multi-
variate analysis revealed significant correlated patterns of cerebellar connectivity gradients and behavioral 
measures that could be represented into four latent dimensions: general psychopathology, impulsivity and mood, 
internalizing symptoms and executive dysfunction. Each dimension was associated with a unique spatial pattern 
of cerebellar connectivity gradients across all participants. Multiple control analyses and 10-fold cross-validation 
confirmed the robustness and generalizability of the yielded four dimensions. These findings highlight the 
relevance of cerebellar connectivity as a necessity for the study and classification of transdiagnostic dimensions 
of psychopathology and call on researcher to pay more attention to the role of cerebellum in the dimensions of 
psychopathology, not just within the cerebral cortex.   

1. Introduction 

Our understanding of cerebellar contributions to neurological func-
tion has changed from a traditional view focused on motor coordination, 
to a modern understanding that also implicates the cerebellum in a 
broad range of high-level cognitive and affective processes 

(Schmahmann et al., 2019). An increasing body of evidence also sup-
ports cerebellar involvement in a wide range of psychiatric disorders 
(Sathyanesan et al., 2019; Stoodley, 2016). Up to now, most psychiatric 
studies investigating the role of the cerebellum have been conducted 
based on categorical diagnostic criteria that view psychiatric disorders 
as independent entities (Caspi and Moffitt, 2018). It is increasingly 
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recognized that existing clinical diagnostic categories might be subop-
timal, as there is substantial overlap in symptoms, cognitive dysfunction 
and genetic factors across multiple psychiatric disorders(Caspi and 
Moffitt, 2018; Kotov et al., 2017). These overlaps can be reflected by 
shared neurobiological structure and function, and polymorphism ab-
normalities across psychiatric syndromes(Devlin et al., 2013; Goodkind 
et al., 2015; Janiri et al., 2020; McTeague et al., 2017). The high rates of 
comorbidity between psychiatric disorders and heterogeneity within 
one diagnostic group further exacerbates this problem (Chen et al., 
2020; Feczko et al., 2019; Jacobi et al., 2004). This context has moti-
vated transdiagnostic initiatives, such as the National Institute of Mental 
Health’s Research Domain Criteria (Cuthbert, 2014), which encourages 
a transition in psychiatry research from categorical to dimensional ap-
proaches that integrate neuroscience and psychopathology (Cuthbert, 
2014). 

Recent clinical neuroscience studies have begun to adopt trans-
diagnostic approaches to highlight the importance of altered cerebellar 
structure in broad risk for psychopathology (Moberget et al., 2019; 
Romer et al., 2018; Romer et al., 2021). Previous animal and human 
neuroimaging studies have provided converging evidence for the 
involvement of cerebellar function in a wide range of behaviors that are 
dependent on circuits connecting the cerebellum with multiple cerebral 
cortical regions (Bostan et al., 2013; Caligiore et al., 2017; Kelly and 
Strick, 2003; Schmahmann et al., 2019). Accumulating evidence sup-
ports dysfunctional cerebellar connectivity in many psychiatric disor-
ders, such as schizophrenia (Brady et al., 2019), bipolar disorder (Shinn 
et al., 2017), major depression (Jiang et al., 2019), attention-deficit/ 
hyperactivity disorder (Kucyi et al., 2015) and autism (Stoodley et al., 
2017). Moreover, study of clinical high-risk subjects demonstrate that 
dysconnectivity of cerebellar circuits can serve as a state-independent 
neural signature for psychosis prediction and characterization (Cao 
et al., 2018). Within this context, an understudied area of investigation 
is the extent to which cerebellar function can be linked to trans-
diagnostic dimensions of psychopathology. 

Resting-state functional connectivity has been widely used to char-
acterize disconnection mechanisms in many psychiatric disorders 
(Buckholtz and Meyer-Lindenberg, 2012; Sha et al., 2019), and is a 
promising tool for deepening our understanding of transdiagnostic di-
mensions (Elliott et al., 2018; Kebets et al., 2019; Xia et al., 2018). 
However, previous studies investigating functional connectivity- 
informed dimensions of psychopathology often ignore the importance 
of the cerebellum, e.g., by using a coarse delineation of the cerebellum 
with only a few regions of interest to represent the whole cerebellar 
information (Kebets et al., 2019; Xia et al., 2018). Recent developments 
in cerebellar functional mapping indicate that cerebellar functional or-
ganization can be characterized using macroscale spatial gradients of 
connectivity, a low dimensional continuous space that reflects the 
overarching spatial patterns that underpin the observed neural data 
(Guell et al., 2018). The principal connectivity gradient of cerebellar 
cortex captures a progression from sensorimotor to cognitive processing 
areas (Guell et al., 2018), similar to the organization of the cerebral 
cortex (Margulies et al., 2016; Mesulam, 1998). This low-dimensional 
representation of the principal axis of cerebellar macroscale functional 
organization thus provides a useful tool to characterize cerebellar 
function at the single-subject level which can then be correlated with 
single-subject behavioral measures. This approach offers an unprece-
dented opportunity to interrogate the relationship between cerebellar 
functional organization and behavioral measures of clinical phenomena, 
cognitive ability, and personality traits in mental health and disease. 

In this study, we analyzed UCLA Consortium for Neuropsychiatric 
Phenomics open access dataset, a unique and large resting-state fMRI 
and behavioral dataset (Poldrack et al., 2016) using gradient-based and 
partial least squares, a multivariate data-driven statistical techniques 
with the objective to discover the latent dimensions that link cerebellar 
functional organization to behavioral measures spanning clinical, 
cognitive, and personality trait domains across healthy controls (HC), 

and patients with attention-deficit/hyperactivity disorder (ADHD), bi-
polar disorder (BD) and schizophrenia (SZ). This approach yielded di-
mensions that optimally linked co-varying cerebellar connectivity 
gradients and behavior in individuals across traditional diagnostic cat-
egories, in accordance with a transdiagnostic dimensional approach. 
Multiple control analyses were used to optimize the robustness of these 
latent dimensions. Furthermore, we performed 10-fold cross-validation 
to assess the generalization performance of latent dimensions to un-
seen test data. Importantly, cross-validation approaches can help guard 
against overfitting that arises from high dimensional neurobiological 
data (Yarkoni and Westfall, 2017). 

2. Materials and methods 

2.1. Participants 

Data from the UCLA Consortium for Neuropsychiatric Phenomics 
(CNP) dataset (Poldrack et al., 2016) were downloaded from OpenNeuro 
(https://openneuro.org/datasets/ds000030/versions/00001). This 
dataset consists of neuroimaging and behavioral data from 272 right- 
handed participants, including both HC (n = 130) and individuals 
with neuropsychiatric disorders including SZ (n = 50), BD (n = 49), and 
ADHD (n = 43). Details about participant recruitment can be found in 
the original publication (Poldrack et al., 2016). Written informed con-
sent was obtained from all participants and related procedures were 
approved by the Institutional Review Boards at UCLA and the Los 
Angeles County Department of Mental Health. Table 1 shows a summary 
of demographic and clinical information of the 198 participants who 
survived image preprocessing quality controls (see below). 

2.2. Behavioral assessment 

The CNP behavioral measures encompass an extensive set of clinical, 
personality traits, neurocognitive and neuropsychological scores 
(Table S1). Behavioral measures were excluded from the partial least 
squares (PLS) analysis when data was missing for at least 1 participant 
among the 198 participants. As a result, we included a set of 55 
behavioral and self-report measures from 19 clinical, personality traits, 

Table 1 
Demographic characteristics of each diagnostic group.  

Variables ADHD BD HC SZ F or 
X2 

P value 

Sample size 35 36 92 35   
Age (years, 

mean(SD)) 
31.40 
(10.50) 

34.44 
(8.91) 

30.50 
(8.50) 

35.54 
(8.97)  

3.51 1.6×10− 2 

Male sex, n(%) 18 
(51.4) 

19 
(52.8) 

51 
(55.4) 

27 
(77.1)  

6.54 8.8×10− 2 

Education 
(years, mean 
(SD)) 

14.43 
(1.79) 

14.64 
(1.94) 

15.26 
(1.62) 

12.71 
(1.64)  

18.75 1.0×10− 10 

Site 1, n(%) 17 
(48.6) 

18 
(50) 

73 
(79.3) 

14 
(40)  

23.72 2.9×10− 5 

Head motion, 
mean FD, 
mean(SD) 

0.069 
(0.04) 

0.083 
(0.05) 

0.066 
(0.03) 

0.096 
(0.04)  

6.16 5.1×10− 4 

Number of 
current 
medication 
use (mean 
(SD)) 

0.57 
(1.14) 

2.50 
(1.93) 

0(0) 2.20 
(1.57)  

57.19 1.6×10− 26 

Number of 
substance use 
(mean(SD)) 

1.31 
(1.68) 

2.58 
(2.09) 

0.62 
(1.10) 

2.46 
(2.23)  

17.89 2.7×10− 10 

Notes: Group differences were determined by either one-way ANOVA for 
continuous variables or chi-square tests for categorical variables. FD, framewise 
displacement; Number of substances use, including nicotine, alcohol, cannabis 
and other psychotropic substances. The degree of freedom for F test in ANOVA is 
197. The degree of freedom of X2 test is 3. 
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neurocognitive and neuropsychological tests in the PLS analysis. 
Table S2 summarized the behavioral measures for each group. Excluded 
64 behavioral measures in PLS analysis were considered in post-hoc 
analyses (Table S3). 

2.3. Data acquisition and image preprocessing 

Resting-state functional and structural MRI data were collected on 
two 3T Siemens Trio scanners (Ahmanson-Lovelace Brain Mapping 
Center (Siemens version syngo MR B15) and the Staglin Center for 
Cognitive Neuroscience (Siemens version syngo MR B17)) at UCLA using 
the same acquisition parameters. Resting-state functional MRI data were 
collected using a T2*-weighted echoplanar imaging sequence with the 
following scan parameters: TR/TE = 2000 ms/30 ms, flip angle = 90◦, 
matrix 64×64, field of view (FOV) = 192*192 mm2, 34 interleaved 
slices, slice thickness = 4 mm, and oblique slice orientation. The resting 
fMRI scan lasted 304 s for each participant, and 157 volumes were ac-
quired. During scanning, all participants were instructed to keep relaxed 
and keep their eyes open. Additionally, T1-weighted high-resolution 
anatomical data were acquired for each participant using an MPRAGE 
sequence (scan parameters: TR/TE = 1900 ms/2.26 ms, matrix =
256×256, FOV = 250*250 mm2, sagittal plane, slice thickness = 1 mm, 
176 slices). The anatomical data were used to normalize functional data. 
See Supporting Information for details. 

Among the 272 participants, there were seven participants with 
missing T1 weighted scans, four participants were missing resting-state 
functional MRI data scans, and 1 participant had signal dropout in the 
cerebellum (Gorgolewski et al., 2017), thus only data from 260 partic-
ipants were preprocessed. All preprocessing steps were consistent with 
our previous studies (Dong et al., 2019; Dong et al., 2020). In brief, the 
preprocessing steps included slice timing, realignment, normalization, 
wavelet despiking of head motion artifacts, regression of linear trend, 
Friston 24 head motion parameters, white matter and CSF signal, and 
filtering (0.01–0.1 Hz) (see supplementary methods for details). Because 
global signal may be an important neuroimaging feature in clinical 
populations (Hahamy et al., 2014), we did not conduct global signal 
regression (GSR) in our main analyses, but GSR was considered in 
control analysis. In addition, we excluded 42 participants due to head 
motion exceeding 1.5 mm or 1.5◦ rotation or with >10 % images 
showing framewise displacements >0.5 mm (Power et al., 2012) or 
mean FD >0.20 mm during MRI acquisition. Further, we further 
excluded 20 participants because of incomplete coverage of the cere-
bellum. This process left 198 participants as a final sample for our study, 
among which there were 35 ADHD, 36 BD, 92 HC and 35 SZ 
participants. 

2.4. Cerebellar connectivity gradient extraction 

We used diffusion map embedding (Coifman et al., 2005) to identify 
a low-dimensional embedding gradient from a high-dimensional intra- 
cerebellar cortex connectivity matrix for each participant. Diffusion 
embedding results in multiple, continuous maps (“gradients”), which 
capture the similarity of each voxel’s functional connections along a 
continuous space. In other words, this data-driven analysis results in 
connectivity gradients that provide a description of the connectome 
where each voxel is located along a gradient according to its connec-
tivity pattern. Gradient values represent information about the spatial 
pattern in the embedding space—shifts in value are not meaningful in 
terms of “higher” or “lower” scores, but rather reflect changes in relative 
similarity within a latent dimension, i.e., the similarity of functional 
connectivity patterns along each dimension (“gradient”). Then, we used 
an average connectivity matrix calculated from all participants to pro-
duce a group-level gradient component template. We then performed 
Procrustes rotation to align the gradients of each participant to this 
template (Langs et al., 2015). In order to maximize reliability, repro-
ducibility, and interpretability, we only used the first gradient 

component in our analyses. The first gradient (or principal gradient) 
explains as much of the variance in the data as possible (~30 %, Fig. S1), 
represents a well-understood motor-to-supramodal organizational 
principle in the cerebellar and cerebro-cerebral connections, and has 
been shown to be reproducible at the single subject level, see repre-
sentative individuals from each of the four groups in Fig. S2 (Guell et al. 
(2018); note that gradient 2 could not be reproduced as successfully as 
the principal gradient at the single-subject level). See supplementary 
methods for more details. Given the cerebellar functional gradients can 
be similarly constructed based on intra-cerebellar FC or cerebellar- 
cerebral FC in the literature, we also tested cerebellar gradient based 
on cerebellar-cerebral FC. Intra-cerebellar connectivity gradient anal-
ysis focuses on exploring the intrinsic organization of the cerebellum 
without involving its connectivity profiles with the cerebral hemi-
spheres or other brain structures. The cerebellar-cerebral cortical gra-
dients emphasize the communication between cerebellar and cerebral 
cortex. In addition, considering the well-established involvement of 
cortex and subcortical nuclei in higher-order cognitive function and 
psychiatric disorders, we also constructed the cerebellar gradient based 
on cerebellar-the rest of the brain (cerebral cortex + subcortical nuclei) 
FC. We reported the intra-cerebellar FC gradient (6242 voxels) as the 
main result, but also included cerebellar-cerebral, and cerebellar-the 
rest of the brain (cerebral cortex + subcortical nuclei) FC gradients in 
control analyses. 

2.5. Partial least squares analysis 

We applied PLS to investigate the relationship between cerebellar 
connectivity gradient and behavioral measures across diagnostic cate-
gories. PLS is a multivariate statistical technique that derives latent 
variables (LVs), by finding weighted patterns of variables from two 
given data sets that maximally covary with each other (Krishnan et al., 
2011; McIntosh and Mǐsić, 2013). Each LV is comprised of a cerebellar 
connectivity gradient pattern at voxel level (“gradient saliences”) and a 
behavioral profile (“behavioral saliences”). Individual-specific cere-
bellar gradient and behavioral composite scores for each LV were ob-
tained by linearly projecting the gradient and behavioral measures of 
each participant onto their respective saliences. See supplementary 
methods for mathematical details. Because mean framewise displace-
ment (FD) was negatively correlated with several behavioral measures 
and there were significant differences in age, sex, education, site, and 
mean FD across groups (Table 1), we regressed out these confounding 
effects from both behavioral and cerebellar gradient data before PLS 
analysis. 

In order to evaluate the significance of the LVs, we applied permu-
tation testing using 1000 permutations for behavioral data and 
repeating the PLS analysis to determine the null distribution of the 
singular values. Considering significant group differences in various 
behavioral measures (Table S2), the permutation procedure was per-
formed within each primary diagnostic group. Our results of interest 
were the top five LVs which explained at least 5 % of covariance between 
cerebellar gradients and behavioral measures (see Fig. S2). We applied a 
false discovery rate (FDR) correction of q < 0.05 on the permuted p- 
values of the five LVs to control for multiple comparisons. 

To assess the contribution of a given gradient voxel or behavior to a 
given LV, we computed correlations between the original measure 
(gradient voxel or behavior) and the corresponding composite scores 
(Courville and Thompson, 2001; Sherry and Henson, 2005). A large 
correlation value (i.e., large weight, positive or negative) for a given 
measure (behavioral or gradient voxel) for a given LV indicates greater 
contribution of the behavior or gradient voxel to the LV. Then, the 
confidence intervals for these correlations were determined a by boot-
strapping procedure that generated 500 samples with replacement from 
the original gradient and behavioral data. Considering significant 
diagnostic differences in many behavioral measures (Table S2), we took 
diagnostic groups into account within each bootstrap sample. To 
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identify variables (gradient voxels or clinical measures) that make a 
significant contribution to the overall pattern, we calculated Boot-
strapped Z scores as the ratio of each variable’s correlation coefficient (i. 
e., weight) to its bootstrap-estimated standard error. Then, we converted 
the Z scores to p values, which were FDR corrected (q < 0.05). 

To test the generalizability of each LV, we used a 10-fold cross- 
validation of the PLS analysis with 200 repetitions. Importantly, the 
cross-validation approach can help to guard against overfitting that 
arises from high dimensional neurobiological data (Yarkoni and West-
fall, 2017). Specifically, first, we assigned 90 % of the participants 
(within each primary diagnostic group) to the training set and the 
remaining 10 % of participants (within each primary diagnostic group) 
to the test set. For each training set, PLS was used to estimate gradient 
and behavioral saliences (i.e., Utrain and Vtrain). Next, the test data were 
projected onto the gradient and behavioral patterns derived from the 
training set. This allowed us to estimate individual-specific gradient and 
behavior composite scores and their correlation for the test sample (i.e. 
corr(XtestUtrain, YtestVtrain)) for LVs 1–4. This procedure was repeated 200 
times to make sure the results are not biased by the initial split. Finally, 
we used a permutation test (behavioral data shuffled 1000 times within 
each diagnostic group) to assess the significance of these correlation 
coefficients. 

If a given LV was statistically significant, we performed one-way 

ANOVA to test whether cerebellar gradient and behavioral composite 
scores of this LV were different among different diagnoses, if significant, 
least significant difference (LSD, in SPSS) post hoc tests were performed, 
which would help interpret the significant function of this LV. It should 
be noted that the present objective was not to find commonalities and 
distinctions in the cerebellar-psychopathology relationship across the 
three diagnoses. In addition, we furthermore tested whether the com-
posite scores for significant LVs were correlated with medication load 
(number of medications current use) and substance use (number of 
substances use, including nicotine, alcohol, cannabis and other psy-
chotropic substances) by performing Pearson’s correlations analyses. 
Given the exploratory nature of medication and substance use effect 
analysis in our study, we only consider the number of medications or 
substance current use, it should keep caution when interpreting these 
results. For binary measures, we used T tests, and for continuous mea-
sures, we used Pearson’s correlations. FDR correction (q < 0.05) was 
applied to these association analyses. 

False discovery rate (FDR) correction (q < 0.05) was applied to all 
analyses. 

Fig. 1. Latent variable 1: general psychopathology. (A) Correlation between cerebellar connectivity gradient and behavioral composite scores of participants. (B) 
Significant behavioral features associated with LV1. The contribution of each behavior is measured by correlations between participants’ behavioral scores and the 
corresponding behavioral composite scores. Error bars indicate bootstrapped standard errors. (C) Significant gradient pattern associated with LV1. The contribution 
of each voxel is measured by correlation between participants’ cerebellar gradient scores and the corresponding cerebellar gradient composite scores (FDR 
correction, q < 0.05). Gradient pattern displayed on cerebellar flat maps were generated using the SUIT toolbox (http://www.diedrichsenlab.org/imaging/suit.htm). 
(D) Functional properties of positive gradient loadings. (E) Functional properties of negative gradient loadings. (F) Group differences in cerebellar connectivity 
gradient and behavioral composite scores. Significant differences are indicated by asterisks (FDR correction, q < 0.05). Error bars indicate standard deviation. 
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2.6. Decoding the general meaning of higher/lower cerebellar gradient 
composite score in each LV 

To understand meaning of an individual with high/low gradient 
composite score, we calculated and visualized the average map of 
gradient for individuals in the top and bottom third of gradient com-
posite scores, and also calculated the difference (Mckeown et al., 2020). 

2.7. Meta-analytic decoding of the function of significant gradient 
loadings using NeuroSynth 

We used a large-scale database-informed meta-analytic approach as 
implemented in NeuroSynth (Yarkoni et al., 2011) to decode the func-
tional properties of significant gradient loadings in LV1-LV4. The top 20 
terms showing the highest correlations for significant positive or nega-
tive loadings mask were extracted, and the terms corresponding to each 
significant positive or negative loadings mask were visualized as a word 
cloud (Figs. 1-4D&E). The font size of the term in each word cloud is 
proportional to the correlation strength. However, the corresponding 
functional properties should be interpreted cautiously given its nature of 
exploratory. 

2.8. Control analyses 

We tested whether LVs were robust to global signal regression, total 
cerebellar grey matter volume regression, cerebellar gradients based on 
cerebellar-cerebral and cerebellar-the rest of the brain (cerebral cortex 
+ subcortical nuclei) FC, adding confounding variables (age, sex, edu-
cation, site, and head motion) into the behavioral data for the PLS 
analysis, non-Gaussian distributions of the behavioral data, diagnostic 
factors (HCs and patients separately), and site factors (each site sepa-
rately). To assess the robustness of each LV, we computed Pearson’s 
correlations between cerebellar gradient (or behavioral) saliences ob-
tained in each control analysis and cerebellar gradient (or behavioral) 
saliences from the original PLS analysis. Finally, to confirm that each 
diagnostic group contributed the same amount to the overall composite 
correlations, we used the Fisher r-to-z transformation to compare the 
pairwise r-values (Diedenhofen and Musch, 2015). See supplementary 
methods for details. 

2.9. Data and code availability 

All data are freely provided by from the UCLA Consortium for 
Neuropsychiatric Phenomics (CNP)34 available from OpenNeuro (https 
://openneuro.org/datasets/ds000030/versions/00001). Cerebellar 

Fig. 2. Latent variable 2: impulsivity and mood. (A) Correlation between cerebellar connectivity gradient and behavioral composite scores of participants. (B) 
Significant behavioral features associated with LV2. The contribution of each behavior is measured by correlations between participants’ behavioral scores and the 
corresponding behavioral composite scores. Error bars indicate bootstrapped standard errors. (C) Significant gradient pattern associated with LV2. The contribution 
of each voxel is measured by correlations between participants’ cerebellar gradient scores and the corresponding cerebellar gradient composite scores (FDR 
correction, q < 0.05). (D) Functional properties of positive gradient loadings. (E) Functional properties of negative gradient loadings. (F) Group differences in 
cerebellar connectivity gradient and behavioral composite scores. Significant differences are indicated by asterisks (FDR correction, q < 0.05). Error bars indicate 
standard deviation. 
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connectivity gradients were constructed by BrainSpace toolbox (Vos de 
Wael et al. (2020)https://github.com/MICA-MNI/BrainSpace). We used 
the Matlab code from https://github.com/danizoeller/myPLS (Zöller 
et al., 2017) and https://github.com/ThomasYeoLab/CBIG/tree/mast 
er/stable_projects/disorder_subtypes/Kebe ts2019_Transdiagnos-
ticComponents (Kebets et al., 2019), based on (Krishnan et al., 2011) to 
implement the PLS calculating. 

3. Results 

3.1. Four robust LVs linking cerebellar gradients and behavior 

PLS correlation analysis revealed five significant latent variables 
(LVs) that reflect the direct covariant mapping between cerebellar 
connectivity gradients and behavioral measures. Since the fifth LV did 
not show robustness in control analyses as detailed in Table S4, we only 
focused on the first four LVs (LV1: r = 0.62, permuted p = 2.0x10− 2; 
LV2: r = 0.56, permuted p = 2.0x10− 3; LV3: r = 0.61, permuted p =
3.0x10− 2; LV4: r = 0.60, permuted p = 1.2x10− 2; Figs. 1-4A). The 
variance explained by each LV was 19.5 %, 13.7 %, 8.8 % and 6.0 %, 
respectively (Fig. S3). Importantly, 10-fold cross-validation confirmed 
generalizability (i.e. robustness of results in new data) of the first four 
LVs, as indicated by significant correlation between cerebellar gradient 

and behavioral composite scores in the test folds (LV1, r = 0.21, p =
2.5x10− 3; LV2, r = 0.27, p = 2.1x10− 3; LV3, r = 0.22, p = 2.3x10− 3; 
LV4, r = 0.16, p = 2.5x10− 3). Furthermore, the four LVs were robust to 
GSR and total cerebellar grey matter volume regression, as indicated by 
the high correlation (r > 0.83) between saliences of original PLS and PLS 
with GSR or total cerebellar grey matter volume regression. In addition, 
each diagnostic group contributed similarly to the overall composite 
correlations of these four LVs (FDR q > 0.05 for all pairwise compari-
sons, see Table S5). We also found that age, sex, education, site, or FD 
were not associated with any LV (Table S6). 

Considering significant group differences in many behavioral mea-
sures (Table S2), we took diagnostic groups into account for the per-
mutation procedure, bootstrapping procedure and cross-validation in 
the main text. However, when ignoring diagnostic groups (regarding all 
participants as one group), the results remained almost unchanged. See 
supplementary results and Figs. S4-S7 for details. 

3.2. LV1: General psychopathology 

The main contributors of behavior to LV1 were overall associated 
with greater psychopathology, e.g., higher impulsiveness, mood lability, 
dysfunctional impulsivity, anxiety, depression, somatization, social/ 
physical anhedonia (Fig. 1B) and psychotic symptoms (Table S3) 

Fig. 3. Latent variable 3: internalizing and less externalizing symptoms. (A) Correlation between cerebellar connectivity gradient and behavioral composite scores of 
participants. (B) Significant behavioral features associated with LV3. The contribution of each behavior is measured by correlations between participants’ behavioral 
scores and the corresponding behavioral composite scores. Error bars indicate bootstrapped standard errors. (C) Significant gradient pattern associated with LV3. The 
contribution of each voxel is measured by correlations between participants’ cerebellar gradient scores and the corresponding cerebellar gradient composite scores 
(FDR correction, q < 0.05). (D) Functional properties of positive gradient loadings. (E) Functional properties of negative gradient loadings. (F) Group differences in 
cerebellar connectivity gradient and behavioral composite scores. Significant differences are indicated by asterisks (FDR correction, q < 0.05). Error bars indicate 
standard deviation. 
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including mania, delusions and hallucinations; in addition to worse 
high-order cognitive control (e.g., working memory). As can be seen 
from Fig. 5A, individuals with higher gradient composite score showed 
increased shared connectivity similarity (lower functional differentia-
tion) between the sensorimotor and supramodal cognitive systems. LV1 
included positive weight in cerebellar lobules V, VI, VIIIA and VIIIB and 
negative weight in Crus I and II (Fig. 1C). The parts of significant posi-
tive weights were generally related to stimulus induced external stimuli 
induced response functions (e.g., fear, salience and substance, Fig. 1D), 
and the parts of significant negative weights were generally related to 
gold-directed functions (instruction, working memory, solving, Fig. 1E). 
One-way ANOVA revealed that there were significant differences in 
cerebellar gradient (F = 6.630, df = 197, p < 0.001) and behavioral 
composite scores (F = 15.365, df = 197, p < 0.001) among different 
diagnoses. Notably, post hoc tests observed that both cerebellar gradient 
and behavioral composite scores were higher in all diagnostic groups 
when compared with HCs (Fig. 1F; all differences were statistically 
significant except for ADHD). Exploratory analyses indicated that higher 
cerebellar gradient and behavioral composite scores in LV1 were asso-
ciated with greater medication load. There was no significant associa-
tion between LV1 composite scores and substance use (Table S6). Our 
interpretation is that LV1 is associated mainly with general psychopa-
thology and high-order cognitive control deficits and is associated with 

diminished differentiation between sensorimotor and supramodal 
cognitive systems (see discussion). 

3.3. LV2: Impulsivity and mood 

The main contributors of behavior to LV2 were mainly involved in a 
mixture of impulsivity and mood, e.g., higher ADHD symptoms, atten-
tion impulsivity, depression, mood lability, interpersonal sensitivity, 
daydreaming and social anxiety, and lower control ability and persis-
tence (Fig. 2B). As can be seen from Fig. 5A, individuals with higher 
gradient composite score showed decreased shared connectivity simi-
larity (higher functional segregation) between the sensorimotor and 
supramodal cognitive systems. LV2 included positive weight in cere-
bellar Crus I, II and lobule IX and negative weight in lobules VI, VIIB and 
VIIIA (Fig. 2C). The parts of significant positive weights were generally 
related to self-related functions (e.g., thinking, autobiographical and 
mind, Fig. 2D), and the parts of significant negative weights were 
generally related to coordination functions (force, motor and coordi-
nation, Fig. 2E). One-way ANOVA revealed that there were significant 
differences in cerebellar gradient (F = 4.109, df = 197, p = 0.007) and 
behavioral composite scores (F = 13.525, df = 197, p < 0.001) among 
different diagnoses. Notably, patients with ADHD had the highest 
cerebellar gradient composite scores for LV2 (Fig. 2F). Post hoc tests 

Fig. 4. Latent variable 4: executive dysfunction. (A) Correlation between cerebellar connectivity gradient and behavioral composite scores of participants. (B) 
Significant behavioral features associated with LV4. The contribution of each behavior is measured by correlations between participants’ behavioral scores and the 
corresponding behavioral composite scores. Error bars indicate bootstrapped standard errors. (C) Significant gradient pattern associated with LV4. The contribution 
of each voxel is measured by correlations between participants’ cerebellar gradient scores and the corresponding cerebellar gradient composite scores (FDR 
correction, q < 0.05). (D) Functional properties of positive gradient loadings. (E) Functional properties of negative gradient loadings. (F) Group differences in 
cerebellar connectivity gradient and behavioral composite scores. There were no significant differences among diagnostic groups in LV4 (FDR correction, q < 0.05). 
Error bars indicate standard deviation. 
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revealed that behavioral composite scores were significantly higher in 
patients with ADHD or BD than in HC and patients with SZ and cere-
bellar gradient composite scores were significantly higher in patients 
with ADHD than in HC and patients with SZ. There was no significant 
association between composite scores and medication load or substance 
use (Table S6). Our interpretation is that LV2 is associated mainly with 
inadequate attention regulation and is associated with the lack of effi-
cient information integration between sensorimotor and supramodal 
cognitive systems (see discussion). 

3.4. LV3: Internalizing and less externalizing symptoms 

The main contributors of behavior to LV3 were mainly correlated 
with behavioral measures related to internalizing symptoms, e.g., higher 
harm avoidance, social anxiety, control, anhedonia, and somatization, 
and less externalizing symptoms, e.g., functional and motor impulsivity 
as well as novelty seeking (Fig. 3B). As can be seen from Fig. 5A, 

individuals with higher gradient composite score showed decreased 
shared connectivity similarity (higher functional segregation) between 
the sensorimotor and supramodal cognitive systems. LV3 included 
positive weight in cerebellar anterior vermis (I-VI) and negative weight 
in left Crus I, II, as well as lobules VIIIA and VIIIB (Fig. 3C). The parts of 
significant positive weights were generally related to coordination 
functions (e.g., muscle, coordination and rhythm, Fig. 3D), and the parts 
of significant negative weights were generally related to external stim-
ulus induced response functions (e.g., fear, substance and perceiving, 
Fig. 3E). One-way ANOVA revealed that there were significant differ-
ences in cerebellar gradient (F = 3.028, df = 197, p = 0.031) and 
behavioral composite scores (F = 8.273, df = 197, p < 0.001) among 
different diagnoses. Post hoc tests revealed that cerebellar gradient and 
behavioral composite scores were significantly higher in patients with 
BD or SZ when compared with patients with ADHD (Fig. 3F), and 
behavioral composite scores were significantly higher in patients with 
SZ when compared with HC group. In addition, ADHD groups had lower 

Fig. 5. (A) Lower functional differenti-
ation (LV1) or higher functional segre-
gation (LV2-4) between sensorimotor 
and supramodal cognitive systems was 
observed in individuals with higher 
cerebellar gradient composite scores. 
Left panel: group-averaged maps for 
high (top) and low (middle) similarity 
scores for cerebellar gradient as well as 
the difference between these groups 
(right). The right color bar reflects the 
scale of the high and low cerebellar 
gradient group-averaged maps while the 
left color bar reflects the scale of the 
difference map. Individuals with high 
gradient composite scores showed lower 
functional differentiation between 
sensorimotor (blue) and supramodal 
cognitive systems (yellow to red). The 
proximity of colors reflects greater sim-
ilarity in connectivity patterns between 
regions. (B) Cerebellar representations 
of cerebral cortical resting-state net-
works based on Buckner et al. (2011). 
SMN, somatomotor network; VAN, 
ventral attention network; DAN, dorsal 
attention network; LN, limbic network; 
FPN, frontal-parietal network; DMN, 
default mode network; VN, visual 
network.   
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behavioral composite scores than HC group. Higher cerebellar gradient 
and behavioral composite scores were associated with greater medica-
tion load (Table S6). There was no significant association between LV3 
composite scores and substance use (Table S6). Our interpretation is that 
LV3 is associated mainly with higher internalizing symptoms and lower 
externalizing behavior and is generally associated with the lack of effi-
cient information integration between sensorimotor and supramodal 
cognitive systems (see discussion). 

3.5. LV4: Executive dysfunction 

The main contributors of behavior to LV4 included worse perfor-
mance in multiple executive function domains, as well as with less so-
matization, interpersonal sensitivity and depression (Fig. 4B). As can be 
seen from Fig. 5A, individuals with higher gradient composite score 
showed decreased shared connectivity similarity (higher functional 
segregation) between the sensorimotor and supramodal cognitive sys-
tems. LV4 included positive weight in Crus I, II and lobules IX and 
negative weight in lobule VI (Fig. 4C). The parts of significant positive 
weights were generally related to self-related functions (e.g., thinking, 
autobiographical mentalizing and mind, Fig. 4D), and the parts of sig-
nificant negative weights were generally related to coordination func-
tions (motor, coordination and movements, Fig. 4E). One-way ANOVA 
revealed that there were not significant differences in cerebellar 
gradient (F = 2.219, df = 197, p = 0.087) and behavioral composite 
scores (F = 0.693, df = 197, p = 0.557) among different diagnoses 
(Fig. 4F). There was no significant association between composite scores 
and medication load or substance use (Table S6). Our interpretation is 
that LV4 is associated mainly with executive dysfunction and is gener-
ally associated with the lack of efficient information integration between 
sensorimotor and supramodal cognitive systems (see discussion). 

3.6. Control analyses 

Additional control analyses ensured the robustness of the first four 
LVs to cerebellar gradients based on cerebellar-cerebral FC, confounding 
variables, non-Gaussian distributions of the behavioral data, diagnostic 
factors (HCs and patients separately), and site factors (each site sepa-
rately) (see supplemental results). It should be noted that when using 
cerebellar gradient based on cerebellar-cerebral FC or cerebellar-the rest 
of the brain (cerebral cortex + subcortical nuclei) FC, results were 
similar to the original PLS using the cerebellar gradient based on intra- 
cerebellar FC. Correlations between the saliences of the new and the 
original PLS analysis for the first four LVs ranged from 0.76 to 0.99, 
suggesting high correlation (Table S4) and ensuring the robustness of 
the first four LVs to the different methods to construct cerebellar 
gradient. Results of PLS using only control individuals or only patients 
demonstrated moderate to high correlations with original saliences for 
the first four LVs. However, correlations dropped to 0.14 and 0.22 for 
LV5 (Table S4); hence we did not describe LV5. 

4. Discussion 

Although the importance of cerebellar function in mental health and 
disease is increasingly recognized, the degree to which cerebellar con-
nectivity is associated with transdiagnostic behavioral dimensions of 
psychopathology remains largely unknown. Leveraging a unique dataset 
including resting-state fMRI and behavioral assessments spanning clin-
ical, cognitive, and personality traits, we found robust correlated pat-
terns of cerebellar connectivity gradients and behavioral measures that 
could be represented in four transdiagnostic dimensions. Each dimen-
sion was associated with a unique spatial pattern of cerebellar connec-
tivity gradients, and linked to different clusters of behavioral measures, 
supporting that individual variability in cerebellar functional connec-
tivity can capture variability along multiple behavioral dimensions 
across psychiatric diagnoses. Our findings highlight the relevance of 

cerebellar neuroscience as a central piece for the study and classification 
of transdiagnostic dimensions of psychopathology. 

4.1. Linking cerebellar functional gradients to transdiagnostic dimensions 
of psychopathology 

A large body of literature has shown cerebellar functional abnor-
malities in mental disorders (Sathyanesan et al., 2019; Stoodley, 2016). 
New trends in psychiatry focus on transdiagnostic dimensions of psy-
chopathology (Caspi and Moffitt, 2018; Insel et al., 2010). The present 
study is the first to link both approaches. 

Adopting a transdiagnostic approach, three influential studies 
analyzing brain structure showed that alterations in cerebellar structure 
is associated with broad risk for psychopathology (Moberget et al., 2019; 
Power et al., 2012; Romer et al., 2018). However, these studies focused 
on clinical symptoms or cognitive function. The broader set of behav-
ioral phenotypes in the present study allowed us to explore other di-
mensions of psychopathology, not constrained within the limits of 
clinical symptoms commonly investigated in many transdiagnostic 
studies (Elliott et al., 2018; Kaczkurkin et al., 2018; Kaczkurkin et al., 
2019; Romer et al., 2018; Romer et al., 2021; Xia et al., 2018). Prior 
cerebellar structure studies using factor analyses suggested the presence 
of latent dimensions of psychopathology such as internalizing symp-
toms, externalizing symptoms, and psychosis symptoms (Lahey et al., 
2017), as well as a general psychopathology (or p) factor (Lahey et al., 
2012). While these dimensions are reliable and reproducible, they are 
entirely derived from clinical assessments, not informed by brain-based 
data such as fMRI functional connectivity. More broadly, previous 
studies investigating functional connectivity-informed dimensions of 
psychopathology often ignore the importance of the cerebellum, e.g., by 
using a coarse delineation of the cerebellum with only a few regions of 
interest to represent the whole cerebellar information (Kebets et al., 
2019; Xia et al., 2018). These limitations were overcome in the present 
investigation. Further, compared to methods that focus on a single view 
(such as factor analysis applied on clinical data), the present study 
derived behavioral dimensions from co-varying individual differences in 
connectivity gradients and behavioral measures. This approach reso-
nates with the Research Domain Criteria research framework that en-
courages the integration of many levels of information (Insel et al., 
2010). 

Our study indicates that individual variability in cerebellar func-
tional connectivity gradient organization captures variability along 
multiple behavioral dimensions across mental health and disease. The 
associations with diverse dimensions of psychopathology were expected 
based on the consensus that the cerebellum is involved in virtually all 
aspects of behavior in health and disease1. In 1998, Mesulam proposed 
that brain regions can be organized along a gradient ranging from 
sensory-motor to higher-order brain processes (Mesulam, 1998). In line 
with Mesulam, most of the variance of cerebellar RSFC resembles a 
gradient that spans from primary sensory-motor cortices to high–order 
transmodal regions of the default-mode network (Guell et al., 2018). 
This principal gradient may thus represent one fundamental principle 
driving a hierarchical organization of cerebellar motor, cognitive, and 
affective functions. Here we show for the first time that there is a link 
between this principal gradient of cerebellar organization and behav-
ioral measures across individuals with and without diagnoses of cogni-
tive or affective disease. 

4.2. Interpreting the functional significance of each latent variable 

The most significant finding of the present investigation is the 
demonstration of an association between individual variations in cere-
bellar functional gradient values and multiple behavioral measures 
across mental health and diseases. As other brain-behavior association 
studies using multivariate analysis based on machine learning 
(Kohoutová et al., 2020), while it is not possible to provide a definitive 
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characterization of the functional significance of each LV based on the 
analyses presented here, we here present only one possible line of 
interpretation. 

In LV1, greater behavioral composite score was associated with 
greater behavioral measures that we interpreted as general psychopa-
thology and higher-cognitive control disabilities (including impulsive-
ness, mood lability, dysfunctional impulsivity, anxiety, depression, 
somatization, social/physical anhedonia and psychotic symptoms 
including mania, delusions and hallucinations). In line with the inter-
pretation of LV1 as general psychopathology, both cerebellar gradient 
and behavioral composite scores were higher in all diagnostic groups 
when compared with HCs. Factor-analytic studies of multiple symptoms 
and diagnoses suggest that the structure of mental disorders can be 
summarized by three factors: internalizing, externalizing, and thought 
disorders (e.g., Lahey et al., 2017). The empirical observation that even 
these three transdiagnostic latent factors are positively correlated 
(Wright et al., 2013) has given rise to a more radical hypothesis, which is 
that there is the general psychopathology (or p) factor (Lahey et al., 
2012), which is thought to reflect individuals’ susceptibility to develop 
“any and all forms of common psychopathologies”(Caspi et al., 2014). 
The p factor has been extended to index functional impairment, negative 
affect, emotion dysregulation, and cognitive deficits (e.g., attention and 
memory problems) (for a review Caspi and Moffitt (2018)). In addition, 
the parts of significant cerebellar positive weights were generally related 
to stimulus induced external stimuli induced response functions (e.g., 
fear, salience and substance), and the parts of significant cerebellar 
negative weights were generally related to gold-directed functions (in-
struction, working memory, solving). Collectively, LV1 may thus reflect 
the p factor widely discussed in transdiagnostic cohorts (Lahey et al., 
2012). 

In LV2, greater behavioral composite scores were predominantly 
correlated with greater scores in areas related to impulsivity and mood 
including ADHD symptoms and attention impulsivity. Importantly, pa-
tients with ADHD had the highest gradient composite scores. LV2 might 
thus capture inattention and impulsivity/hyperactivity symptoms which 
characterize ADHD. However, other dimensions such as depression, 
mood lability and schizoid personality were also included in LV2, which 
makes this LV more likely to be a mixture of impulsivity and mood. 

In LV3, greater behavioral composite scores were dominantly 
correlated with greater behavioral measures related to internalizing 
symptoms (including harm avoidance, social anxiety, control, and 
anhedonia) and lower externalizing symptoms (including functional and 
motor impulsivity, novelty seeking, and hypomanic personality). In 
addition, we found the parts of significant cerebellar positive weights 
were generally related to coordination functions (e.g., muscle, coordi-
nation and rhythm), and the parts of significant cerebellar negative 
weights were generally related to external stimulus induced response 
functions (e.g., fear, substance and perceiving). Combining these evi-
dence, LV3 may thus reflect an internalizing vs externalizing factor 
(Lahey et al., 2017; Wright et al., 2013). 

LV4 was predominantly associated with negative correlations with 
behavioral measures, most strongly in the executive functions (long 
delay free recall, short delay cued recall, long delay cued recall, short 
delay free recall, and visual reproduction delayed recall). LV4 might 
thus dominantly reflect executive dysfunction, although other behav-
ioral domains also played a significant role in the behavioral composi-
tion of LV4 including restlessness, somatization, and persistence. 

In the present study, we found that individuals with higher behav-
ioral (general psychopathology) composites in LV1 have diminished 
differentiation between the sensorimotor and supramodal cognitive 
systems within cerebellar functional principal gradient organizations 
across psychiatric diagnoses, which is conceptually consistent with our 
previous studies (Dong et al., 2020; Dong et al., 2021) and other 
researcher (Elliott et al., 2018). In our previous studies, we found 
schizophrenia patients showed diminished differentiation in intra- 
cerebellar, cerebellar-cerebral gradient and cerebral-cerebral gradient. 

Functional principal gradient organizations in the brain have been 
proposed to reflect an architecture that optimizes the balance of exter-
nally and internally oriented functioning (Mesulam, 1998). In gradient 
organization, association areas are located at maximal distance from 
regions of primary areas that are functionally specialized for perceiving 
and acting in the here and now, supporting cognition and behavior not 
constrained by the immediate environment (Murphy et al., 2018; Mur-
phy et al., 2019; Wang et al., 2019). The intricate neuronal circuitry of 
the cerebellum has been hypothesized to function as a “forward 
controller,” creating internal models of how a given behavioral output 
will dynamically fit with contextual information (Ito, 2008), which is 
critical for monitoring and coordinating information processing in the 
service of mental processes (Andreasen et al., 1998; Schmahmann et al., 
2019; Schmahmann and Sherman, 1998). Therefore, the diminished 
network differentiation would unavoidably result in ineffective func-
tional specialization, leading to a blurred boundary between externally 
oriented immediate environment and internally abstract cognitive pro-
cessing (Murphy et al., 2018; Northoff and Duncan, 2016), which might 
reflect an imbalance of externally and internally oriented functioning. 

Regarding LV2-4, individuals with higher behavioral composites 
have higher functional segregation between the sensorimotor and 
supramodal cognitive systems within cerebellar functional principal 
gradient organizations across psychiatric diagnoses. The effective brain 
function is supported by the maintenance of subnetworks segregation as 
well as their integration (Wig, 2017). Therefore, higher functional 
segregation may contribute to the inefficient integration of bottom-up 
sensory information with top-down processes. 

Notably, Kebets and colleagues investigated RSFC-informed di-
mensions of psychopathology in the CNP dataset (Kebets et al., 2019), 
focusing on connectivity within and between cerebral and subcortical 
areas and derived a general psychopathology variable similar to LV1 in 
our study (other LVs were different), indicating that cerebral and cere-
bellar analyses might offer complementary information regarding the 
relationship between brain activity and behavioral measures. Future 
studies analyzing both cerebral and cerebellar data might determine 
whether cerebellar data offers similar or distinct information regarding 
the relationship between brain activity and behavioral measures when 
compared to analyses of cerebral data. 

4.3. Limitations 

While providing novel evidence for associations between cerebellar 
hierarchical organization shown by fMRI and different dimensions of 
psychopathology, our analyses can provide only correlational – not 
causal – inferences between cerebellar function and behavior; future 
interventional experiments such as brain stimulation studies may be 
able to demonstrate not only an association but also a causal link be-
tween cerebellar function as indexed by functional gradients and 
behavioral measures. Another limitation that can be addressed in future 
research includes the relatively limited range of diagnostic categories in 
the patient population (ADHD, SZ, and BD); future research may extend 
our analyses to include additional patient populations. The analyses on 
the impact of medication and substance use were exploratory in our 
study; future studies with higher statistical power might adopt stronger 
statistical thresholds to study medication and substance use effects. In 
addition, because this dataset used in this study did not provide infor-
mation of comorbidities in this cohort, we cannot evaluate the potential 
effect of comorbidities on the observed results. And, it should be 
acknowledged that the sample size for the CNP dataset is relatively 
small, especially for a multivariate analysis including thousands of 
variables. Meanwhile, considering there was about 0.1 drop from 0.16 to 
0.27 to 0.07–0.16 in the terms of correlation between cerebellar 
gradient and behavioral composite scores in the test folds when ignoring 
diagnostic groups, we acknowledged that diagnostic groups may have a 
certain impact while this impact did not reach statistically significant 
level. This may arise from the limited diagnostic groups including in the 
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CNP cohort, which might lead to the discontinuity in terms of psycho-
pathology. Future studies employed larger sample size and with more 
diagnostic groups would be helpful to replicate the observed di-
mensions. Although we used all the behavioral measures (N = 119) in 
the present study, only 55 measures mainly focused on the assessments 
of impulsivity, memory, and executive functioning were included in the 
PLS analysis when considering the availability of each measure for each 
subject, with some other measures such as psychosis and moods less 
represented. Such selection bias might influence the derived results. 
Future study would be helpful to replicate the derived results using 
dataset with broader assessments for psychopathology, which would 
also be helpful to more convincedly determine the name of each 
dimension. 

5. Conclusions 

Our results support an association between cerebellar functional 
connectivity gradients and multiple behavioral dimensions across 
healthy subjects and patients diagnosed with a variety of mental disor-
ders. These findings highlight the importance of cerebellar function in 
transdiagnostic behavioral dimensions of psychopathology, and 
contribute to the development of cerebellar neuroscience as a tool that 
may significantly contribute to the study and classification of trans-
diagnostic dimensions of psychopathology. The present findings also 
call on researcher to pay more attention to the role of cerebellum in the 
dimensions of psychopathology, not just within the cerebral cortex. 
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