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Although emerging evidence has implicated structural/functional abnormalities of

patients with Autism Spectrum Disorder(ASD), definitive neuroimaging markers remain

obscured due to inconsistent or incompatible findings, especially for structural imaging.

Furthermore, brain differences defined by statistical analysis are difficult to implement

individual prediction. The present study has employed the machine learning techniques

under the unified framework in neuroimaging to identify the neuroimaging markers of

patients with ASD and distinguish them from typically developing controls(TDC). To

enhance the interpretability of the machine learningmodel, the study has processed three

levels of assessments including model-level assessment, feature-level assessment, and

biology-level assessment. According to these three levels assessment, the study has

identified neuroimaging markers of ASD including the opercular part of bilateral inferior

frontal gyrus, the orbital part of right inferior frontal gyrus, right rolandic operculum,

right olfactory cortex, right gyrus rectus, right insula, left inferior parietal gyrus, bilateral

supramarginal gyrus, bilateral angular gyrus, bilateral superior temporal gyrus, bilateral

middle temporal gyrus, and left inferior temporal gyrus. In addition, negative correlations

between the communication skill score in the Autism Diagnostic Observation Schedule

(ADOS_G) and regional gray matter (GM) volume in the gyrus rectus, left middle

temporal gyrus, and inferior temporal gyrus have been detected. A significant negative

correlation has been found between the communication skill score in ADOS_G and the

orbital part of the left inferior frontal gyrus. A negative correlation between verbal skill

score and right angular gyrus and a significant negative correlation between non-verbal

communication skill and right angular gyrus have been found. These findings in the study

have suggested the GM alteration of ASD and correlated with the clinical severity of

ASD disease symptoms. The interpretable machine learning framework gives sight to

the pathophysiological mechanism of ASD but can also be extended to other diseases.
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1. INTRODUCTION

Autism Spectrum Disorder, known as ASD, is a complex
neuro-developmental disorder and has been characterized by a
series of symptoms including early-onset difficulties in social
communication as well as restricted, repetitive behaviors and
interests (Pagnozzi et al., 2018). The symptoms of ASD generally

occur within the first 3 years of life and tend to last even
one’s whole life (Hazlett et al., 2017). ASD brings significant
impairments on an individual’s language, emotions, behavior,
self-control, learning, and memory and also is accompanied
by intellectual disability. Moreover, it is reported that patients
with ASD are far more likely to encounter premature death
than healthy controls (Hirvikoski et al., 2015). According to

the Morbidity and Mortality Weekly Report (MMWR) Series
published by the Centers for Disease Controls and Prevention
(CDC) in the United States, the prevalence of ASD among

children has increased from 1 in 150 to 1 in 54 over 16 years (from
2000 to 2016) and the incidence rate of ASD was 4.3 times higher
in boys than girls (Maenner et al., 2020) in 2016. For each patient
with ASD, the average lifetime social cost is approximately $3.6
million (Cakir et al., 2020).

Actually, if ASD is unable to be detected and intervened
at an earlier age, the impairments are irreversible. Therefore,
early and accurate identification and diagnosis are crucial to
improving the life quality of ASD patients and their families.
Unfortunately, it is notoriously difficult to diagnose, especially
in children, since the cause of ASD is a result of combined
factors, including genetics, the structure and function of the
brain, as well as environmental influences (Rakić et al., 2020).
Until now, there are still no effective medical treatments for ASD.
For the current practice guidelines to assess, diagnose and treat
ASD, it is recommended to use the behavioral observation of
symptomology following the Diagnostic and Statistical Manual
(Fifth Edition) (DSM-5) (American Psychiatric Association,
2013) symptom criteria and the International Classification of
Mental and Behavioral Disorders (Tenth Edition) (ICD-10)
(Organization, 1993). However, uniformity is lacking while using
these practice guidelines, so it is probably prone to misdiagnosis
(Eslami et al., 2021). Furthermore, these guidelines cannot point
out the biological bases related to behavioral symptoms due to
unclear neuroanatomy. Finally, these limitations have resulted in
calls for more optimal diagnostic approaches for ASD.

In the last few decades, advances in non-invasive
neuroimaging techniques and analysis have provided crucial
knowledge to uncover patterns of brain structure and function
that would be symptomatic for the autism spectrum. The vast
majority of statistical methods on Structural MRI have intended
to explore the common patterns between patients with ASD
and healthy groups, but previous volumetric and morphological
analysis on structural MRI often has derived contradicted
results. For example, some research work reported decreased
volumes of the amygdala for ASD (van Rooij Daan et al., 2017)
while others did not find significant alterations (Maier et al.,
2015). Focusing on the hippocampus volumes, some reported
its reduction, others reported its enlargement or no changes
(Barnea-Goraly et al., 2014; Maier et al., 2015). Xiao et al.

(2014) has found that both gray and white matter (WM) has a
significant increment with ASD, and Hazlett et al. (2017) has
pointed out brain volume overgrowth is related to the emergence
and severity of ASD. While Palmen et al. (2005) and Jou et al.
(2011) have noted that there is no difference or decreased
WM volume between ASD and healthy controls, and Riddle
et al. (2016) conducted voxel-based morphometry analysis and
found that the total brain volume and the left anterior superior
temporal gyrus increased for children aged 2–4 with ASD. But
these brain structural abnormalities are subtle at later ages
(Riedel et al., 2014). These inconsistent findings are most likely
due to different collecting approaches and limited sample size
with heterogeneous characteristics of subjects (Riddle et al.,
2016). Moreover, traditional statistical analysis is based on mass
univariate techniques which process a single voxel independently
and ignore the relationship between voxels (Bonnici et al., 2012;
Samartsidis et al., 2016). Furthermore, it defines the common
pattern at the level of groups and is unable to predict the
unknown sample at the level of individuals (Zhutovsky et al.,
2019; Hu et al., 2021).

Most recently, the rapid advance of machine learning has
made it becomes possible to explore the underlying neural
mechanisms and provide accurate predictions and convincing
explanations for ASD from various aspects (Khodatars et al.,
2020; Eslami et al., 2021). Knutson (2013) has pointed out that
machine learning can detect differences in neuroimaging data
that might not be detected with traditional univariate analysis.
In previous studies, typical statistical machine learning and
deep learning have been utilized to identify ASD from NC in
terms of structural and functional alterations. Statistical machine
learning requires the design of handmade features (feature
extraction/feature selection) and implement the identification of
patients with ASD based on these features (feature classification).
Ecker et al. (2010) has applied SVM to investigate the whole-brain
differences of GM and WM volume on 44 subjects and obtained
significant predictive power. Additionally, it has been found that
these brain differences are related to symptom severity. Ecker
et al. (2010) and Wee et al. (2014) have extracted morphological
features based on structural images and used SVM or multi-
kernel technique to achieve satisfactory results. Furthermore,
Zheng et al. (2018) have constructed a multi-feature-based
network based on morphological features to explore the cortico-
cortical similarities of ASD. Bilgen et al. (2020) have modeled
the morphological relationship between pairs of ROIs with a
cortical networks and verified the classification performance
of different machine learning methods. Concerning female
children, Calderoni et al. (2012) have detected the abnormality
of the gray matter volume based on SVM-RFE (Leung et al.,
2006; ChenZhiHong et al., 2020) and found the increased cortical
volume in some brain regions involving the left superior frontal
gyrus (SFG). In addition, bilateral SFG and right temporoparietal
junction (TPJ) resulted in the appearance of some atypical
symptoms of ASD and might be relevant to the pathophysiology
of female children in ASD. These findings are helpful to reveal
the important influence of the structural alterations and the
relationship between the brain structure and the pathophysiology
of ASD.
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However, the lack of a sufficiently large sample at a single
site probably leads to poor generalizability that is notably
serious for neuroimaging due to limited participants and super-
high dimensionality of data. Consequently, the investigation
of large sample data from multi-site has attracted increasing
attention. Some studies (Spera et al., 2019; Mwiza et al.,
2020) have figured out the superiority of machine learning
for the classification of multi-site data based on fMRI or
the combining structural and MRI in the Autism Imaging
Data Exchange database (Di Martino et al., 2017). Due to
the excellent performance of deep learning in the field of
artificial intelligence on large sample data, some researchers have
begun to detect abnormalities of functional connectivity based
on deep learning. Deep learning has combined dimensionality
reduction and feature classification and implemented the end-
to-end classification model automatically, which has achieved
satisfaction performance (Eslami et al., 2019; Sherkatghanad
et al., 2020). Furthermore, some attempts have been done to fuse
structural and functional features with themodel of deep learning
to improve the classification performance (Rakić et al., 2020).
But it cannot be denied that deep learning handles data with
the mechanism of a black box and it is so hard to identify the
abnormal brain regions and connect the classification accuracy
with the underlying mechanism of ASD. Furthermore, multi-
site data also has brought the issue of data heterogeneity due
to different scanning parameters and participant populations.
The direct way to address the heterogeneity issue is to apply
dimensionality reduction to transform source data into features
in the field of machine learning (Wang et al., 2020). Furthermore,
these studies also utilized leave-one-site-out cross-validation to
evaluate the classification performance in the expectation of
reducing the impact of heterogeneity simultaneously (Rakić
et al., 2020; Eslami et al., 2021). In order to make the results
robust, Ashourvan et al. (2016) have further proposed intra-site
cross-validation and inter-site cross-validation and achieved 65%
accuracy with functional connections (FC) to identify ASD from
normal control.

In fact, detecting the structural/functional brain alterations
is vital to reveal the pathological mechanism of ASD. In
particular, these brain regions with obvious differences can
be recognized as the neuro-imaging biomarkers related to
the disease. Based on this kind of neuro-imaging biomarkers
(brain regions), achieving excellent classification performance
even from different multi-sites would be the most desirable
and helpful in the clinical diagnosis. Meanwhile, aiming at a
few investigations on volumetric changes based on machine
learning, this study has applied machine learning techniques
followed the unified framework to implement model-level,
feature-level, and biology-level assessment successively. First
of all, a searchlight-based classification method has been used
to detect the volumetric changes locally and some candidate
brain regions have been defined based on the areas of the
volumetric changes at the model-level assessment; Regarding
distinguished brain regions, this study has processed the “visual
lesion” analysis at the feature-level assessment. Stability based on
nested cross-validation and multi-site validation of each region
has been evaluated. The candidate regions with good stability

performance have been preserved and considered as candidate
biomarkers related to ASD. Finally, this study investigated
the relationship between candidate biomarkers and symptom
severity and analyzed our results with previous findings.

The main contributions of the study are discussed as follows:
(1) Previous machine learning studies on ASD mainly focus
on the classification performance or the important features.
Furthermore, this study paid attention to the interpretability of
the machine learning model to explore abnormal brain regions
related to ASD and conducted model level and feature level
assessment to ensure the robustness and stability of the results.
(2) The correlation analysis between abnormal brain regions and
clinical severity in our study has further proved the relationship
between the volume changes of some specific brain regions
and the clinical symptom. (3) The findings in our study are
partly consistent with previous research work. The abnormal
gray matter (GM) volume in the temporal lobe, Broca and
Wernicke area probably provides the support for the social brain
hypothesis and the brokenmirror theory of ASD, which is helpful
to understand the neuroanatomy of ASD.

The structure of this study is as follows: First, in section 2,
we provide a brief introduction to the pre-processing procedure
and statistical analysis of sMRI data. In section 3, we describe
the machine learning workflow in detail. Experimental results
and discussion are provided in section 4. Finally, in section 4, we
conclude the study and discuss the future direction.

2. MATERIAL

2.1. Participants
All data carried in the present study came from the Autism
Imaging Data Exchange (ABIDE II) (http://fcon_1000.projects.
nitrc.org/indi/abide/abide_II.html). Briefly, ABIDE with ABIDE
I andABIDE II is a public repository that provides structuralMRI
and resting-state fMRI acquired on ASD and matched control
subjects for the purpose of data sharing and scientific research
(Martino et al., 2013). The ABIDE II includes 1,114 data sets
from 19 independent sites which comprise 521 participants with
ASD and 593 typically developing controls (TDC) with the age
from 5 to 64. All participants in ABIDE have received approval
from the Institutional Review Board (IRB) of each site. In
the present study, we have selected three independent datasets
from Georgetown University (GU), Oregon Health and Science
University (OHSU), and University of California Los Angeles
(UCLA) which are collected by the same scanner (Siemens) and
all participants are children with the age from 7 to 15 to reduce
the variability of multi-site neuroimaging data. Since GU has the
greatest participants, machine learning methods were conducted
onGUwith nested cross-validation. Furthermore, we also trained
machine learning models for GU and tested them on OHSU and
UCLA to verify their robustness. Demographics information of
participants is summarized in Table 1. The scanning parameters
of the three sites are listed in Table 2.

2.2. MRI Data Pre-processing
All structural images were processed using the SPM8 package
(Welcome Trust Center for Neuroimaging, London, UK,
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TABLE 1 | Demographics information.

Site Gender(M/F) Age Full scale IQ

NC ASD NC ASD NC ASD

GU 28/27 43/8 10.448 ± 1.696 10.896 ± 1.535 121.46 ± 13.808 118.3 ± 15.377

OHSU 27/29 30/7 10.38 ± 1.636 11.81 ± 2.271 117.46 ± 11.968 105.97 ± 16.734

UCLA 11/5 15/1 9.3 ± 2.09 11.13 ± 2.247 115 ± 13.05 102.06 ± 13.959

TABLE 2 | The scanning parameters of structural MRI imaging in Georgetown

University (GU), Oregon Health and Science University (OHSU), and University of

California Los Angeles (UCLA) with Siemens.

Site Voxel size(mm
3) Flip angle(deg) FOV(mm) TR(ms) TE(ms) T1(ms)

GU 1× 1 × 1 7 256 × 256 2530 3.5 1100

OHSU 1× 1 v 1.1 10 256 × 256 2300 3.58 900

UCLA 1× 1 × 1.2 9 256 × 256 2300 2.86 853

http://www.filion.ucl.ac.uk/spm/software/spm8/) and the VBM8
(Voxel-Based Morphometry) toolbox (http://dbm.neuro.uni-
jena.de/vbm) running under Matlab R2014a (Mathworks). At
first, all T1-weighted images were corrected for bias-field
inhomogeneities and then segmented into GM, WM, and CSF
(cerebrospinal fluid) based on a tissue probabilitymap (Mazziotta
et al., 1995). The segmented GM/WM image was spatially
normalized to the “IXI500_MNI152” template based on the
DARTEL algorithm (Ashburner, 2007). After that, non-linear
warping for the effect of spatial normalization was corrected
to generate GM/WM modulated normalized images. Finally,
spatial smoothing (Gaussian kernel with 6 mm full-width at half-
maximum) was conducted on GM/WM images to remove noise.

2.3. Statistical Analysis
In the present study, a two-sample t-test has been employed
on the GU dataset with age, gender, Total Intracranial Volume
(TIV) as the effect-of-no-interest covariates to identify group
differences between ASD and TDC. A significance level of p <

0.001 (uncorrected) was established with an extent threshold of
50 voxels. Meanwhile, an absolute threshold mask of 0.1 was used
on GM/WM volume images to avoid potential edge effects.

3. METHODS

This study aimed to identify the brain abnormality and predict
ASD from TDC via machine learning techniques. However,
neuroimaging-based ML models like the “black-box” and unable
to be understood from the prospect of neuroscience. To
address this issue, Kohoutov et al. (2020) has developed a
unified framework to enhance the interpretability of ML models
and provide mechanistic insights into underlying neural or
disease processes. The proposed framework contains a three-
stage process of assessment including Model-level assessment,
Feature-level assessment, and Biology-level assessment. In the
first stage, the ML model has been built from observations and

assessed in terms of its sensitivity, specificity, and generalizability.
In the second stage, significant features have been identified
from a prediction within the model. Finally, the neuroscientific
plausibility of the MLmodel has been proved with evidence from
previous literature and other studies.

However, ML models based on neuroimaging are often built
on numerous features and limited participants, which makes the
model is prone to overfitting and leads to poor generalization
and expensive computational cost even if dimensional reduction
techniques have been used. Moreover, isolated features are
often insufficient to acquire satisfactory predictive performance
and explain the model performance. Consequently, the study
has designed a neighborhood-to-regional machine learning
workflow within this unified framework to identify structural
alteration and discriminant ASD from TDC. The workflow
proposed in the study has been illustrated in Figure 1.

3.1. Model-Level Assessment
First, the study has built an ML model based on the searchlight
technique (Kriegeskorte et al., 2006). A spherical window is
centered at each voxel to generate a data matrix from the
voxel and its neighbors. In light of the spherical window,
PCA(Principal Component Analysis) has been used to reduce
the dimensionality of the matrix, and SVM(Support Vector
Machine) has been used to achieve the classification.

3.1.1. Principal Component Analysis
Supposed data matrix obtained from training data x =

{x1, x2, ...xm} ∈ R
m×n is obtained from a spherical window,

where m is the number of subjects in the training dataset, n
represents the voxel number centered a specific voxel within
a spherical window, PCA (Wold et al., 1987) has been used
to reduce the dimensionality of the matrix by transforming
high-dimensional data into lower-dimensional features while
preserving its maximum variance. To this end, data points are
projected from high-dimensional space to low-dimensional space
with the following linear combinations:

y =

n
∑

j=1

ajxj = Xa (1)

where a = {a1, a2, ..., an} ∈ R
n×k and k ≪ n, y is the

low-dimensional features. Meanwhile, the variance of the low-
dimensional feature is given by:

var(Xa) = aTSa (2)
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FIGURE 1 | The machine learning workflow proposed in the study.

where S is the symmetric covariance matrix of data samples.
Hence, the linear combination with maximum variance can be
achieved by optimizing the following problem:

max aTSas.t.aTa = 1 (3)

In light of the Lagrangian multiplier method with the restrictions
of orthogonality of different coefficient vectors, we can obtain the
following equation easily:

Sa− λa = 0 ⇐⇒ Sa = λa (4)

where a is the orthonormal eigenvector of the covariance
matrix S and λ refers to the corresponding eigenvalue. Thus,
the maximum variance corresponds to the largest eigenvalue
as follow:

max var(Xa) = max aTSa = max λaTa = max λ (5)

As a consequence, the eigenvectors of S corresponding to the first
k largest eigenvalues can be considered as the coefficient vectors
a and these linear combinations Xak are called the principal
components (PCs) of the dataset. The quality of a given PC Xaj is
measured according to the following proportion of total variance:

πj =
λj

∑n
j=1 λj

=
λj

tr(S)
(6)

where tr(S) denotes the trace of S, and λj is the jth eigenvalue of
S. The proportion of total variance preserved by a set of S of PCs
can be expressed as a percentage of total variance as follows:

k
∑

j=1

πj =

∑k
j=1 λj

tr(S)
(7)

In practice, it is common to use some predefined percentage of
the total variance to decide how many PCs should be retained,
rather than setting the number of the coefficient vector k directly.
In our study, 80% of total variability has been used.

3.1.2. Support Vector Machine
After that, supposed a set of feature-label pairs

(

fi, yi
)

, i =

1, . . . ,m, f i ∈ R
k, yi ∈ {−1,+1}, the classification with

linear SVM (Fan et al., 2008) has been implemented according
to solving the following unconstrained optimization problem:

min
w

1

2
wTw + C

l
∑

i=1

ξ
(

w; fi, yi
)

(8)

where C is a penalty parameter and the loss function

ξ
(

w; fi, yi
)

= max
(

1− yiw
T f i, 0

)2
.

When a new testing data point x arrives, it can be projected
into low-dimensional space by PCA as follows:

x′ = xa (9)

and then the low-dimensional feature x′ is predicted as positive
if wTx > 0 and negative, otherwise. In the present study, the
number of the coefficient vector k of PCA is determined when
preserving the energy of PCs is 80% and the penalty parameter
C = 1 of linear SVM is used in default.

The classification accuracy of a spherical window around a
specific voxel has indicated how well centered voxel in the local
spherical neighborhood differentiates between different groups.
According to slide the spherical searchlight window on each voxel
of GM/WM images, a 3D accuracy map has been obtained to
explore the local spatial pattern of GM/WM volume. The ML
model based on the neighborhood window is useful to relieve
overfitting and computational cost problem.

In order to assess the robustness of the results, the 5-fold
cross-validation has been employed. For 5-fold cross-validation,
the dataset has been divided randomly into five equal subsets.
One subset has been used for testing and the other subsets
have been used for training machine learning models. Repeating
this process five times, the average 3D accuracy map has been
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obtained to evaluate the local structural differences between
ASD and TDC ultimately. Generally, 5-fold cross-validation also
has been repeated several times to enhance the robustness of
the results. The higher accuracy of the voxels have, the more
significant structural changes around the voxels. Similar to the
previous study (Feng et al., 2012), a rigorous threshold (70% in
the present study) has been set to identify meaningful clusters
(features) with a cluster size larger than 50 voxels. The brain
regions involved in these clusters can be considered as candidate
brain regions that are related to structural alteration.

3.2. Feature-Level Assessment
Feature-level assessment in the study has processed the ‘virtual
lesion’ analysis based on these candidate brain regions (Chang
et al., 2015) involved in the above clusters. Originally, the
“virtual lesion” analysis has been applied to investigate how
individual regions or networks contribute to the prediction
of ML models by removing or using each region or network
at a time from the model based on a selected parcellation.
Based on AAL parcellation, we have divided the clusters
identified in model-level assessment into different brain regions
and utilized the “virtual lesion” analysis to investigate their
classification performance separately based on three different
ML models including PCA+Ridge, PCA+SVM, and Bagging. For
PCA+Ridge and PCA+SVM, PCA has been used to reduce the
dimensionality of data, and Ridge/SVM has been used as the
classifier, respectively.

3.2.1. Ridge Classifier
Ridge method has been proposed to solve the regression problem
originally by imposing a penalty on the coefficient vector w on
the following objective function (Rifkin et al., 2003):

min
w

‖Xw− y‖22 + α‖w‖22 (10)

where X is the dataset, y is the data label. The penalty factor
α is used to control the amount of shrinkage. The larger
the value of α, the greater the amount of shrinkage. When
utilized for classification problems, the Ridge classifier converts
binary targets y to {−1,+1} and treats them as regression tasks,
optimizing the above objective function.

3.2.2. Bagging Classifier
As a kind of ensemble algorithms, the bagging method has used
a base estimator to build several instances from random subsets
of the original training set and then average the predictions of
these instances to drive a final prediction, which is helpful to
reduce the variance of a base estimator. In this present study,
the base estimator used a decision tree by default. Given training
vectors xi ∈ R

n, i = 1, . . .m and the label vector y ∈ R
l, a

decision tree employs a tree to model the classification problem,
which partitions the feature space recursively to make samples
with the same label grouped together. Supposed the data at node
m be expressed by Qm with Nm samples. For each candidate split
θ =

(

j, tm
)

consisting of a feature j and threshold tm, partition

training data into Q
left
m (θ) and Q

right
m (θ) subsets as follows:

Q
left
m (θ) =

{

(x, y) | xj <= tm
}

(11)

Q
right
m (θ) = Qm\Q

left
m (θ) (12)

The “best” split has been determined according to the following
objective function:

θ∗ = argminθ G (Qm, θ) (13)

where

G (Qm, θ) =
N

left
m

Nm
H

(

Q
left
m (θ)

)

+
N

right
m

Nm
H

(

Q
right
m (θ)

)

(14)

andH (Qm) is the impurity function using Gini index to evaluate
the performance of the candidate split whether they grouped
samples with the same label into the same group:

H (Qm) =
∑

k

pmk

(

1− pmk

)

(15)

where pmk is the probability of picking up a data point with class

label k in nodem. For subsetsQleft
m (θ∗) andQ

right
m (θ∗), the same

procedure was executed recursively until the maximum depth
is reached.

3.2.3. Hyperparameter Tuning Based on Optuna
Since ML models are sensible to the setting of hyper-parameters,
the hyper-parameter tuning technique based on Optuna has been
employed (Akiba et al., 2019) to seek the optimal parameters for
these models. With Optuna, the optimal percentage of the total
variance in PCA has been searched from 0.6 to 0.99 with step
0.1. The optimal penalty parameter C of SVM and the optimal
penalty coefficient α of Ridge have been searched from 10−10

to 1010 satisfied a uniform distribution in the log domain. For
Bagging, the optimal number of the estimator has been searched
from 3 to 30 with step 1. The optimal percentage of samples and
features to draw from dataset X to train each base estimator has
been searched from 0.5 to 1 with a uniform distribution in the
linear domain.

3.3. Biology-Level Assessment
To explore the association between the regional GM volume
reduction and the clinical severity of ASD, the study has
performed correlation analysis of regional GM volume of
candidate biomarkers with the clinical scores with ADI_R
(the Autism Diagnostic Interview–Revised) (Lord et al., 1994)
and ADOS_G (the Autism Diagnostic Observation Schedule)
(Lord, 2000). ADI_R and ADOS_G are considered as the
“gold standard” assessment measures in the evaluation of
ASD. ADOS_G is a semi-structured, standardized assessment of
communication, social interaction and play and imaginative use
of materials for individuals. However, unlike ADOS_G, ADI_R is
a comprehensive parent interview to measure social interaction,
communication and language, and repetitive, restricted, and
stereotyped interests and behavior. Scores assessed by ADOS_G
and ADI_R are able to reflect the symptom severity of ASD.
Meanwhile, the study also has compared these findings with
previous literature in the section of “Discussion” to explore the
neurobiological meaning of the structural alteration.
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4. EXPERIMENTS AND RESULTS

4.1. Experiments Setting
All experiments have been implemented on Ubuntu 16.4 with
Python 3.7 and sklearn package 2.4. In the stage of feature-level
assessment, 5-fold nested cross-validation has been conducted
on GU dataset with ten iterations to evaluate the robustness
and generalizability of ML models on individual candidate brain
regions. For 5-fold nested cross-validation, it consists of an outer
loop and an inner loop. During the outer loop, the dataset is
split randomly into five equal subsets. Among these subsets, one
subset is test data and the other subsets are training data. During
the inner loop, the training data further is divided into five equal
subsets, one subset is validation data and the rest subsets have
been used to test the performance of different hyper-parameters.
Therefore, the inner loop is used to tune the hyper-parameters,
and the outer loop is used to estimate the model performance
with optimal hyper-parameters. Besides, a multi-site validation
also has been adopted, which trains ML models on GU and
tests the predictive performance of the models using OHSU
and UCLA. For each ML model of an individual brain region,
the stability analysis has been conducted in terms of sensitivity,
specificity, and permutation test. Sensitivity and specificity are
two important metrics to measure the predictive ability of the
ML model. Selecting the optimal balance between sensitivity and
specificity depends on the purpose for which the test is used. The
study has defined a threshold of 20% to quantify the differences
between sensitivity and specificity, and a good balance between
sensitivity and specificity should be less than the threshold.
Furthermore, the permutation test (Ojala et al., 2010) was also
used to evaluate the statistical significance of the predictive
performance for each brain region. For the permutation test,
the class labels of training data were randomly permuted and
then 5-fold cross-validation was performed on the permuted
training set. The permutation was repeated 5,000 times. During
the permutation test, the statistical significance p is defined as the
percentage of the accuracies that was equal to or greater than the
accuracies obtained from the non-permuted data. Brain regions
with p < 5% (p < 0.05) were considered statistically significant.
Brain regions without a good balance between sensitivity and
specificity and without statistical significance in permutation
tests have been excluded from candidate brain regions. The
final candidate brain regions have considered the structural
biomarkers related to ASD.

4.2. The Results of Statistical Analysis
The between-group differences found by the two-sample t-test
on GU have been illustrated in Figure 2 and Table 3. It can be
found that the atrophy of the GM volume is widespread covering
the frontal lobe, parietal lobe, temporal lobe, occipital lobe, insula
and the limbic system, especially nearby insula, temporal lobe,
and inferior parietal lobule. The atrophy brain regions involved
in brain function including visual information processing (e.g.,
BA18, BA19, and BA20), the language understanding, processing
and representation and auditory processing (e.g., BA21, BA22,
BA39, BA40, BA44, and BA47), emotion regulation (e.g., BA23),
Olfactory function (e.g., BA25, BA28), and face recognition

(e.g., BA37), cognitive function (e.g., BA10), visual-motor
coordination (e.g., BA7), and emotional correlation (e.g., BA13).
ASD patient’s dysfunction to some extent probably means that
the decrease of GM volume is related to ASD. In addition, there
were no significant volumetric differences for WM.

4.3. The Results of Model-Level
Assessment
According to the findings in model-level assessment based on the
searchlight method, the study has found structural differences
of GM within twenty-four clusters, as shown in Figure 3 and
Table 4. It can be seen that these clusters have covered most
brain regions found by traditional statistical analysis, except
FFG.R,CAL.L,INS.L, bilateral MOG, and PCG.R. For these brain
regions failed to be detected in model-level assessment, the
possible reason is that the differences are not obvious, and
the areas of the clusters containing these brain regions are
small in statistical analysis, e.g., the cluster of CAL.L only has
93 volxes, MOG.R and PCG.R only have 63 and 56 voxels,
respectively. Significantly, although the peak MNI coordinates
of some clusters may be different, model-level assessment and
statistical analysis have detected similar brain regions, such as
cluster 20 (in Table 3) and cluster 19 (in Table 4), cluster 21
(in Table 3) and cluster 14 (in Table 4), cluster 26 (in Table 3)
and cluster 13 (in Table 4), cluster 10 (in Table 3) and cluster 24
(in Table 4), cluster 11 (in Table 3) and cluster 20 (in Table 4).
Furthermore, we have considered abnormal clusters identified by
the model-level assessment as the features and classified them
on GU and multi-site data. The good classification performances
have been shown in Supplementary Tables 6, 7 separately to
demonstrate the effectiveness of these abnormal clusters.

4.4. The Results of Feature-Level
Assessment
For the candidate brain regions detected in model-level
assessment, the ’virtual lesion’ analysis has been further
conducted to select robust and discriminant brain regions
which can be considered the neuroimaging biomarkers of
ASD. The classification performances of final selected brain
regions with nested cross-validation and multi-site validation
have been listed in Tables 5, 6 separately. The bold values
are the best performance for these brain regions. We have
also illustrated the ROC curves of candidate biomarkers
for different ML models on the GU dataset with the best
accuracies larger than 70% in Figure 4, which include
ORBinf.L,STG.L,SMG.L,SMG.R,ANG.L,ANG.R. The ROC
curves of other candidate biomarkers on GU and multi-site data
have been provided in the Supplementary Material.

4.5. Neuroanatomical Correlations
Between Regional GM Volume and
Symptom Severity
We have processed correlation analysis to assess the relationship
between the regional GM volume of candidate biomarkers in the
GU dataset and ASD symptom severity. Clinical scores(ADOS_G
and ADI_R) of thirty-six participants are available in GU. Results
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FIGURE 2 | The decreased Gray Matter (GM) volume detected by statistical analysis.

have revealed negative correlations between the communication
skill scores in ADOS_G and regional GM volume in gyrus rectus
(r = −0.356, p < 0.05), left middle temporal gyrus (r =

−0.330, p < 0.05), and left inferior temporal gyrus (r =

−0.339, p < 0.05). In particular, a significant negative correlation
has been found between the communication skill scores in
ADOS_G and the orbital part of the left inferior frontal gyrus
(r = −0.433, p < 0.01). For ADI_R scores, we also found a
negative correlation between verbal skill scores and right angular
gyrus (r = −0.344, p < 0.05) and a significant negative
correlation between non-verbal communication skills and right
angular gyrus (r = −0.424, p < 0.01). No significant positive
correlation between regional GM volume and clinical scores
was found.

5. DISCUSSION

Current VBM findings have delineated brain regions with
consistently increased or reduced GM volume (Cauda et al.,
2011). In this study, statistical analysis has reported a widespread

reduction of GM volume in ASDwith 7-13 years old. Research on
brain development in ASD across the lifespan has demonstrated
a complex neurodevelopmental trajectory, characterized by an
early brain overgrowth followed by undergrowth in middle
childhood and early adolescence (Courchesne et al., 2001). This
might support the findings of statistical analysis in our study.

Our results based on machine learning have demonstrated
that a widespread structural alteration of GM volume involved
in bilateral superior temporal gyrus, bilateral middle temporal
gyrus, left inferior temporal gyrus, right orbital SFG, bilateral
opercular inferior frontal gyrus, left orbital inferior frontal
gyrus, right rolandic operculum, right olfactory cortex, right
gyrus rectus, right insula, right inferior parietal lobe with
Supramarginal gyrus and Angular gyrus. Especially, multi-
site dataset validation also has verified the robustness of the
machine learning framework with three-level assessment. Since
ASD is a complex neurodevelopmental disorder, involving
language, reading, emotion, social interaction impairments, the
quantitative meta-analysis in Geschwind and Levitt (2007) and
Maximo et al. (2014) have suggested that ASD is unlikely to
be associated with the abnormalities in one specific region
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TABLE 3 | The different brain regions detected by statistical analysis on the GU dataset.

Cluster Brain regions BA Peak MNI coordinates(mm) Cluster size T

ID x y z (voxels)

1 MFG.R - 51 43.5 10.5 83 3.949

2 10 27 52.5 25.5 223 3.8232

3 - 33 39 25.5 99 3.4774

4 - 28.5 30 48 80 3.6508

5 ORBinf.L - –42 34.5 -19.5 83 3.4724

6 - –18 36 –15 68 3.6211

7 - –40.5 51 –4.5 58 3.4671

8 IFGoperc.L 47 -19.5 18 -21 707 3.7632

9 CAL.L,LING.L 18 4.5 –88.5 –6 221 3.7435

10 SFGdor.R - 28.5 3 58.5 55 3.5629

11 IFGtriang.R, IFGoperc.R - 52.5 19.5 27 159 4.3846

12 MTG.L - –67.5 –40.5 3 100 4.1571

13 - –54 –9 –13.5 448 4.2016

14 MTG.R 37 48 –70.5 4.5 259 4.1095

15 21,22 54 -39 –6 912 4.7229

16 INS.L,IFGoperc.L, IFGtriang.L 44 –55.5 18 1.5 395 3.8977

17 ITG.L 20,37,21 –51 –39 –22.5 594 3.9155

18 FFG.R - 30 –12 –39 138 3.708

19 20 42 –37.5 –25.5 189 3.9689

20 SMG.L,IPL.L, ANG.L,MOG.L, STG.L,SOG.L, SPG.L 40,39,19, 7,22 –19.5 –64.5 36 4,006 4.6061

21 ANG.R,SMG.R, IPL.R,MOG.R 40,39,19, 7,22 51 –64.5 42 2,081 4.3024

22 IOG.L,ITG.L 19,37 -52.5 –66 –6 809 4.4788

23 PCG.R 23 3 –39 22.5 129 3.6955

24 OLF.L,REC.R, OLF.R 25 –1.5 13.5 –12 674 3.7786

25 PHG.R 28 18 –19.5 –21 289 4.0787

26 INS.R,ROL.R,ORBinf.R, IFGtriang.R,IFGoperc.R 13,44,47 42 30 3 2998 4.7535

alone but to be linked to the abnormalities of multiple,
spatially distributed, neural systems. The finding may shed
light on the widespread differences in GM volume found in
our study.

The findings in the study have almost covered the whole
temporal lobe including bilateral superior temporal gyrus,
bilateral middle temporal gyrus, and left inferior temporal gyrus.
Since attention has been directed to explore the neurobiological
mechanism of ASD first, the abnormality of the temporal lobe has
been speculated to link with the deficits in language and social
behavior of patients with ASD (Hauser et al., 1975; Bachevalier,
1994; Kates et al., 2010). Ritvo et al. (1986) has examined
the brains of four autistic subjects and found the localized
pathological changes in the temporal lobe from autopsy-based
research. It is considered that the superior temporal gyrus is a
potential import biomarker of ASD (Pierce, 2011; Sophia et al.,
2013). Based on the VBM-Dartel technique, Riddle et al. (2016)
have revealed enlargement of the left anterior superior temporal
gyrus in ASD. It is believed (Bigler et al., 2007) that the superior
temporal gyrus plays a crucial role in social cognition, which
participates in auditory and language processing. On the other
hand, the VBM analysis has found reduced GM volume in the
middle temporal gyrus (Kohoutov et al., 2020). According to

analyze structural images of low functioning ASD children from
2 to 10 years old, the reduction of GM volume in the left inferior
temporal gyrus has been identified, which appears to be involved
in visual object perception (Riva et al., 2013). Similarly, RT et al.
(2000) have revealed the fMRI (functional MRI) alterations of the
inferior temporal gyrus when engaging in facial recognition tasks.
Zilbovicius et al. (2000) has also found the localized dysfunction
of the temporal lobe from the aspect of PET. Brothers (2002)
has proposed the concept of the social brain first in 1990, which
was defined as a group of interrelated neuroanatomical structures
which are used to process social information, recognize other
individuals and evaluate their psychological state, including
intentions, dispositions, desires, and beliefs. The temporal lobe
plays a very important role in the hypothesis of the social brain.
The posterior superior temporal sulcus recognizes biological
movements, such as eyes, hands, and other body movements and
helps to interpret and predict others’ behavior and intentions
(Allison et al., 2000). The fMRI study of patients with ASD has
shown that the differences in the activation on temporal lobe
compared with their families and normal people, and the worse
the social ability, the weaker the activation. Furthermore, it has
been found that the degree of activation was positively correlated
with the clinical manifestations of social impairment (Sugrue
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FIGURE 3 | The structural alteration by model-level analysis.

et al., 2010). The abnormality of the temporal lobe found in this
study not only supports the hypothesis of the social brain but also
suggests that the area of temporal lobe abnormalities in patients
with autism may be larger than that found in previous studies.
However, the hypothesis still needs to be further confirmed by
quantitative and qualitative autopsy reports and animal studies.

Furthermore, the study has found GM abnormalities in the
Broca area (posterior frontal lobe corresponding to BA44) and
Wernicke area (superior marginal gyrus corresponding to BA39
and angular gyrus corresponding to BA40). Meanwhile, we also
found negative correlations between GM volume in the right
angular gyrus and verbal/nonverbal communication score in
ADI_R. Language deficits are the core diagnostic characteristics
in ASD and both of Broca area and Wernicke area are associated
with language understanding. Adam et al. (2004) found that
the Wernicke area, which is responsible for the understanding
of single words, is more active than the Broca area, which is
responsible for the understanding of complex sentences and
has proposed the “underconnectivity theory” to explain why
some patients with ASD have excellent ability to process single
words, rather than complex sentences. Osbarn (2020) has found

weakened functional connectivity in the area of Wernicke.
Recently, researchers have established “the brokenmirror theory”
of autistic patients. It is supported that the dysfunction of the
HumanMirror Neuron System (MNS) is the main cause of social
and cognitive deficits in ASD (Vivanti and Rogers, 2014). The
Broca area in humans has been considered as homologous to
F5 as a part of MNS. The results in our studies also supported
the MNS dysfunction in ASD individuals. However, the relevant
evidence about the role of MNS in ASD still is not enough which
urges us to build a more perfect MNS theory to understand the
causes of social communication disorder in ASD (Southgate and
Hamilton, 2008).

For other regions identified in the present study, they have
also been reported in previous literature. Shijun (2021) has
constructed a three-dimensional residual network based on deep
learning and found the GM reduction in the orbital inferior
frontal gyrus and Rolandic operculum. Riva et al. (2013) also
found the reduced GM volume in the orbital part of the
inferior frontal gyrus. In light of the meta-analysis based on
large samples, the volume of GM in the insula and inferior
parietal lobe decreased (Cauda et al., 2011). Li et al. (2019)
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TABLE 4 | The candidate brain regions detected by model-level assessment.

Cluster Brain regions BA Peak MNI coordinates (mm) Cluster size Classification

ID x y z (voxels) Accuracy (%)

1 ITG.L,MTG.L 37 –49.5 –36 –19.5 396 74.6

2 ITG.L,MTG.L,IOG.L - –54 –66 –7.5 243 75.4

3 MTG.L - –57 –10.5 –15 285 75.9

4 - –69 –40.5 3 59 74.5

5 MTG.R 39 48 –70.5 7.5 194 75.1

6 PHG.L, HIP.L 28 –19.5 –18 –21 183 74.3

7 ORBinf.L - –18 18 –25.5 217 75.4

8 ORBsup.R,REC.R, OLF.L,OLF.R 47 16.5 25.5 –19.5 819 76.9

9 PHG.R,HIP.R - 18 –21 –21 305 75.4

10 Crus1.L - –36 –70.5 –21 99 74.2

11 FFG.L 20 –33 –36 –21 191 74.6

12 ORBinf.L,ORBmid.L, MFG.L,INS.L, IFGtriang.L,ORBsup.L 10,11,47 –43.5 54 0 2068 78.1

13 INS.R,ROL.R, IFGoperc.R,ORBinf.R, IFGtriang.R 13,47,44 31.5 30 1.5 2,499 76.6

14 ANG.R,MTG.R, STG.R,SMG.R, IPL.R 40,39, 22,7 60 -36 0 2,634 78.6

15 IFGoperc.L,INS.L, IFGtriang.L 44,13 –34.5 6 6 682 75.6

16 MOG.L 19 -37.5 –91.5 9 119 74.6

17 19 –30 -85.5 25.5 192 73.8

18 IFGtriang.R,MFG.R - 51 43.5 10.5 107 75.4

19 SMG.L, IPL.L, STG.L, MTG.L, ANG.L,PoCG.L 40,22, 39,2 –58.5 –37.5 33 4,244 78.3

20 IFGoperc.R, IFGtriang.R - 52.5 19.5 27 176 76.2

21 MFG.R 10 22.5 63 27 128 72.8

22 - 28.5 33 48 59 73.6

23 MOG.L,SOG.L, SPG.L 7 –18 –69 36 578 76.4

24 SFGdor.R - 28.5 1.5 57 102 73.5

TABLE 5 | The classification performance on GU.

Brain region PCA+Ridge PCA+SVM Bagging

ACC SEN SPE p ACC SEN SPE p ACC SEN SPE p

(%) (%) (%) (%) (%) (%) (%) (%) (%)

IFGoperc.L 65.02 66.73 63.64 0.003 65.06 60.73 69.09 0.018 62.29 65.09 60.00 0.016

IFGoperc.R 66.02 60.55 70.91 0.007 67.92 60.73 74.55 0.008 66.15 64.55 67.27 0.007

ORBinf.L 67.01 62.91 70.91 0.0013 71.77 62.91 80.00 0.0003 68.92 68.73 69.09 0.0001

ROL.R 64.11 62.73 65.45 0.003 65.11 66.91 63.64 0.0005 62.34 63.09 61.82 0.006

OLF.R 66.10 62.91 69.09 0.003 68.18 63.63 72.72 0.0009 69.96 68.73 70.91 0.008

REC.R 64.24 61.27 67.27 0.001 66.66 70.00 63.63 0.008 63.38 66.73 60.00 0.001

INS.R 68.83 62.55 74.55 0.0005 67.97 61.09 74.55 0.0009 67.92 66.55 69.09 0.004

IPL.L 67.92 68.55 67.27 0.0003 67.97 66.91 69.09 0.006 63.2 66.55 60.00 0.001

SMG.L 76.32 72.55 80.00 0.0001 75.41 70.73 80.00 0.0001 69.74 70.55 69.09 0.0005

SMG.R 70.74 70.55 70.91 0.0001 71.65 64.73 78.18 0.001 65.15 62.91 67.27 0.005

ANG.L 65.08 63.33 66.67 0.008 72.72 81.81 63.63 0.003 63.25 66.73 60.00 0.004

ANG.R 69.91 66.73 72.73 0.001 69.00 62.91 74.55 0.009 71.73 76.36 67.27 0.001

STG.L 70.78 66.73 74.55 0.0001 70.78 61.09 80.00 0.001 67.88 64.73 70.91 0.007

STG.R 65.15 60.73 69.09 0.001 67.06 62.91 70.91 0.0009 66.02 66.73 65.45 0.007

MTG.L 72.72 81.81 63.63 0.008 61.90 60.00 63.63 0.006 68.01 66.91 69.09 0.0001

MTG.R 62.21 62.73 61.82 0.003 66.06 60.91 70.91 0.002 68.83 68.55 69.09 0.002

ITG.L 62.39 60.68 63.64 0.01 66.15 60.73 70.91 0.01 64.2 66.73 61.82 0.001

ACC, Accuracy; SEN, Sensitivity; SPE, Specificity; p-The significant level of permutation test.
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TABLE 6 | The classification performance on the multi-site dataset (OHSU and UCLA).

Brain region PCA+Ridge PCA+SVM Bagging

ACC SEN SPE p ACC SEN SPE p ACC SEN SPE p

(%) (%) (%) (%) (%) (%) (%) (%) (%)

IFGoperc.L 62.40 62.26 62.50 0.004 63.20 60.38 65.28 0.005 61.60 60.38 62.50 0.0009

IFGoperc.R 64.80 62.26 66.67 0.0009 65.60 54.72 73.61 0.004 65.60 62.26 68.06 0.001

ORBinf.L 64.00 66.04 62.50 0.0002 61.60 60.38 62.50 0.002 68.00 71.70 65.28 0.001

ROL.R 65.60 56.60 72.22 0.0002 70.4 60.38 77.78 0.0001 68.80 62.26 73.61 0.002

OLF.R 66.40 60.38 70.83 0.002 60.80 62.26 59.72 0.0007 60.87 60.47 61.11 0.009

REC.R 67.20 60.38 72.22 0.0009 65.60 60.38 69.44 0.007 63.20 60.38 65.28 0.006

INS.R 66.40 56.60 73.61 0.0003 68.70 60.38 73.61 0.0001 68.80 66.04 69.44 0.0001

IPL.L 70.40 66.04 73.61 0.0002 69.60 64.15 73.61 0.007 68.80 64.15 72.22 0.0007

SMG.L 64.80 58.49 69.44 0.0001 69.57 62.79 73.61 0.0001 66.40 62.26 69.44 0.008

SMG.R 66.40 73.58 61.11 0.0001 66.40 71.70 62.50 0.0003 65.60 67.92 63.89 0.01

ANG.L 64.35 65.12 63.89 0.0002 66.4 60.38 70.83 0.0009 66.40 62.26 69.44 0.01

ANG.R 60.80 60.38 61.11 0.001 66.09 62.79 68.06 0.008 60.87 62.79 59.72 0.0009

STG.L 68.80 66.04 70.83 0.0002 67.20 62.26 70.83 0.007 66.40 67.92 65.28 0.0001

STG.R 72.80 69.81 75.00 0.0002 72.00 67.92 75.00 0.0002 67.20 69.81 65.27 0.0003

MTG.L 64.35 62.80 65.28 0.0007 65.22 60.47 68.06 0.005 64.80 64.15 65.28 0.0007

MTG.R 68.00 66.04 69.44 0.0001 68.80 66.04 70.83 0.0002 67.20 66.04 68.06 0.0001

ITG.L 65.60 67.92 63.89 0.0002 66.96 60.47 70.83 0.0005 66.96 65.12 68.06 0.04

ACC, Accuracy; SEN, Sensitivity; SPE, Specificity; p-The significant level of permutation test.

have found that the GM volume of the bilateral gyrus rectus
decreased, and the left rectus was negatively correlated with
the clinical symptom score. Although it is not reported that
the volume changes in the olfactory cortex of patients with
ASD, the olfactory cortex is located at the anterior bottom
of the limbic system and reciprocally connected with other
structures, such as the amygdala, hippocampus, hypothalamus,
the olfactory cortex is related to emotion and memory. As
a consequence, the abnormal GM in the olfactory cortex in
ASD may lead to emotional and memory problems. It is
worth mentioning that some current studies on ASD have
found GM differences in the cerebellum, hippocampus, and
parahippocampal gyrus (Faridi and Khosrowabadi, 2017; Lotze
et al., 2019). In particular, a decreased number of Purkinje cells in
the cerebellar hemisphere have been observed (Ritvo et al., 1986).
The study only found that the differences of the parahippocampal
gyrus during statistical analysis. For model-level assessment,
we have detected the alterations in these three brain regions,
including the bilateral hippocampus, and parahippocampal gyrus
and left crus in the cerebellum. However, they have been excluded
from the candidate brain regions due to the poor performance in
stability analysis. Traut et al. (2018) have compared and analyzed
cerebellar volume of a large sample of ASD patients with normal
subjects, and reported that the change of the cerebellar volume
was significantly correlated with age, gender, and IQ rather than
ASD diagnosis. Even though some studies have reported the
differences of WM in ASD (Ecker et al., 2010; Xiao et al., 2014;
Górriz et al., 2019), our study has not found abnormal white
matter based on structural images. At present, contradictory
conclusions often have been derived from a variety of ASD

research due to the heterogeneity of subjects, including different
subtypes, different scanning parameters from different centers,
different ages and genders in ASD (Pua et al., 2017; Hiremath
et al., 2021). In addition, the inconsistent findings of research
work based on machine learning might be induced by different
feature exaction techniques. For example, Haar et al. (2016) have
achieved poor classification based on morphological features of
ROI on the multi-site dataset and suggested that anatomical
abnormalities may be only present in some distinct subgroups
of ASD, while Zheng et al. (2018) have obtained superior
classification performance with multi-feature-based networks
based on morphological features.

Our results suggest that structural MRI can provide
neuroimaging-based biomarkers for ASD. Such biomarkers
could be used to complete and improve the diagnosis and
treatment of ASD clinically (Walsh et al., 2011). On the one hand,
we can utilize the classification performance of these identified
biomarkers based on the machine learning model proposed in
the study to improve diagnostic accuracy. On the other hand, the
behavioral social malfunctioning in ASD might be modified by
neural or behavioral treatments. For example, it is also reported
that the behavioral training of facial expression communication
behavior can help to improve the neural activities of ASD
patients related to some social brain regions, such as MTG,
so as to improve their capability of expression recognition
(Bölte et al., 2015).

Although our results are consistent with some previous
reports, several limitations of our study should be acknowledged.
First, the confounding factors should be considered. ASD is
a complex disease with multiple confounding factors, such
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FIGURE 4 | The ROC curves of different methods for candidate biomarkers including ORBinf.L (left opercular part of inferior frontal gyrus) (A), STG.L (left superior

temporal gyrus) (B), SMG.L (left supramarginal gyrus) (C), SMG.R (right supramarginal gyrus) (D), ANG.L (left angular gyrus) (E), and ANG.R (right angular gyrus) (F).

as age, gender, IQ, and the inherent heterogeneity of the
disorder. Our studies attempted to control age and gender in
statistical analysis but failed to find an appropriate approach
to remove the influence of the confounding factors in machine

learning methods. On the other hand, the controlling of
confounding factors is still highly controversial in the studies
of ASD (Thomaidis et al., 2015). Some researchers have
claimed that IQ should be strictly matched or statistically
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regressed out, while others have argued that the variability
truly associated with ASD could be also discarded as “non-
specific” when attempting to control some non-specific factors,
such as IQ (Osbarn, 2020). Some studies have investigated
the gender differences in ASD (Halladay et al., 2015; Prosperi
et al., 2021) due to a high incidence rate of ASD in boys.
Second, the current study took advantage of the relatively
large sample of participants with ASD in the ABIDE II
database to process multi-site validation via machine learning.
However, we have to point that all three databases used in
our study were collected by Siemens scanner with similar
scanning parameters, which might make a less dispersion
among data. In the future, the investigation of ASD about
neuroanatomical alterations on larger samples from diverse
clinical and demographic subgroups will significantly promote
understanding neuropathology mechanism in ASD.

6. CONCLUSION

In this study, the VBM analysis has revealed a widespread
reduction of GM volume when comparing ASD with TDC.
Furthermore, our machine learning analysis followed the
unified machine learning framework has revealed candidate
neuroimaging biomarkers related to ASD and confirmed
the relationship between regional GM volume and symptom
severity. Our results have suggested that candidate neuroimaging
biomarkers are useful to characterize the profile of brain
anatomy in ASD and improve the diagnosis performance in
clinical applications.
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