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The Brain Functional State of 
Music Creation: an fMRI Study of 
Composers
Jing Lu1,*, Hua Yang1,2,*, Xingxing Zhang1, Hui He1, Cheng Luo1 & Dezhong Yao1

In this study, we used functional magnetic resonance imaging (fMRI) to explore the functional 
networks in professional composers during the creation of music. We compared the composing 
state and resting state imagery of 17 composers and found that the functional connectivity of 
primary networks in the bilateral occipital lobe and bilateral postcentral cortex decreased during the 
composing period. However, significantly stronger functional connectivity appeared between the 
anterior cingulate cortex (ACC), the right angular gyrus and the bilateral superior frontal gyrus during 
composition. These findings indicate that a specific brain state of musical creation is formed when 
professional composers are composing, in which the integration of the primary visual and motor 
areas is not necessary. Instead, the neurons of these areas are recruited to enhance the functional 
connectivity between the ACC and the default mode network (DMN) to plan the integration of 
musical notes with emotion.

As an important feature of human beings, creativity has long held the attention of scientists and psy-
chologists. Although studies of creativity have a long history in psychology1,2, research on the topic 
remains problematic. Until now, it has been universally accepted that creative products share two char-
acteristics: they are novel and they are meaningful. Several cognitive processes are engaged during crea-
tive thinking, including attention to action, response generation3, action planning and monitoring, and 
inhibition of repetitive responses4. Although the specific neural mechanisms related to creativity remain 
unclear, different brain regions appear to interact in these processes, indicating that creativity relies on 
distributed networks5.

Music is an art shared by all human beings6. Emotional expression and communication through 
music are recognized to be strongly linked to health and a sense of well-being. Music appreciation is the 
generative capacity that allows individuals to enjoy music, whether the piece is melodious or passionate7. 
For several decades, scientists and musicologists have devoted themselves to discovering the relation-
ship between music and the human experience8. In recent years, music has been considered to be an 
outstanding tool for improving fundamental understanding of the human brain, and many studies have 
investigated the relationship between music and the human brain9–12.

Music creation, as an artistic endeavor, is usually considered one of the most mysterious forms of 
creativity. It is often described as occurring in an altered state of mind beyond conscious awareness in 
the human brain13–15. Until now, several studies have focused on the neural effects of creating music as 
a model to discover the relationship between creativity and the human brain. In 2007, Bengtsson et al. 
used fMRI to study brain activity during music creation. They asked 11 pianists to improvise a melody 
and then reproduce it on a small keyboard. During improvisation, activated brain regions were found 
in the right dorsolateral prefrontal cortex, the presupplementary motor area, the rostral portion of the 
dorsal premotor cortex, and the left posterior part of the superior temporal gyrus compared to the repro-
duction period16. In 2008, Limb and Braun recruited 6 jazz pianists to improvise on a piano keyboard 
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during fMRI scan. They used two paradigms that differed widely in musical complexity, and found that 
improvisation was consistently characterized by a dissociated pattern of activity in the prefrontal cortex17. 
As in Limb’s experiment, in 2014 Donnay et al. invited jazz pianists to improvise during fMRI scan. They 
examined an interactive improvisation between two musicians, and the results showed that the activation 
of perisylvian language areas was linked to the processing of syntactic elements in music18. In the same 
year, Peter et al. discussed auditory feedback during musical production on a keyboard and found evi-
dence of neural responses associated with perception/action mismatch during improvisation by fMRI19.

From these studies, we can conclude that the neural mechanisms of music creation are not system-
atic, and even scientists consider the current results to be controversial. In addition, music creation is a 
complicated process20,21, and the focus on pianists in previous studies is limiting. As we know, perfor-
mance and composition are two different stages in the creation of music. Pianists are performers, who 
usually create music through experiences and memories. Therefore, their improvisation cannot represent 
a purely compositional form of music creation.

In this study, we recruited composition majors and subjected them to common fMRI methods. 
Moreover, because most of the composers could play piano, we asked subjects to compose a piece of 
music for an instrument that they do not play (‘Chinese Zheng’) during the task period. Thus, we could 
eliminate the effect of motor experience and memory. We aimed to identify the brain functional state in 
composers from the network perspective, and to further our understanding of how creative behaviors 
are processed in the brain.

Methods
Ethics statement. All participants gave their written, informed consent in compliance with an exper-
imental protocol approved by the Ethics Committee of the School of Life Science and Technology at the 
University of Electronic Science and Technology of China (UESTC). Experiments were carried out in 
accordance with the approved guidelines. All the subjects participating in the experiment gave informed 
consent before the experiment was conducted according to the established guidelines of the Ethics 
Committee of School of Life Science and Technology at UESTC.

Subjects. Seventeen composers (12 female, Mage =  27.18 ±  5.01 years, who have composed for more 
than 5 years for over 4 hours a day) from the Sichuan Conservatory of Music participated in this exper-
iment. They were all right-handed according to the Edinburgh Inventory22 with normal hearing, normal 
vision, and no history of neurological disorders. All composers reported the instruments they could play 
(none of them could play the ‘Chinese Zheng’).

Image data acquisition. Images were acquired on a 3T magnetic resonance imaging (MRI) scanner 
(GE Discovery MR750, USA) at the MRI Research Center of UESTC using a standard GE whole head 
coil.

First, we conducted a resting state fMRI scan on composers. During scanning, we used foam pad-
ding and ear plugs to reduce head motion and scanning noise, respectively. Resting state functional 
MRI data were acquired using gradient-echo EPI sequences (repetition time [TR] =  2000 msec, echo 
time [TE] =  30 msec, flip angle [FA] =  90°, matrix =  64 ×  64, field of view [FOV] =  24 ×  24 cm2, slice 
thickness/gap =  4 mm/0.4 mm), with an eight channel-phased array head coil. All subjects underwent 
a 510 second resting state scan to yield 255 volumes (35 slices per volume). During resting state fMRI, 
all subjects were instructed to close their eyes and to move as little as possible without falling asleep. 
Subsequently, high-resolution T1-weighted images were acquired using a 3-dimensional fast spoiled gra-
dient echo (T1-3D FSPGR) sequence (TR =  5.948 msec, TE =  1.964 msec, FA =  9°, matrix =  256 ×  256, 
FOV =  20.4 ×  16.3 cm2, slice thickness/gap =  1 mm/0 mm, 154 slices).

After the resting state fMRI scan, we conducted another scan, which used the same imaging parame-
ter as above and lasted for 5 minutes. Before the scan, subjects were given instructions on how to perform 
the experiment. In this scan, composers could see one page of stave. To explore the creation of music, 
they were told to compose a piece of ‘Chinese Zheng’ music with beginning tones using their imagination 
(imaging composition; material is shown in Fig. 1). The beginning tones were composed by Hua Yang, 
who is an established composer, so that we could ensure that none of the subjects had seen the material 
before. During the scan, subjects could not move in the MRI except to look at the screen and imaging 
composing. When the subjects exited the scan machine, they were asked to write down the imagined 
music on a stave paper immediately so that we could ensure the composing process had been scanned.

Figure 1. The stave that was used in the experiment. 
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Data processing. Pre-processing. The preprocessing and statistical analysis of fMRI data were exe-
cuted with the program SPM8 (Statistical Parametric Mapping, http://www.fil.ion.ucl/spm/software/
spm8). To avoid the MRI machine field effect and to eliminate head movements of the participants, we 
discarded the first five volumes. This procedure includes slice timing correction, head realignment and 
normalizing images with a EPI template from the Montreal Neurological Institute (MNI) atlas space23 
and resampling to 3 ×  3 ×  3 mm3. Band-pass temporal filtering (0.01–0.08 Hz) was used to remove mag-
netic field drifts of the scanner and to minimize the physiologic noise of high frequency components. 
These images were then smoothed with an 8 mm ×  8 mm ×  8 mm full-width at half-maximum (FWHM) 
Gaussian kernel. Nuisance signal regression (White Matter [WM], Cerebro-Spinal Fluid [CSF], Global 
Signal [GS]) was not included for the following functional connectivity density (FCD) analysis but was 
included for the functional connectivity (FC) analysis.

FCD analysis. Tomasi proposed an alternative voxel-wise data-driven method, which is termed FCD 
mapping24,25. This method overcomes the limitation of seed-based approaches for identifying and locat-
ing functional hubs in the brain and is widely used to study training-related functional changes in the 
brains of experts, such as musicians26–28, chess players29 and athletes30. Therefore, we adopted the method 
to study the brains of composers, who also possess highly trained skills. In FCD analysis, the correlation 
threshold (Tc) was used to determine the significance of correlations between voxels. However, there is 
no standard from previous studies. Considering that Tc <  0.4 leads to an increased false positive rate24 
and increased CPU time to compute the maps, we defined the Tc value beginning at the common choice 
0.6 and reaching 0.85 in steps of 0.05. These threshold parameters were used to compute the number 
of functional connections between a given voxel and other voxels through correlation. Functional con-
nections with a correlation coefficient R >  Tc were considered significant. First, we used an algorithm to 
acquire the short-range FCD. We considered that a voxel xi was a neighbor voxel of a given voxel x0 when 
xi was adjacent to a voxel that was linked to x0 by a continuous path of functionally connected voxels 
and the correlation coefficient between x0 and xi was significant. Though circular computations for all 
voxels adjacent to the neighbor voxels of x0’s cluster center, we obtained all new neighbors. Furthermore, 
we calculated the global FCD, which was defined as the number of significant connections between this 
voxel and all other voxels in the brain. Then, we calculated the difference between global FCD and the 
short-range FCD, which is also called the long-range FCD. It determines the number of significant con-
nections (R > Tc) without local cluster restrictions. Finally, each participator’s short-range FCD maps and 
long-range FCD maps were smoothed with 8 mm FWHM. Voxel-wise paired t-tests implanted in SPM8 
were used to evaluate group differences of short and long-range FCD maps between different conditions.

FC analysis among ROIs. To better analyze the differences between the two states, we focused on the 
clusters that were significantly different between the two states after four consecutive FCD comparisons 
of Tc values. Then, the intersections of significantly different clusters were used as regions of interest 
(ROIs). Then, we calculated the functional connectivity between the ROIs and all voxels in the whole 
brain. We used Fisher’s z-transformation to transform the resulting correlation coefficients to approxi-
mate a Gaussian distribution. We then used paired t-tests to define differences in functional connectivity 
between two different states.

Results
FCD results. During the FCD analysis, nobody was excluded by our standards, including head motion, 
behavioral indicators and psychological assessments. Thus, the resting state and the composing state were 
included in the final analysis. We calculated each individual’s short- and long-range FCD maps at differ-
ent Tc values in two groups (the resting state and the composing state). In total, five ROIs were identified 
from the all results (Fig. 2), and their centers are listed in Table 1.

FC results. We assessed the region-wise functional connectivity among five ROIs between the resting 
state and the composing state in composers (Fig. 3).

Left occipital seed. The paired t-test comparing the functional connectivity maps generated from the left 
occipital seed showed that this region had less functional connectivity in the task state than the bilateral 
occipital gyrus, bilateral postcentral gyrus, bilateral lingual gyrus, bilateral calcarine gyrus, bilateral fusi-
form gyrus and bilateral precentral gyrus.

Right occipital seed. In the composing state, the right occipital gyrus was negatively correlated with the 
bilateral lingual gyrus, right calcarine gyrus, right fusiform gyrus, right inferior occipital gyrus and left 
lingual gyrus.

Left postcentral seed. Compared with the resting state, the left postcentral gyrus in composing state was 
significantly decreased and was correlated with the bilateral inferior occipital gyrus, left fusiform gyrus, 
right calcarine gyrus, right precentral and right postcentral.

http://www.fil.ion.ucl/spm/software/spm8
http://www.fil.ion.ucl/spm/software/spm8
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Right postcentral seed. Compared to the resting state, the composing state showed significantly decreased 
functional connections between the right postcentral gyrus and bilateral inferior/middle occipital gyrus, 
bilateral fusiform gyrus, bilateral calcarine gyrus, bilateral cuneus gyrus, right precentral gyrus and left 
postcentral gyrus.

Left cingulum seed. The paired t-test that we used to compare the functional connectivity maps for the 
left cingulum seed revealed a significantly stronger correlation in the composing state than in the resting 
state between the composers’ time series activity for this area and those of voxels located in the right 
precuneus, the right angular, bilateral superior medial frontal gyrus, the bilateral middle frontal gyrus 
and bilateral superior frontal gyrus.

From functional connectivity analysis, we found that the functional connectivity between the bilateral 
occipital lobe and bilateral postcentral cortex, which represent the visual area and motor area, decreased 
in the imaging composition state compared to the resting state. However, when composing, composers 
exhibited significantly stronger functional connectivity between the ACC, the right angular gyrus and the 
bilateral superior frontal gyrus. As we know, the right angular gyrus and bilateral superior frontal gyrus 
are included in the DMN31. Thus, we can conclude that the ACC and DMN have stronger functional 
connectivity during composition.

Discussions
In our study, we used resting state fMRI to explore intrinsic functional connectivity in the brains of 
composers. After FCD and functional connectivity analyses, we observed several changes of the brain 
network during the composing period. Our results indicate that the functional connectivity of primary 

Figure 2. FCD result of the resting state and the composing state (from Tc = 0.6 to 0.85, stepped by 0.05, 
p < 0.001, cluster threshold k > 600 mm3). Rows ‘A’ and ‘B’: short-range FCD. Rows ‘C’ and ‘D’: long-
range FCD. The five ROIs are shown in the left column. Reference color bar is shown on the bottom row.
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networks such as the visual and motor areas decreased compared to the resting state. However, some 
networks, such as the ACC and DMN, showed stronger functional connectivity during composition.

A one-sample t-test was performed on all possible connections represented in the correlation matrices 
between the two states. For a better visualization of structural patterns of functional connectivity, nodes 
and undirected edges were represented as networks (Fig.  4A,B). The edges between nodes were con-
structed by setting a significance level of p >  0.05. To compare functional connectivity between each pair 
of nodes across the two states, two-sample two-tailed t-tests were performed on all potential connections 
included in the correlation matrix. Compared with the resting state, the functional connectivity between 
the visual and motor areas in primary networks decreased, whereas the functional connectivity between 
the ACC and DMN increased in the composing state (Fig. 4C).

Why does functional connectivity decrease in primary networks during composition?  
According to the previous study, professional pianists showed increased activity during music improvisa-
tion, including the activation of visual and motor cortex32. However, in our experiment, we chose to have 
the composers create a piece of music that was to be played on the Chinese Zheng, an instrument that 
none of the subjects could play. Under these circumstances, we may infer that the integration of visual 
and motor areas is not involved in composition. In a previous study, the visual and motor areas were 
activated during improvisation, probably due to the action of playing piano or the memory of playing 
piano while looking at the stave.

An important reason for concentrating on composing is that it is a process of free generation of 
individual notes4. On one hand, this free generation engages only creative thinking; thus, we suppose 
that extensive practice over a long period of time leads composers to develop a different distribution of 
brain networks, including generating music notes without the involvement of the visual and motor cor-
tex. Music may have an impact on composers’ brain plasticity26–28. On the other hand, larger volumes of 
selected networks, along with a reduction in connectivity during the performance of the specified task, 
suggested that the recruitment of neurons for performing cognitive tasks might reduce hemodynamic 
coupling between brain regions33. It was found that auditory and motor networks are strongly linked in 
the musician’s brain, and even when the task involves only auditory or motor processing, co-activation of 
the areas can be observed34. It has also been found that auditory and visual cortices have the same strong 
relation when conducting musical imagery because auditory and visual imagery seem to obey similar 
basic neural principles35. In our study, we found that the functional connectivity of the visual and motor 
areas decreased. Perhaps in the real music creation task, the neurons of the visual and motor areas are 
recruited to connect with auditory cortex and to establish other functional connectivity with areas such 
as the ACC and the right angular gyrus.

Why does the functional connectivity between the ACC and the DMN became stronger dur-
ing composition? We chose the ACC as the seed to calculate FC. As a result, we found that it had 
increased connectivity with the DMN. The ACC is known to be related to affect and motivation. It 
might also be related to other brain areas and could modulate cognitive, motor, endocrine and visceral 
responses36. However, some scientists have found involvement of the DMN in managing context-specific 
integration of information across large-scale brain systems37 and have shown a key effect on the integra-
tion of externally and internally directed control38. Thus, we speculate that the composing process may 
include not only the free generation of individual notes but also the combination of musical structures. 
Therefore, our results also support that the idea that DMN activity is related to only goal-irrelevant 
processes should be revised.

Anatomical 
location  

(AAL template) Voxels
MNI coordinate 

[X Y Z]
Peak 

t-score

Short-range FCD Occipital_Inf_R 122 [41 − 81 − 12] − 4.81

Occipital_Inf_L1 45 [− 21 − 93 − 7] − 5.33

Occipital_Inf_L2 50 [− 43 − 74 − 11] − 4.97

Lingual_L 49 [− 12 − 64 − 2] − 4.72

Postcentral_L 234 [− 51 − 9 35] − 4.61

Postcentral_R 102 [50 − 9 36] − 4.12

Long-range FCD Cingulum_Ant_L 45 [− 4 39 3]   4.21

Cingulum_Ant_R 35 [3 38 0]   4.65

Postcentral_R 66 [58 − 1 22] − 4.15

Postcentral_L 166 [− 60 − 5 16] − 5.66

Table 1.  Changes between the resting state and the composition state in short- and long-range FCD 
regions (p < 0.001, cluster threshold k > 600 mm3).
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Figure 3. Results of functional connectivity analysis (p < 0.05, FDR-corrected, cluster threshold 
k > 600 mm3). Row ‘A’ represents the significantly decreased functional connectivity of the left occipital 
seed. Row ‘B’ reveals that of the right occipital seed. Row ‘C’ represents the significantly decreased 
functional connectivity of the left postcentral seed. Row ‘D’ reveals the significantly decreased functional 
connectivity of the right postcentral seed. Row ‘E’ reveals the significantly increased functional connectivity 
of the left cingulum seed.
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At this time, we also suggest that composing may include the combination of musical structures 
accompanying emotion in real time. The ACC plays an important role in the field of cognitive neu-
roscience. Lesions of the ACC produce a cluster of symptoms, including emotional instability39,40. 
Furthermore, one might assume that music creation requires activation of the prefrontal cortex as well 
as the ACC, the regions of the brain most closely associated with planning and higher cognitive function 
in humans41. During music composition, composers need to plan the combination of musical notes and 
emotion; composition is also an emotional task.

Why was the effect of the lingual gyrus hub weakened during composition? From Fig.  4, 
we can see that the effect of the lingual gyrus hub was weakened during composition. As we know, the 
lingual gyrus is usually involved in processing words. In a previous study, the lingual gyrus was reported 
to function in global shape processing during reading42. It has been demonstrated that activation of the 
lingual gyrus may be the greatest for low-contrast words and may decrease as contrast increases. Because 
music processing overlaps with language processing, these composers likely prefer to compose music 
note by note, rendering the lingual gyrus less critical during composition.

Imagined composition is limited in complexity compared to the real composition process. To investi-
gate the real process, a composing device must be designed to fit in the MRI, and the procedure of task 
trials is needed. In addition, behavioral data, such as the training time for composition, was estimated 
by subjects and was thus somewhat arbitrary. Relatively precise training times should also be collected 
because the brain function of music creation may change with respect to training time.

Conclusion
In summary, through our experiments, we found different brain functional connectivity in primary net-
works between the imagined composition state and the resting state among composers. The integration 
of visual and motor areas may not be involved in the real musical creation, and the neurons of these areas 
are recruited to enhance the functional connectivity between the ACC and the DMN for the purpose of 
planning the combination of musical notes and emotion. Nevertheless, further work should concentrate 
on the real composition task and should be a longitudinal study, so that we can delve deeper into the 
neural mechanism underlying composers’ brain plasticity and explore the genesis of creative behaviors.
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