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Identification of four biotypes in temporal
lobe epilepsy via machine learning on
brain images

Yuchao Jiang 1,13 , Wei Li2,3,13, Jinmei Li2, Xiuli Li4, Heng Zhang5, Xiutian Sima5,
Luying Li5, Kang Wang6, Qifu Li7, Jiajia Fang8, Lu Jin9, Qiyong Gong 4,
Dezhong Yao 10,11,12, Dong Zhou 2 , Cheng Luo 10,11,12 &
Dongmei An 2

Artificial intelligence provides an opportunity to try to redefine disease sub-
types based on similar pathobiology. Using a machine-learning algorithm
(Subtype and Stage Inference) with cross-sectional MRI from 296 individuals
with focal epilepsy originating from the temporal lobe (TLE) and 91 healthy
controls, we show phenotypic heterogeneity in the pathophysiological pro-
gression of TLE. This study was registered in the Chinese Clinical Trials Reg-
istry (number: ChiCTR2200062562). We identify two hippocampus-
predominant phenotypes, characterized by atrophy beginning in the left or
right hippocampus; a third cortex-predominant phenotype, characterized by
hippocampus atrophy after the neocortex; and a fourth phenotype without
atrophy but amygdala enlargement. These four subtypes are replicated in the
independent validation cohort (109 individuals). These subtypes show differ-
ences in neuroanatomical signature, disease progression and epilepsy char-
acteristics. Five-year follow-up observations of these individuals reveal
differential seizure outcomes among subtypes, indicating that specific sub-
typesmaybenefit from temporal surgery or pharmacological treatment. These
findings suggest a diverse pathobiological basis underlying focal epilepsy that
potentially yields to stratification and prognostication – a necessary step for
precise medicine.

Neurology urgently requires a paradigm shift in biology to establish a
neotype, based on the shared pathobiological basis, which is a neces-
sary step towards stratified medicine1. The redefinition of disease
subtypes, grounded in biological mechanisms rather than relying
solely on established clinical guidelines, offers significant advantages.
By doing so, clinical trialsmaymore effectively recruit a homogeneous
population with shared biological characteristics for targeted drug
development and interventions. Recent advancements in artificial
intelligence (AI)2, including machine learning applied to brain imaging
data, provide robust tools for classifying individuals based on their

brain characteristics. This approach to brain subtyping holds great
promise in unraveling the underlying pathophysiological mechanisms
within disease subsets, ultimately contributing to personalized
treatment3.

Epilepsy is one of the most common and serious disorders in
neurology, affecting over 70 million people worldwide4. Approxi-
mately one-third of individuals with epilepsy exhibit resistance to
antiepileptic drug therapy5. Surgery is an effective treatment for drug-
resistant focal epilepsy such as temporal lobe epilepsy (TLE)6. Anterior
temporal lobectomy (ATL), encompassing the lateral temporal
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neocortex and amygdalohippocampal structures, is a well-established
surgical approach recommended at grade A for epilepsy surgery7.
Nevertheless, around 40–50% patients fail to achieve long-term sei-
zure freedom after surgery8. This suggests that TLE may comprise
distinct subtypes rather than the same entity in all patients, even
though they may present relatively homologous clinical picture of
seizures and scalp electrophysiological changes. Multiple phenotypes
have been proposed from radiologically findings or intracranial elec-
trophysiological findings9. However, these clinical classifications may
not provide information related to the treatment prognosis. There-
fore, the current challenge lies in establishing newmethods to identify
the distinct subtypes from non-invasive data and to distinguish those
who are more likely benefit from surgery or pharmacological
treatment.

Magnetic resonance imaging (MRI) is crucial for the diagnosis and
treatment of epilepsy, especially when neurosurgical intervention is
being considered10. Accumulated evidences in TLE suggest that pro-
gressive atrophy servers as a crucial structural MRI characteristic.
Notably, patients with a higher seizure frequency exhibit a more rapid
progression of hippocampal atrophy11. Additionally, cortical thinning
in certainneocortical regions demonstrates acceleratedprogression in
individuals with a longer duration of illness12,13. However, few studies
have delved into the underlying spatiotemporal patterns of patho-
physiological processes in the brain. Recently, a data-driven mathe-
matical modeling approach successfully estimated the sequence of
disease-specific biomarker changes in TLE, providing support for the
hypothesis that atrophy progression can be inferred from cross-
sectional MRI data14. Nevertheless, the complex pathological
mechanisms of TLE suggest the existence of multiple biotypes with
distinct atrophy progressions. Thus, there is an urgent need for a
systematic characterization of spatiotemporal patterns of atrophy
progression in TLE.

AI approaches, including unsupervised machine learning techni-
ques, offer powerful tools for subtyping brain diseases15–17. However,
one major barrier in identifying differential patterns of disease pro-
gression (i.e., progression subtypes) is the lack of sufficient long-
itudinal data across the lifespan of the disease. Recently, a data-driven
machine learning algorithm called Subtype and Stage Inference (SuS-
taIn) was proposed18. This algorithm, which relies on cross-sectional
observations (e.g., single time-point MRI scans), aims to uncover
diverse neurophysiological progression patterns (i.e., SuStaIn trajec-
tories of MRI abnormalities). Once these SuStaIn trajectories are
identified, the trained SuStaIn algorithm can assess the degree of
association between an individual’s MRI data and each trajectory, as
well as the corresponding sub-stage of the trajectory (i.e., individua-
lized inference of subtypes)18. By employing SuStaIn, recent studies
have achieved identification of distinct disease progressions, including
tau deposition in Alzheimer’s disease19, gray matter atrophy in
schizophrenia20, and frontotemporal dementia21. In our recent study,
we applied SuStaIn and uncovered two stable and distinct biological
subtypes of schizophrenia, characterized by diverse psychotic profiles
and treatment outcomes. These findings suggest that the stratification
of individuals based on schizophrenia biotypes holds promise for
enhancing diagnosis and prognosis20.

In this study, our primary objective was to identify distinct tra-
jectories of gray matter atrophy in individuals with TLE using SuStaIn,
thereby classifying them to subtypes based on the spatiotemporal
patterning of atrophy. Additionally, we aimed to explore differences in
neuroanatomical signatures, clinical characteristics, and treatment
outcomes among these subtypes. In a 5-year follow-up cohort, we
evaluated prediction performance on classifying the subject who
achieves seizure freedom after surgery, through a subtype-specific
machine learning prediction classifier. This innovative stratification
approach highlights the prognostic potential of imaging-based tax-
onomy, thus informing the design of future clinical trials.

Results
Distinct pathophysiological progressions of brain atrophy
Distinct patterns of spatiotemporal progression of brain atrophy
have been identified using SuStaIn, based on cross-sectional MRI
data from 296 individuals with TLE. Three distinct trajectories of
atrophy, labeled as ‘trajectory’ 1, ‘trajectory’ 2, and ‘trajectory’ 3, were
observed (Fig. 1a-c). In ‘trajectory’ 1, the initial regional volume loss
was observed in the left hippocampus, followed by the left thalamus,
and then extended to the right thalamus and finally to the left
entorhinal cortex and cerebral cortex (Fig. 1a). Conversely, in ‘tra-
jectory’ 2, volume loss began in the right hippocampus, followed by
the right thalamus, and then spread to the left thalamus and left
hippocampus before affecting the cerebral cortex (Fig. 1b). Lastly,
‘trajectory’ 3 displayed a cortical-predominant phenotype. It was
characterized by initial reduction in the cortex, specifically involving
the bilateral middle and superior frontal lobes. Subsequent cortical
atrophy was more severe and expanded to other lobes, including the
bilateral parietal, occipital, and temporal lobes. Finally, the sub-
cortical regions, the hippocampus and thalamus, were affected
(Fig. 1c). The observed differences in the atrophy trajectories across
specific brain regions indicate potential phenotypic heterogeneity in
the pathophysiological progressions of TLE. We also estimated spa-
tiotemporal trajectories of brain atrophy in a short-term subsample
(n = 148, mean disease duration = 4.8 ± 2.7 years) and a long-term
subsample (n = 148, mean disease duration=17.5 ± 7.4 years), sepa-
rately (Supplementary Materials). There was a similar pattern of the
three trajectories in the two disease subsample (Supplementary
Materials). This suggests that the distinct spatiotemporal patterns of
brain atrophy may not be affected by disease progress.

Subtype-specific neuroanatomical signatures
The SuStaIn approach calculated the probability of each patient
belonging to a specific ‘trajectory’ (Fig. 1d) and further assigned them
to a sub-stage within that trajectory. It is important to note that
patients who did not exhibit obvious reductions in any ROI were
assigned a ‘stage=0’ by SuStaIn, indicating a ‘normal’ neuroanato-
mical signature. The SuStaIn stages showed correlations with z
scores, which represent the degree of thickness/volume decrease in
patients relative to a healthy population. Specifically, there was a
significant correlation between SuStaIn stages and average cortical
thickness (Fig. 1e, trajectory 1: r = 0.599, p < 0.001; trajectory 2:
r = 0.791, p < 0.001; trajectory 3: r = 0.847, p < 0.001), as well as the
volume of the left hippocampus (Fig. 1f, trajectory 1: r = 0.627,
p < 0.001; trajectory 2: r = 0.577, p < 0.001; trajectory 3: r = 0.431,
p = 0.005). The significant correlation between SuStaIn stages and
right hippocampus volume was only found in the ‘trajectory’ 1
(Fig. 1g, r = 0.269, p = 0.013). These findings suggest that the SuStaIn
stage may reflect the underlying neurophysiological and pathologi-
cal processes. Supplementary Table 1 provides ROI-wise correlation
coefficients between SuStaIn stages and regional z scores.

By comparingROI-wise z scores (Fig. 2) between each subtype and
the healthy control group, four distinct neuroanatomical signatures
were identified as the left hippocampus-predominant signature (sub-
type 1), the right hippocampus-predominant signature (subtype 2), the
cortex-predominant signature (subtype 3), and the ‘normal’ signature
(subtype 4). Compared to the healthy control group, subtypes 1 and 2
exhibited the most severe atrophy in the ipsilateral hippocampus. In
subtype 3, gray matter loss was primarily observed in the neocortices.
Conversely, subtype 4 showed increased graymatter volume, with the
most pronounced enlargement observed in the amygdala (Supple-
mentary Table 2). Furthermore, the bilateral amygdala volume in
subtype 4 was larger than in the other subtypes (left, t = 6.39,
p <0.000001; right, t = 7.53, p < 0.000001) as well as the healthy
control group (left, t = 7.63, p <0.000001; right, t = 7.40,
p <0.000001) (Supplementary Fig. 1). In addition, comparisons
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of ROI-wise z score between any two subtypes are visualized in Sup-
plementary Fig. 2. Results of inter-subtype comparison that includes all
ROIs across the brain are described in Supplementary Table 3.

Reproducibility of SuStaIn subtypes
We examined the reproducibility of the SuStaIn trajectories in another
independent validation sample including 109 patients diagnosed with

temporal lobe epilepsy (61 females, age=33.1 ± 10.4 years). The SuStaIn
trajectory was re-estimated based on the validation data. The spatio-
temporal trajectory can be mathematically characterized as a
sequence of ranked biomarkers (here n = 23), which is shown in the
(SupplementaryTable4).Weobserved again that the three trajectories
from the validation data were began at the left hippocampus, right
hippocampus and cortex separately, consistent with the findings from
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the discovery cohort. In addition, SuStaIn assigned each patient into a
subtype, which allowed us to calculate average of z score map across
individuals within the same subtype as a representation of subtype-
specific atrophy signature. Four distinct signatures of brain atrophy
patterning were replicated in the validation dataset (Supplementary
Fig. 3). We observed a high consistency of z score map between dis-
covery dataset and validation dataset (r >0.7, p < 10e−10). These
results suggested the reproducibility of SuStaIn subtypes.

In addition, we evaluated the stability of SuStaIn using different
number of features. We observed that 93.9% of individuals were con-
sistent for subtype label (Supplementary Table 5), indicating a high
stability for individual subtyping even at relatively fewer spatial fea-
tures for SuStaIn model.

To examine whether the subtype label keeps consistency as dis-
ease progresses, we followed up brainMRI data of a subsample (n = 23,
average of interval time = 39.0 ± 16.8months). The labels of subtype at
follow-up remained consistent with baseline for almost all patients
(Supplementary Materials), suggesting that since certain initial brain
injury is established, it is less likely to shift from one trajectory pattern
(i.e., subtype) to another.

To examine the generalization of SuStaIn subtype to unseen data,
we conducted a generalization analysis with ten-fold cross-validation.
For each fold, a new SuStaIn model was trained on 90% of the data, and
was used to infer individual subtype and stage on the left-out 10% data.
We compared whether the subtype and stage assignments of unseen
data are consistent with original model that has been trained on all data.
We observed that 98.6% of individuals keep consistent subtype assign-
ments with the original subtype (Supplementary Table 6). Spearman
correlation test shows a high consistency between stages of unseen data
and original result (r=0.986, p<0.001) (Supplementary Materials).
These suggest a high generalizability of SuStaIn subtype to unseen data.

Clinical characterization of subtypes
Among all patients, 28.7%, 38.2%, 13.9%, and 19.2% were classified into
subtypes 1 to 4, respectively. Significant differences were observed in
various clinical variables among the four subtypes, including age of
onset, illness duration, seizure lateralization, MRI hippocampal sclerosis
(HS) rate, history of febrile seizures, aura, and treatment outcomes
(Table 1). Each subtype exhibited distinct clinical characteristics.

Consistent with expectations, a higher proportion (χ² = 102.4,
p < 0.0001) of individuals with TLE who had positive findings of HS
on their MRI were assigned to the left hippocampus-predominant
subtype 1 (95.3%) and the right hippocampus-predominant subtype 2
(92.9%) compared to the cortex-predominant subtype 3 (39.0%) and
the ‘normal’ signature subtype 4 (42.1%) (Fig. 3a). Furthermore, the
left/right hippocampus-predominant subtypes included patients
with TLE whose seizure lateralization was located in the corre-
sponding left or right hemisphere (Fig. 3b), indicating that the initial
atrophy occurred primarily in the ipsilateral hippocampus. Patients
assigned to the left hippocampus-predominant subtype had the
youngest age of onset, with a mean of 12.3 ± 7.7 years, compared to

the other three subtypes (t = −4.34, p < 0.0001) (Fig. 3c). The left/
right hippocampus-predominant subtypes also had a longer illness
duration compared to the cortex-predominant subtype 3 and the
‘normal’ subtype 4 (t = 3.70, p = 0.0003) (Fig. 3d). We also found a
subtype effect on total intracranial volume (TIV) — individuals with
the cortical subtype 3 had significantly larger intracranial volume
than the other three subtypes; an exploratory analysis was used to
examine the association of TIV with subtypes and clinical features.

We investigated whether the neuroanatomical subtype classifi-
cation based on baseline MRI was related to differential treatment
outcomes with medications or anterior temporal lobe surgery. In the
medications group (MG, baseline n = 144, follow-up n = 107), 21
patients reported seizure freedom at the follow-up (mean interval of
56.3 months). In the anterior temporal lobe operative group (OG,
baseline n = 152, follow-up n = 145), 96 individuals reported seizure
freedom following the operative treatment at the follow-up (mean
interval of 64.1 months). Interestingly, in the medications-treated
patients, a significantly higher follow-up seizure freedom rate was
observed in the ‘normal’ signature subtype 4 (39.29%) compared to the
other three subtypes (12.66%) (χ² = 9.29, p =0.0023) (Fig. 3e). How-
ever, for patients treated with anterior temporal lobe surgery, the
follow-up seizure freedom rate in subtype 4 was 45.00%, which was
significantly worse than the other three subtypes (69.60%) (χ²=4.66,
p = 0.031) (Fig. 3f).

We also observed that patients with MRI evidence of HS (HS+)
show younger age of onset compared to thosewith normalMRI results
(HS-) upon visual examination (t = −3.49, p =0.001). In addition, we
found that patients with HS- experience worse surgical outcomes
compared to those HS+ patients (χ² = 5.99, p =0.014). To examine
whether the clinical differences among SuStaIn subtypes are affected
by HS, we re-analyzed the correlations between clinical features and
subtype with HS effect as a covariate (Supplementary Materials). We
still found significant correlations of SuStaIn subtypewith age of onset
(t = −3.51, p =0.001), illness duration (t = −3.15, p = 0.002) and medi-
cation outcomes (χ² = 5.64, p =0.018) after controlling HS effect
(Supplementary Materials).

Subtype-based classifier predicts surgery prognosis
We evaluated prediction performance on classifying the subject who
achieves seizure freedom (OG+) or not (OG-) after surgery, using a
classical machine learning prediction procedures (see Methods). To
examine whether the SuStaIn subtype information could help to
improve prediction, we conducted machine learning prediction pro-
cedures through a framework under SuStaIn subtype background
(Supplementary Fig. 4). We proposed a perspective that each subtype
may require specific features/classifiers to predict postoperative out-
come, given that each subtype has specific brain structure and clinical
characteristics. Thus, using support vector machine (SVM), we built a
specific sub-classifier corresponding to each SuStaIn subtype. By ten-
fold cross-validation, we observed an acceptable-to-good prediction
performance for each sub-classifier to each SuStaIn subtype

Fig. 1 | Spatiotemporal patterns of progression of brain atrophy via SuStaIn.
Trajectory shows that cortical thickness or volume loss is firstly observed in the left
hippocampus (a), the right hippocampus (b) and cortex (c) in peoplewith temporal
lobe epilepsy relative to healthy controls. The color of brain region reveals the
severity of grey matter loss; white: unaffected areas (z < 1); light blue: mildly
affected areas (z = 1–2); dark blue: severely affected areas (z > 2). d Individual
subtyping according to themaximumprobability of belonging towhich ‘trajectory’
(red, left hippocampus-predominant trajectory; blue, right-hippocampus-
predominant trajectory; green, cortex-predominant trajectory). e–g Correlation
between SuStaIn stages and z scores (i.e., the degree of thickness/volume decrease
in patients relative to healthy population) of average cortical thickness, the volume
of left and right hippocampus separately in each subgroup (red, left hippocampus-
predominant trajectory; blue, right-hippocampus-predominant trajectory; green,

cortex-predominant trajectory). Spearman correlation test is conducted for data
analysis in figures e-g. It shows a significant correlation between SuStaIn stages and
average cortical thickness (trajectory 1: r =0.599, p = 1.4 × 10-9; trajectory 2:
r =0.791,p = 1.8 × 10-25; trajectory 3: r =0.847,p = 3.0 × 10-12), aswell as the volumeof
the left hippocampus (trajectory 1: r =0.627, p = 1.3 × 10-10; trajectory 2: r =0.577,
p = 2.3 × 10-11; trajectory 3: r = 0.431, p =0.005). The significant correlation between
SuStaIn stages and right hippocampus volume was only found in the ‘trajectory’ 3
(trajectory 1: r =0.269, p =0.013; trajectory 2: r =0.157, p =0.097; trajectory 3: r = -
0.006, p =0.973). The error bands in figures (e, f, and g) represent 95% confidence
interval. n = 85, 113, and 41 biologically independent samples in left hippocampus-
predominant trajectory, right-hippocampus-predominant trajectory, and cortex-
predominant trajectory. **p <0.001, *p <0.05, two-sided. Multiple comparisons
were corrected by FDR.
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(Supplementary Fig. 5); yielding an overall accuracy (71.72%), specifi-
city (81.03%) and sensitivity (47.87%) on the test data. As a compre-
hensive evaluation, the Youden Index for the SuStaIn subtype-based
classifier (J =0.289) on test datawas significantly higher than randomly
predictions by permutation test (p = 0.012) (Supplementary Fig. 6).
Details of prediction performance of each subtype classifier are
described in Supplementary Table 7.

As a reference, we also conducted a predictive test without any
SuStaIn subtype information as prior. Specifically, SVM classifier was
trained using clinical information at baseline as features. By ten-fold
cross-validation, we observed 67.59% accuracy, 89.58% specificity
and very low sensitivity (24.49%) on the test data; while Younden

Index ( J = 0.141) did not show significant difference compared to
randomly predictions by permutation test (p = 0.307). This suggests
that these (OG-) patients were not successfully identified if only
clinical information was relied upon. In addition, we found that even
if we added much more features (clinical variables + MRI regional
measures) to train classifier, the prediction performance did not
improve (Younden Index = 0.130, accuracy = 66.90%, sensitiv-
ity=24.49%, specificity=88.54%).

Discussion
Our study utilizing a data-driven disease progression modeling algo-
rithm has revealed the presence of phenotypic heterogeneity in the
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pathophysiological progressions of TLE. We have identified three dis-
tinct trajectories of atrophy progression, highlighting the pre-
dominance of hippocampal involvement in the ipsilateral hemisphere
and a cortex-predominant phenotype that initiates in the frontal lobe.
Based on the temporal heterogeneity observed within these trajec-
tories, we have further categorized a total of four subtypes. These
subtypes exhibit differences in their neuroanatomical signatures,
clinical characteristics, and long-term treatment outcomes, both in
surgical interventions and pharmacological treatments. These findings
provide evidence for the biological plausibility of distinct subtypes in
TLE and suggest their therapeutic relevance and potential prognostic
value. The identification of these biotypes opens avenues for perso-
nalized treatment approaches in TLE, facilitating improved patient
care and outcomes.

Three diverse trajectories of brain atrophy were identified via
imaging-based machine learning, indicating possible origins of neu-
roanatomical pathology in TLE. Two of the trajectories exhibit a
hippocampus-predominant pattern, showing a similar spatiotemporal
progression that begins with atrophy in the ipsilateral hippocampus,
followed by the ipsilateral thalamus, contralateral thalamus, and other
associated structures. This suggests the involvement of both the ipsi-
lateral hippocampus and bilateral thalamus in the pathological pro-
pagation of TLE22. The findings of our study align with existing
knowledge regarding the crucial role of the thalamus in the propaga-
tion of epileptic discharges23 and its involvement in cortical con-
nections during focal to bilateral tonic-clonic seizures (FBTCS)24.
Furthermore, our study has revealed a cortex-predominant trajec-
tory characterized by delayed hippocampal atrophy compared to the

Fig. 2 | Fourdistinct neuroanatomical signaturesofbrainatrophypatterning in
people with temporal lobe epilepsy. Subtype-specific signature in neuroanatomi-
cal pathology includes (1) the left hippocampus-predominant signature (subtype 1),
(2) the right hippocampus-predominant signature (subtype 2), (3) the cortex-
predominant signature (subtype 3) and (4) the ‘normal’ signature (subtype 4). ROI-
wise z-scores aremapped to abrain template using visualization tools implemented in
ENIGMA Toolbox (https://enigma-toolbox.readthedocs.io/en/latest/index.html).
Color bar indicates z-scores (i.e., normative deviations) relative to the healthy control
group. Note that a higher z-score represents a larger gray matter loss. Data in violin
plot are presented as mean values +/− SD. Asterisk indicates significant regional
volume reduction in subtype group compared to healthy control group using two-
sided two sample t-test following FDRmultiple comparisons correction.n=85, 113, 41,
and 57 biologically independent samples in the subtype 1, subtype 2, subtype 3 and

subtype 4. In subtype 1, significant reductions are observed in left hippocampus
(p=2.9 × 10−43), left thalamus (p= 2.1 × 10−15) and right thalamus (p=3.0 × 10−5). In
subtype 2, significant reductions are found in right hippocampus (p= 7.2 × 10−62), left
hippocampus (p=4.7 × 10-5), left thalamus (p=3.5 × 10−9) and right thalamus (p=9.2 ×
10−28). In subtype 3, significant reductions are found in right thalamus (p= 7.2 × 10−62),
right caudalmiddlefrontal (p= 1.8 × 10−13), right paracentral (p= 1.3 × 10−12), right
parsopercularis (p =4.5 × 10−13), right parstriangularis (p= 3.5 × 10−15), right precentral
(p= 1.2 × 10−14), right precuneus (p= 2.5 × 10−11), right superiorfrontal (p=4.2 × 10−17),
left caudal middle frontal (p =6.6 × 10−15, left entorhinal (p= 1.2 × 10−3), left fusiform
(p=2.3 × 10−9), left paracentral (p= 2.0 × 10−12), left precentral (p= 3.3 × 10−14), left
precuneus (p= 2.8 × 10−11), left superiorfrontal (p= 2.7 × 10-17), left temporalpole
(p=3.9 × 10-6), and left transversetemporal (p= 1.0 × 10-5) regions.

Table 1 | Demographic and clinical characterization of subtypes

n Subtype 1 (n = 85) Subtype 2 (n = 113) Subtype 3 (n = 41) Subtype 4 (n = 57)

Age (year) 296 25.7(7.8) 27.8(9.4) 28.4(6.1) 27.5(10.4)

Sex (male/female) 296 43/42 58/55 21/20 35/22

Age of onset (year) 296 12.3(7.7)b,c,d 16(9.7)a,c 20.1(7.0)a,b 18.5(11.4)a

Illness duration(year) 296 13.2(9.1)c,d 11.8(8.8)c,d 8.3(6.5)a,b 8.9(7.0)a,b

Total intracranial volume (cm3) 296 1456.4(127.8)c 1472.9(141.9)c 1617.2(134.6)a,b,d 1447.8(138.5)c

Seizure lateralization (left/right) 296 79/6 b,c,d,* 8/105 a,c,d,* 21/20 a,b 36/21 a,b,*

MRI HS rate (%) 296 95.3% c,d,* 92.9% c,d,* 39% a,b,* 42.1% a,b,*

Handness (right/left) 296 81/4 113/0 41/0 57/0

History of hypoxia at birth 296 4(4.71%) 5(4.42%) 1(2.44%) 4(7.02%)

History of head trauma 296 7(8.24%) 11(9.73%) 2(4.88%) 8(14.04%)

History of febrile seizures 296 42(49.41%) c,d,* 49(43.36%) c,d,* 9(21.95%) a,b,* 7(12.28%) a,b,*

History of encephalitis meningitis 296 15(17.62%)d 20(17.70%)d 4(9.76%)d 0(0.00%)a,b,c,*

History of positive family 296 1(1.18%) 5(4.42%) 2(4.88%) 6(10.53%)

Aura 296 62(72.94%)d 83(73.45%)d 28(68.29%) 30(52.63%)a,b,*

Seizure frequency (daily/weekly/monthly/
yearly)

296 8/35/37/5 9/46/46/12 2/18/18/3 13/24/18/2

Seizure type (FS/FBTCS) 296 25/60 39/74 13/28 24/33

Medications (1/2/3/4) 296 28/33/21/3 33/54/21/5 16/15/10/0 20/22/14/1

Pathology waves (unilateral/bilateral) 296 67/18 88/25 28/13 41/16

Treatments (OG/MG) 296 55/30 57/56 19/22 21/36

MG follow-up (Effective/ineffective/lost) 144 2/20/8 5/33/18 3/16/3 11/17/8

MG seizure-free rate (%) 107 9.09%d 13.16%d 15.79% 39.29%a,b,*

MG follow-up interval(months) 107 53.4(27.6) 52.5(26.5) 62.1(33.7) 59.7(33.2)

OG follow-up (Effective/ineffective/lost) 152 36/16/3 39/15/3 12/7/0 9/11/1

OG seizure-free rate (%) 145 69.20% 72.2%d 63.20% 45%b,*

OG follow-up interval (months) 145 64.6(33.1) 63.1(27.8) 62.9(30.1) 66.3(26.6)

*Corrected two-sided P <0.05 (versus all other subtypes); aCorrected two-sided P < 0.05 (versus subtype 1); bCorrected two-sided P < 0.05 (versus subtype 2); cCorrected two-sided P < 0.05 (versus
subtype 3); dCorrected two-sided P < 0.05 (versus subtype 4). ANOVA with post-hoc Least Significant Difference tests is used for continuous variables (age, age of onset, illness duration and total
intracranial volume). Pearson’s Chi-square test is used for other categorical variables.Multiple comparisons are corrected byFDR. Subtype1, the left hippocampus-predominant signature; Subtype2,
the right hippocampus-predominant signature; Subtype3, the cortex-predominant signature; Subtype4, the normal signature; HS, hippocampal sclerosis. FS focal seizure, FBTCS focal to bilateral
tonic–clonic seizure, OG operative group, MG medication group.
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neocortex. This highlights the potential heterogeneity in the tem-
poral sequence of neurodegenerative processes within the cortex
and hippocampus. Importantly, we have established a strong corre-
lation between the stage of the trajectory and the extent of regional
atrophy, indicating that the trajectory derived from cross-sectional
imaging data reflects the underlying pathophysiological progression,
particularly related to neurodegeneration18–20. Taken together, these
spatiotemporal patterns of brain atrophy trajectories provide direct
structural imaging evidence supporting the existence of phenotypic
heterogeneity in the pathophysiological progressions of TLE.
They enhance our understanding of the diverse mechanisms
involved and suggest the presence of distinct subtypes within the
TLE population.

Based on the individual variability in the spatiotemporal patterns
of brain atrophy progression, we have identified four distinct biotypes
of TLE, each displaying unique neuroanatomical signatures. The first
two subtypes, characterized by “early-occurred” hippocampal atro-
phy, exhibited a high percentage (over 90%) of patients with evidence
of HS onMRI and seizure focus localized to the ipsilateral hemisphere.
Notably, these subtypes (subtype1 and subtype2) showed relatively
high rates of effectiveness (69.2% and 72.2%, respectively) in ATL sur-
gery. This suggests that surgical intervention yields favorable long-
term outcomes for patients with “early-occurred” hippocampal atro-
phy as the primary signature. Interestingly, the third subtype, char-
acterized by “late-occurred” hippocampal atrophy, displayed a good
surgical effectiveness rate (63.2%), despite a lower proportion of
patients showing MRI evidence of HS (39.0%). This finding suggests
that ATL surgery can be beneficial for the subtypes 1, 2, and 3,

regardless of whether hippocampal atrophy occurs early or late. The
latter may be related to progression of epileptogenic neuroanatomic
pathology in TLE12,25. It is important to note that the underlying
mechanisms behind the effectiveness of ATL surgery in these sub-
types, particularly in cases with late-occurring hippocampal atrophy
and without clear MRI evidence of HS, are not fully understood. Fur-
ther research is needed to elucidate the specific factors contributing to
the surgical outcomes in these cases and to explore the progression of
epileptogenic pathology in TLE. For subtype 4, brain morphometry
analysis revealed no cortical thickness or subcortical volume reduc-
tions in any regions compared to healthy controls. Intriguingly, sub-
type 4 exhibited a significant increase in amygdala volume relative to
both the healthy group and the other subtypes. This finding alignswith
previous proposals that amygdala enlargement represents a distinct
subtype of TLE26,27. This particular subtype is characterized by an older
age of epilepsy onset, a greater tendency to nonconvulsive seizures,
and a favorable response to antiepileptic drugs28. Consistent with
these prior observations, our study demonstrated a moderate
response (39.3%) to antiepileptic drugs specifically within subtype 4.
While the underlying epileptogenic structures or spreading mechan-
isms associated with amygdala enlargement and its correlation with
positive responses to antiepileptic therapies remain unclear26, our
research uses an imaging-based taxonomy, showing divergent long-
term responses to antiepileptic treatments.

The SuStaIn subtypes show similar clinical characteristics with
four known TLE types (TLE with left HS, TLE with right HS, TLE with
negative MRI, and TLE with enlarged amygdala)27,29. The neuro-
structural features of SuStaIn subtypes were mostly associated with
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Fig. 3 | Clinical characterizationof subtypes. aProportion of TLE individuals with
a visible hippocampal sclerosis on their magnetic resonance imaging (MRI) in
each subtype. b Proportion of individuals with TLE whose seizure lateralization
located at the corresponding left or right hemisphere. Red asterisk represents
significant difference between a specific subtype vs. all other subtypes (subtype 1,
p = 3.8 × 10−22; subtype 2, p = 2.5 × 10−29; subtype 3, p = 0.723; subtype 4, p = 0.015).
c Differences of age of onset among four subtypes. d Differences of illness
duration among four subtypes. e Proportion of individuals with seizure-free (i.e.,
effective), not seizure-free (i.e., ineffective) or lost follow-up in 144 medicated
individuals (MG) at the follow-up (mean interval is 56.3 months). f Proportion of
individuals with seizure-free (i.e., effective), not seizure-free (i.e., ineffective) or
lost follow-up in 152 anterior temporal lobe operative individuals (OG) at

follow-up (mean interval is 64.1 months). The white dotted line (a, b, e, and f)
shows the average of the four subtypes. Data in figures (c and d) are presented
using a box-plot (center line, median; box limits, upper and lower quartiles;
whiskers, 1.5×interquartile range [IQR]; points, outliers). n = 85, 113, 41, and 57
biologically independent samples in the subtype 1, subtype 2, subtype 3 and
subtype 4. Pearson’s Chi-square test is conducted for data analysis in figures
a, b, e and f. Two-sided two-sample t test is used for data analysis in figures c and
d. Multiple comparisons were considered with FDR correction. LHIP, left
hippocampus-predominant signature (subtype1); RHIP, right hippocampus-
predominant signature (subtype2); Cortex, the cortex-predominant signature
(subtype3); Normal, the ‘normal’ signature (subtype4).
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presence and location of MRI HS6. This again confirms the brain
structural heterogeneity within individuals diagnosed with TLE. In
clinical studies, TLE with HS generally have a worse response to
medications and experience seizures at a younger age compared to
those with normal MRI upon visual examination30,31. This is also
observed in SuStaIn subtype 1, which includes most of patients with
left side HS. Additionally, previous studies reported that those indivi-
duals without hippocampal atrophy usually experience worse
responses to surgical treatment32,33. In our study, we also observed that
patients with HS- experience worse surgical outcomes compared to
those HS+ patients. We suspect that this may be one of the reasons for
the poor surgical outcomes of SuStaIn subtype 4. In short, the differ-
ences between data-driven subtypes are in part consistent with known
clinical features.

Subtype is a prior important information to aid prediction of
surgery outcomes. We built a classifier cluster including specific sub-
classifier corresponding to each subtype, which achieved an
acceptable-to-good performance on predicting seizure freedom sub-
jects after surgery, better than clinical information-based only predic-
tion model. Although the underlying neural mechanisms are not well
understood, we hypothesize that eachmodel requires specific features/
classifiers to predict postoperative outcome in subtypes, given that
each subtype has unique brain injure and clinical characteristics. This is
also supported by previous studies suggesting that TLE patients with
certain brain characteristics34 or clinical features33 may benefit from
temporal surgery. Although there is debate about prognostic factors
for surgical outcome in TLE, the presence of hippocampus sclerosis34,35,
a history of febrile seizure36 and a low seizure frequency33 were almost
consistently reported to be associated with better outcomes. This
perspective on building a stratified prediction model may be able to
reveal underlying disease heterogeneity in surgery prognosis and guide
a more individualized treatment in clinical practice.

A recent research has utilized the SuStaIn algorithm to explore the
progression of epilepsy-related brain atrophy37. The study identified
different subtypes of progression, including a cortical progression
subtype and a non-cortical basal ganglia subtype in both focal and
idiopathic generalized epilepsies. Additionally, a third hippocampus-
driven progression subtype was specifically found in focal epilepsies.
This subtype involved initial volume loss in the hippocampus, followed
by the thalamus, and finally affecting other cortical areas. The
observed spatiotemporal trajectory in the study aligns well with the
current data. A recent work14 also confirmed a similar sequence of
regional changes in people with mesial temporal lobe epilepsy and
hippocampal sclerosis, through an event-based disease progression
modeling38. These suggest that the hippocampal-dominated trajectory
may be one of the most significant features in TLE people.

This study had several limitations. Firstly, although the SuStaIn
algorithm provided estimates of pathophysiological trajectories using
cross-sectional MRI data, it is important to validate these findings with
longitudinal data to confirm the disease progressions over time. MRI
data at onset of epilepsy are needed to identify spatiotemporal pat-
terns of brain atrophy to examinewhether the spatiotemporal patterns
of brain atrophy are caused by the progression of the disease or if they
are the result of the initial brain injury. Secondly, this study benefited
from image consistency, including the use of the same scanner,
acquisition protocols, and image processing pipeline. Additionally,
long-term follow-up data were available, including post-medication or
post-operative clinical assessments. These factors strengthened the
study’s findings. However, to further validate the brain progression of
each subtype, it would be advantageous to have larger samples with
longitudinal data. There was a bit underpowered as the ratio of sample
to feature is low. But we also verified the consistency of subtype at a
relatively lower but acceptable spatial resolution. Thirdly, we descri-
bed four distinct TLE biotypes using SuStaIn; they exhibited different
in neuroanatomical signature, clinical phenotype and treatment

outcome. However, elucidating potential mechanisms of subtypes is
still challenging; future work is needed to contextualize the proposed
biotypes of TLE with brain connectivity, cytoarchitecture39,
metabolism40, neurotransmitter receptors and transporters41, gene
expression42 and cognition-related brain function43. In addition, the
current sample size is not enough to characterize a trajectory showing
how treatment response changes as atrophy stage increases. Lastly,
while a four-cluster solution was optimal for capturing temporal and
phenotypic heterogeneity in our data, it is possible that more subtle
and distinct subtypes may exist and warrant further investigation.

In conclusion, our study reveals three distinct pathophysiological
trajectories of brain atrophy in TLE and identifies four subtypes with
distinct neuroanatomical signatures. These subtypes exhibit diverse
clinical characteristics and long-term antiepileptic outcomes, high-
lighting the heterogeneity of the disease and its implications for sur-
gery prognosis. This imaging-based taxonomy provides valuable
insights into the underlying biology of TLE and has important impli-
cations for personalized treatment approaches and prognostic
assessment.

Methods
Participants
Theprimary sample consistedof 296 individualswithTLE (139 females,
age = 27.2 ± 8.7 years) and 81 healthy subjects (39 females, age =
26.4 ± 6.7 years), recruited from January 2014 to August 2022 at West
China Hospital. The inclusion criteria included that 1) patients were
diagnosed with TLE according to the ILAE criteria44; 2) normal MRI or
with unilateral hippocampal sclerosis (HS) evidence in keeping with
electroencephalo-graph (EEG) findings; 3) no evidence of bilateral HS
or of a secondary extrahippocampal lesion that may contribute to
seizures. The exclusion criteria were as follows: 1) patients with other
neurological disorder, psychiatric disorder or serious systemic dis-
ease; 2)with alcohol or other substances abuse; 3)with other structural
lesions except HS according to ILAE classification31 confirmed by
postoperative histopathological examination. Patients underwent
comprehensive multidisciplinary evaluations, combining the ictal
semiology, ictal and interictal EEG, MRI and PET/CT if available, to
localize the seizure focus. In addition, a validation sample consisted of
109 patients (61 females, age = 33.1 ± 10.4 years) diagnosed with TLE
from three local hospitals (First affiliated hospital of Zhejiang Uni-
versity, N = 73; Fourth affiliated hospital of Zhejiang University, N = 21;
First affiliated hospital of Hainan Medical University, N = 15).

After the initial assessments, patients were followed up every
three months until April 2023 to determine their treatment options
and outcomes. Based on the treatment option at the last follow-up,
patients were divided into two groups: the operative group (OG) and
the nonoperative medication group (MG). The treatment option was
determined based on medical advice and patient preferences. The OG
consisted of 152 patients who underwent anterior temporal lobe sur-
gery. Patients who remained seizure-free after surgery were con-
sidered to have achieved an effective outcome, following the ILAE
classification44. The MG included 144 patients who were treated with
medication alone. An effective outcome in the medication group was
defined as freedom from seizures for a duration of at least three times
the longest interseizure interval before treatment or 12 months
(whichever is longer), according to the criteria proposed by Kwan et al.
(2011)45. We used the naturalistic data collected during routine clinical
care; this is not a report of a randomized trial. This study was regis-
tered in the Chinese Clinical Trials Registry (number:
ChiCTR2200062562) (https://www.chictr.org.cn/showproj.html?proj=
176800). The data of registration was August 2022. Participants
received travel compensation and remuneration. This study was
approved by the local ethics committee ofWest China Hospital (ethics
number: 2022-906) and informed consent was obtained from partici-
pants or their legal guardians.

Article https://doi.org/10.1038/s41467-024-46629-6

Nature Communications |         (2024) 15:2221 8

https://www.chictr.org.cn/showproj.html?proj=176800
https://www.chictr.org.cn/showproj.html?proj=176800


Image acquisition
High-resolution T1-weighted images were acquired on a 3TMRI system
(Trio; Siemens) with an 8-channel head coil at West China Hospital.
Images were obtained in sagittal orientation using a spoiled gradient-
recalled sequencewith themain parameters: repetition time = 1900ms;
echo time = 2.26ms; flip angle = 9°; slice thickness = 1mm; field of view
= 256× 256mm2; voxel size = 1.0 × 1.0 × 1.0mm3.

Image processing
T1-weighted images were processed using FreeSurfer (version 6.0,
http://surfer.nmr.mgh. harvard.edu/). After visual inspections of seg-
mentations, gray matter volumetric (GMV) measures values were
estimated for 12 subcortical regions of interest (ROIs) including bilat-
eral hippocampus, amygdala, caudate, nucleus accumbens, pallidum,
putamen and thalamus. Cortical thickness (CT) measures were esti-
mated for 64 cortical ROIs based on the DK atlas46. The ROI-wise GMV
or CT measurements were first adjusted by regressing out the effects
of sex, age, the squareof age and total intracranial volume (TIV) using a
regression model. Subsequently, the adjusted values were trans-
formed as a z-score (i.e., normative deviations) relative to the healthy
control group. Finally, we multiplied these z-scores by −1 so that the
z-score increases as regional thickness/volume decreases.

Subtype and Stage Inference (SuStaIn)
We employed an AI approach (i.e., SuStaIn)18 to identify distinct pat-
terns of spatiotemporal progression of brain atrophy from cross-
sectional onlyMRI data and cluster individuals into groups (subtypes).
Previous works has demonstrated ability of SuStaIn to identify diverse
neurophysiological trajectories for brain disorders including fronto-
temporal dementia, Alzheimer’s disease and schizophrenia18–20. The
methodology of SuStaIn has been presented previously18; we briefly
describe the major parameter choices specific to the current study.

SuStaInmodeling needs anM x N z-scorematrix as input. M is the
number of cases (M= 296). N is the number of ROIs (N = 23). Due to
computational complexity, SuStaIn algorithm typically applied no
more than 25 ROIs for modeling in previous literatures18,19. Here, we
selected a total of 23 gray matter ROIs (Supplementary Table 8) that
reported reduced thickness/volume in mesial TLE patients relative to
controls based on a recent ENIGMA-epilepsy structural MRI study47.
We used the z-score thresholds (z = 1, 2, 3) as “waypoints” in the SuS-
taIn model18. We then ran the SuStaIn algorithm with 25 start points
and 1,000,000 Markov Chain Monte Carlo (MCMC) iterations18 to
estimate the most likely sequence with spatiotemporal atrophy pat-
terns (i.e., ‘trajectory’).

The model was fitted separately for k = 2-6 clusters
(‘trajectories’)18–20. The optimal number of clusters with distinct tra-
jectories was determined using the cross-validation information cri-
terion (CVIC) and out-of-sample log-likelihood18. Lower value of CVIC
represents bettermodelfit. Supplementary Fig. 7a showed lowestCVIC
when k = 3, indicating three distinct patterns of spatiotemporal pro-
gression of brain atrophy in MTLE. Similarly, log-likelihood increased
indicating better model fit up until k = 3, after which no improvement
was seen (Supplementary Fig. 7b). The 3-cluster model of SuStaIn was
fitted to the whole sample. Final, themost probable sequence (i.e., the
order of ROIs) at the population-level was evaluated for each ‘trajec-
tory’. The cumulative probability for each ROI to reach a particular
z-score over SuStaIn stage is visualized using a positional variance
diagram (Supplementary Fig. 8). For each individual, SuStaIn calcu-
lated the probability (ranging from 0 to 1) of belonging to which ‘tra-
jectory’, and further assigned the individual into a sub-stage of the
maximum likelihood ‘trajectory’ through MCMC iterations. The prob-
ability of maximum likelihood ‘trajectory’ is high across almost all
SuStaIn stages (Supplementary Fig. 9). Note that SuStaIn assigned
individuals who do not deviant obvious reduction in any ROI (here z
scores of all ROIs <1) into the ‘stage = 0’18,19.

Visualization of spatiotemporal trajectories of brain atrophy
To visualize the spatiotemporal patterns of pathophysiological pro-
gression across SuStaIn stages, we calculated themean z-score of GMV
across individuals belonging to the same stage of each SuStaIn ‘tra-
jectory’. ROI-wise GMV z-scores weremapped to a glass brain template
using visualization tools implemented in ENIGMA Toolbox (https://
enigma-toolbox.readthedocs.io/en/latest/index.html). To examine
whether the SuStaIn stage (a continuous indicator derived from SuS-
taIn model) associate with neurophysiological and pathological pro-
cess, we conducted the Spearman correlation between the SuStaIn
stages and the degree of brain atrophy (i.e., the z scores of cortical
thickness/subcortical volume). To characterize subtype-specific sig-
nature in neuroanatomical pathology, we conducted ROI-wise z score
comparisons between any two subtype groups in addition to subtypes
and healthy control group using two sample t-test. Multiple compar-
isons were corrected by FDR.

Reproducibility of SuStaIn subtypes in another
independent sample
We further examined the reproducibility of the SuStaIn trajectories
in another independent validation sample including 109 patients
diagnosed with temporal lobe epilepsy. Following the same image
processing described in Methods 4.3, we extracted ROI-wise z-score
for each patient. Subsequently, the SuStaIn trajectory was re-
estimated based on the validation data using the same SuStaIn
parameters with the modeling of discovery database (described in
Methods 4.4). The spatiotemporal trajectory can be mathematically
characterized as a sequence of ranked biomarkers (here n = 23). In
addition, SuStaIn assigned each patient into a subtype, which
allowed us to calculate average of z score map across individuals
within the same subtype as a representation of subtype-specific
atrophy signature. Pearson correlation coefficient was used as a
quantitative coefficient to evaluate the consistency of z score map
between discovery dataset and validation dataset. Spatial auto-
correlation in brain map was corrected by a spatial autocorrelation-
preserving permutation test (termed ‘spin test’)48.

Comparisons of clinical profiles between subtypes
Demographic, clinical and brain variables available for our cohort are
described in the Table 1. These variables were statistically compared
between subtypes, which involved two steps: (1) one-versus-all com-
parison. A one-versus-all approach was employed to compare each
subtype to all individuals of other three subtypes to determine the
subtype-specific characteristics, and (2) one-versus-one comparison.
Each subtype was compared directly to each other subtype. The sta-
tistical comparisonswere conducted usingANOVAwith post-hoc Least
Significant Difference (LSD) tests for continuous variables (age, age of
onset, illness duration and TIV) or using Pearson’s Chi-square test for
categorical variables. Multiple comparisons were considered with FDR
correction.

Treatment outcomes in subtypes
In this exploratory analysis, we explored whether neuroanatomical
subtype classification based on baseline MRI will relate to differential
treatment outcomes to medications or anterior temporal lobe opera-
tive treatment. In the medications group (MG) including 144 patients
with TLE who received medications, 21 patients reported seizure-
freedom at the follow-up (mean interval is 56.3 months). In the
operative group (OG) including 152TLEpatients before taking anterior
temporal lobe operative treatment, 96 individuals following operative
treatment reported seizure-freedom at follow-up (mean interval is
64.1months). Using the baselineMRI data, the SuStaInmodel assigned
each individual into one of four subtypes.We compared the difference
of the follow-up seizure-freedom rate among the four subtypes using
Pearson’s Chi-square test.
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Predicting prognosis of surgery by SuStaIn subtype-based
prediction model
To examine whether the SuStaIn subtype information at baseline
could help to predict the prognosis of surgery at follow-up for a
given patient, we conducted machine learning procedures to predict
treatment outcome in a sub-sample of 145 post-surgery follow-up
subjects. Here, we described how to train a support vector machine
(SVM) classifier (Supplementary Fig. 10). Specifically, we applied ten-
fold cross-validation to obtain train data and test data. In each fold,
90% of subjects was used as a training set, and the left-out 10%
subjects were used as a test set. In training set, the classifier features
included the baseline clinical variables, MRI variables, or both. Prin-
cipal component analysis (PCA) was used to reduce feature dimen-
sion. The first N principal components (PCs), which explained
beyond 95% of the variance of all features, were used to train a SVM
classifier to classify the subject who achieves seizure freedom (OG+)
or not (OG-) after surgery. Three commonly used SVM kernel func-
tions (linear, RBF and polynomial) were used. The test set patient’s
outcome was predicted based on the built SVM classifier. Prediction
performance was measured by sensitivity, specificity and accuracy.
We also calculated Youden Index (sensitivity+specificity-1) as a
comprehensive assessment of both sensitivity and specificity. To
further examine whether the prediction performance is significantly
better than random predictions, we used a permutation test to
evaluate significance by random permutation of predictive label
(Supplementary Materials).

Exploratory analysis
Toevaluate the stability of SuStaIn at a relative lower spatial resolution,
the 23 ROI features were down sampled to 13 features by merging
regionswithin the same cortical lobe.We investigated thedifferenceof
total intracranial volume (TIV) between subtypes and healthy controls;
we also examine whether TIV was associated with specific clinical
features (Supplementary Materials).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw image and clinical data areprotected and are not available due
to data privacy laws. Requests for raw data can be made to the cor-
responding author and will be promptly reviewed by the local ethics
committee to verify whether the request is subject to any intellectual
property or confidentiality obligations. The processed data and sta-
tistical results are provided in the Supplementary Information/Source
Data file. Source data are provided with this paper.

Code availability
T1-weighted images were processed using FreeSurfer (version 6.0,
http://surfer.nmr.mgh.harvard.edu/). Raw code of the SuStaIn algo-
rithm are available on the UCL-POND GitHub (https://github.com/ucl-
pond). The visualization of ROI-wise z-score was conducted using
ENIGMA Toolbox (https://enigma-toolbox.readthedocs.io/en/latest/
index.html). Statistical analyses, including correlation analysis, t-test,
ANOVA etc., were conducted using MATLAB (version: R2018b) and
SPSS Statistics (version: 26.0).
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