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Many important problems in the analysis of neuroimages can be formulated as discovering the relationship be-
tween two sets of variables, a task for which linear techniques such as canonical correlation analysis (CCA) have
been commonly used. However, to further explore potential nonlinear processes that might co-exist with linear
ones in brain function, amoreflexiblemethod is required. Here, we propose a newunsupervised and data-driven
method, termed the eigenspace maximal information canonical correlation analysis (emiCCA), which is capable
of automatically capturing the linear and/or nonlinear relationships between various data sets. A simula-
tion confirmed the superior performance of emiCCA in comparison with linear CCA and kernel CCA (a non-
linear version of CCA). An emiCCA framework for functional magnetic resonance imaging (fMRI) data
processing was designed and applied to data from a real motor execution fMRI experiment.
This analysis uncovered one linear (in primary motor cortex) and a few nonlinear networks (e.g., in the supple-
mentary motor area, bilateral insula, and cerebellum). This suggests that these various task-related brain areas
are part of networks that also contribute to the execution of movements of the hand. These results suggest
that emiCCA is a promising technique for exploring various data.

© 2015 Elsevier Inc. All rights reserved.
Introduction

Many important problems in the analysis of neuroimages actually
boil down to discover the relationship between two sets of vector vari-
ables, X and Y. As an example (see Fig. 1), let us suppose we wish to
study the relations between the X matrix comprising the time courses
of a spatial independent component analysis (spatial ICA) of task-
related fMRI data, and the Ymatrix of imposed or observed time courses
of relevant variables (the designmatrix). More formally, we are consid-
ering the two following sets: X = X′+ εx ∈ Rn × m (i.e., time courses of
independent components) and Y = Y′ + εy ∈ Rn × q (i.e., fMRI design
matrix), where n is the number of time points, m is the number of the
ICA time courses, q is the number of imposed or observed time courses
related to stimulus, and ε is a random noise term reflecting our imper-
fect knowledge of the underlying processes. This type of question is
most general since the definitions of X and Y are quite flexible. X
could also be the blood oxygenation level-dependent (BOLD) signals
in regions of interest (ROI), or even at the voxel level, or other fMRI fea-
tures, or for this matter, any type of dynamical neuroimages [such as
near-infrared spectroscopy (NIRS), electroencephalogram (EEG), and
magnetoencephalogram (MEG)]. On the other hand, the matrix Y
could be also other types of time varying parameters or even other
types of neuroimages.

The problem of comparing two sets of variables was tackled early on
by Hotelling, who developed the well-known canonical correlation
analysis (CCA) in 1936 (Hotelling, 1936). His paper still stands as a
key reference in multivariate statistical literature. CCA (Hotelling,
1936) finds the two vectors of relativeweights a and b such that the lin-
ear combinations X ∗ a and Y ∗ b maximize the pairwise correlations
across the two data sets, that is, the following problem:

maximize
a;b

CX�a;Y�b

subject to var X � að Þ ¼ var Y � bð Þ ¼ 1
ð1Þ

where var(⋅) is the variance and C(⋅,⋅) is the Pearson correlation. Further-
more, we can define correlation matrix as follows:

C ¼ CX;X CX;Y
CY;X CY;Y

� �
ð2Þ
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Fig. 1. The framework of fMRI data analysis using emiCCA. As an example, let us supposewewish to study the relations between the X and Y in the analysis of neuroimages. In the emiCCA
(black background), data set X (time points × number of components) was defined by mean time courses of independent components (ICs) over subjects; data set Y (time points ×
number of different HRFs) was defined by a design matrix. It is worth noting that the definitions of data sets can be very flexible in emiCCA.

389L. Dong et al. / NeuroImage 109 (2015) 388–401
where C(⋅,⋅) is the correlation between or within data sets. The problem
can be solved with a generalized eigenvalue solution of the following
form:

C−1
X;XCX;YC

−1
Y;YCY;Xa ¼ λ2a

C−1
Y ;YCY;XC

−1
X;XCX;Yb ¼ λ2b

(
ð3Þ

where λ is the canonical correlation coefficient (square root of
eigenvalue), and a and b are canonical coefficients vectors (eigen-
vectors). This method is now known as linear CCA (lCCA). It is not
surprising that this well-known statistical method was applied
early on to reveal homogeneous brain activity in fMRI data space
(Friman et al., 2001). In this paper, X was defined as BOLD signals
of a group of neighboring voxels, and Y was defined as the Fourier series.
Linear CCA has also been used to achieve feature-based fusion of biomed-
ical imagingmodalities (e.g., EEG and fMRI) by determining inter-subject
covariations across modalities (Correa et al., 2010; Correa et al., 2008).
Furthermore, lCCA has been used in stable state visual evoked potential
(SSVEP) detection (Zhang et al., 2012). It was also applied to investigate
a group of neighboring voxels in fMRI data while adding the spatial
constraints. X was defined as time series of neighboring voxels, and Y
was defined as the design matrix (Cordes et al., 2012).

However, lCCA is based on the analysis of correlation matrices. It is
well known that the correlation coefficient excels in detecting linear re-
lationships but may fail in the case of nonlinear ones. However, nonlin-
earities have been convincingly demonstrated to originate from neural
and/or vascular sources (Birn and Bandettini, 2005; Zhang et al.,
2008). To complicate matters further, other factors such as methods
for quantifying signals may introduce further nonlinearities (He et al.,
2011). This argues that it may be necessary to go beyond the usual
models, such as the general linear model (Friston, 2007; Friston et al.,
1995) and lCCA (Friman et al., 2001), to detect activation patterns in
fMRI data in order to cope with possible nonlinear effects, in particular-
ly, the relationships between tasks and BOLD/neural activation.

A nonlinear generalization of CCA is the kernel version of CCA or ker-
nel CCA (kCCA), which is obtained in a similar fashion as CCA but from
the eigenspace corresponding to the kernel matrix. For kCCA (Akaho,
2006; Fukumizu et al., 2007), transform functions f and g project the
data X and Y into a higher dimensional feature spaces, that is,

f : X∈Rm↦ f Xð Þ∈HL
x

g : Y∈Rq↦g Yð Þ∈HL
y

(
ð4Þ
where H is a higher dimensional Hilbert space. Then the kernel function
K, which is instead of the inner product of the data matrices f(X) and
g(Y), can be defined as

Kxð Þi j ¼ kx Xi;X j

� �
; Ky

� �
i j
¼ ky Yi;Y j

� �
ð5Þ

Finally, the kernel matrix in high-dimensional space is obtained as

K ¼ KXKX KXKY
KYKX KYKY

� �
ð6Þ

and Eq. (1) can also be transformed into the following generalized
eigenvalue problem in kernel space,

KXKXð Þ−1 KXKYð Þ KYKYð Þ−1 KYKXð Þa� ¼ λ2a�

KYKYð Þ−1 KYKXð Þ KXKXð Þ−1 KXKYð Þb� ¼ λ2b�

(
ð7Þ

where λ is the canonical correlation coefficient (square root of eigenval-
ue), and a⁎ and b⁎ are canonical coefficients vectors in kernel space.
Kernel CCA has been to detect the nonlinearity in neural imaging
(Biessmann et al., 2010; Hardoon et al., 2007). Nevertheless, kCCA con-
fronts several practical problems in its use: (a) the practical choice of
the regularization coefficient and kernel function (Fukumizu et al.,
2007) and (b) the direct interpretation of the kCCAweights is also diffi-
cult since they are estimated in high-dimensional space and not in the
original data space.

Our goal in this study has been to develop a new unsupervised and
data-driven method for exploring associations between various data
sets in the original data space, in which unknown linear and nonlinear
relationshipsmight exist simultaneously. The crucial point is the substi-
tution of the linear correlation coefficients in Eq. (2) by a generalized
measure of association based on mutual information, the maximal in-
formation coefficient (MIC). The MIC, which builds on entropy and the
mutual information of random variables and has good properties of
generality and equitability, is a more robust and appropriate measure
to explore with various and complex signals (Reshef et al., 2013;
Reshef et al., 2011; Speed, 2011).We take advantage of these properties
by utilizing the eigenvectors and eigenvalues from the eigenspaces of
the MIC matrix as a new measure for assessing the relationships be-
tween the two original data sets—the eigenspace maximal information
canonical correlation analysis (emiCCA).

This paper is organized as follows. The next section describes in
more detail our newmethod.We then go on to demonstrate the face va-
lidity of the emiCCA by means of simulations that contained various
functional relationships. Meanwhile, a framework for the processing
of real fMRI data is proposed to illustrate the application to both block



Table 1
Definitions of the functional relationships.

Relationship name Description (domain is [−1 1])

Linear y1 = x1
Parabolic y1 = x1

2

Absolute y1 = |x1|
Cosinusoidal y1 = cos(2πx1)
Exponential y1 ¼ e ;sin 2πx1ð Þ

Circle y1
2 + x1

2 = 1
Nonseparable y1 = x1x2
Equations y1 ¼ x21

y2 ¼ ; cos 2πx1ð Þ
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design and event-related fMRI motor execution experiments. Finally,
discussions are provided regarding the resultant brain functional activa-
tions and the performance of the method.

Methods and materials

Eigenspace maximal information canonical correlation analysis

Here, we formulate the new method that is based on MIC (Reshef
et al., 2011) to capture the linear and nonlinear relationships that
exist between two data sets. This method is called eigenspace maximal
information canonical correlation analysis.

For the same data sets, X ∈ Rn × m and Y ∈ Rn × q, assuming that an
unknown and nowhere-constant function f exists such that

Y0
j ¼ f i j X

0
i

� �
; i∈Dx⊆ 1;…;mf g; j∈Dy⊆ 1;…; qf g ð8Þ

then we have

ϕ Xi;Y j

� �
N0; i∈Dx; j∈Dy ð9Þ

where ϕ is the MIC that falls between 0 and 1 (Reshef et al., 2011). Be-
tween pairs of variables Xi and Yj, the MIC can be calculated from

ϕ Xi;Y j

� �
¼ max

Xij j Y jj jbB
I� Xi;Y j

� �
log2 min Xij j; Y j

��� ���n on o
8<
:

9=
;; i∈ 1;…;mf g; j∈ 1;…; qf g

ð10Þ

wherem and q are numbers of data dimensions, Xi and Y j are bins of a
rectangular grid on the Xi–Yj scatter plot, I*(.;.) is the maximal mutual

information achieved by any grid on the data, and Xij j Y j

��� ���bB indicates

that the total number of bins is less than some number B. For these
two data sets X and Y, similarly, we may have an MIC matrix (instead
of correlation matrix and kernel matrix, corresponding to Eqs. (2) and
(6), respectively),

Φ ¼ ΦX;X ΦX;Y
ΦY;X ΦY;Y

� �
ð11Þ

whereΦ(⋅,⋅) is the MIC matrix between or within data sets calculated
from Eq. (10). Then we assume that there are eigenvectors corre-
sponding to the eigenspaces of X and Y (α and β, respectively) that
satisfy

maximize
α;β

αTΦX;Yβ ð12Þ

where α and β are also vectors of relative weights that correspond to
the eigenspaces of X and Y, respectively. To reduce the freedom of
the scaling of α and β, we may further add the following constraint:

var
Xm
i¼1

α iXi

 !
¼ var

Xq
i¼1

βiYi

 !
¼ 1 ð13Þ

where var(⋅) is the variance. Eqs. (12) and (13) are also posed as a
constrained optimization problem that uses Lagrange multipliers
and is solved with a generalized eigenvalue solution in which α
and β are the eigenvectors (corresponding eigenvalues) of the fol-
lowing two matrices, respectively,

Φ−1
X;X ΦX;Y Φ−1

Y;Y ΦY;X

Φ−1
Y;Y ΦY;X Φ−1

X;X ΦX;Y

(
ð14Þ

Then the vectors of the weights (α and β; eigenvectors) that repre-
sent the weightiness of each piece of dimensional data in the cross MIC
matrix and themaximal information eigen coefficient (MIEC, the square
root of eigenvalues), which quantifies the relationships between the
two data sets, is obtained simultaneously (a proof is provided in
Appendix A). Additionally, because MIC is symmetric (e.g., ϕ(x, y) =
ϕ(y, x)) (Reshef et al., 2011), emiCCA is also symmetric, that is,
emiCCA(X, Y) = emiCCA(Y, X). Furthermore, it is worth noting that, al-
though emiCCA can be relative with the lCCA conceptually in an un-
known space X⁎ and Y⁎ in which relationships are linearized, emiCCA
is a different method instead of a different version of kCCA (a proof is
provided in Appendix B).

MIC assigns scores that approach 0 to statistically independent var-
iables and depends only on the rank order of the data (Reshef et al.,
2011). Therefore, the significance of a given MIC value was established
by comparing the MIC scores of the random data. Considering MIC is a
measure based on mutual information, the significance of MIC values
in Φ were controlled by the false discovery rate (FDR) method, and
the non-significant MIC values were rejected before solving the
above-mentioned problem (Eqs. (12) and (13)). The p-value of each
MIEC was obtained by random permutation tests of the MICs between
the weighted sums of X and Y (a proof is provided in Appendix C).
Here, 5000 random permutations were employed to generate the MIC
null distribution.

Simulation

With n = 500 samples in m = 6 and q = 4 dimensions, where one
relevant variable (the first pair, x1 and y1) or several relevant variables
were present in random variables X and Y (standard uniform distribu-
tions), the linear or nonlinear relationships between the variates were
set in our simulations. These functional relationships were linear, qua-
dratic, and cosinusoidal, in addition to other types. (Table 1). Indepen-
dent Gaussian noises with the standard deviation of 0.05 (Akaho,
2006) were added in test samples, and various data dimensions (m, q)
were set at (3, 2), (6, 4), (12, 8), (18, 12), (24, 16), and (30, 20) to assess
the effects of the dimensionality to emiCCA. Furthermore, to assess the
effects of sample size and noise, various data sizes (from 60 to 1600)
and noises with different standard deviations (from 0 to 0.5, based on
noise levels in previous papers) (Akaho, 2006; Balakrishnan et al.,
2012) were considered and set in the simulation. The FDR was set at
0.05 to reject non-significant MICs in the MIC matrix, and the maximal
MIEC (and weights) of the results was extracted and averaged over 20
repeats of the above-mentioned experiments. To assess the perfor-
mance of emiCCA (emiCCA toolbox will be available on http://
www.neuro.uestc.edu.cn/emiCCA.html with the paper), lCCA and kCCA
(kCCA toolbox is available on http://sourceforge.net/projects/kmbox/)
were also conducted on these experiments, and the results were com-
pared with the results from the emiCCA. The parameters of kCCA were
fixed and as follows: kernel type was Gaussian kernel, regularization
was set at 10−5, and kernel parameter value was set at 1. In addition,
considering that fMRI time courses were autocorrelated, the possible
impacts of autocorrelation on performances of emiCCA, lCCA, and
kCCA were also considered in the simulation (more details can be
seen in supplementary material A).

http://sourceforge.net/projects/kmbox/
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Real fMRI data

To illustrate the performance of the emiCCAwith real data, an imple-
mentation framework based on emiCCA was designed to analyze fMRI
data that were gathered during a motor execution paradigm (Fig. 1).
Twenty-six healthy volunteers participated in the experiment (17
males and 9 females; mean age = 23 years; standard deviation = 2
years; age range = 19-26 years) after giving written informed consent.
An one-task (left hand movement) block design was used in the exper-
iment. In each block, a yellow cross appeared on the center of the screen
for 2 s, and the subjects were asked to prepare for the following hand
movement during this period. Next, the color of the cross turned to
white, and a white left arrow appeared on the screen simultaneously
(lasted for 20 s). The subjects were asked to perform the left hand
movement during this time; when the left arrow disappeared, the
subjects were able to rest but were asked to focus their attention on
the white cross. Twenty blocks were scanned for each subject, and the
type of left hand movement used in this experiment was moving the
palm up and down, such as tapping a ball. The study was approved by
the Ethics Committee of the University of Electronic Science and
Technology of China.

1) fMRI data acquisition: Data were recorded using a 3.0 T scanner (GE
Discovery MR750, USA) at the University of Electronic Science and
Technology of China. Axial anatomical T1-weighted images were
collected with a 3-dimensional fast spoiled gradient echo sequence
(TR/TE = 6.008 ms/1.984 ms, flip angle = 9°, matrix size =
256 × 256, field of view = 25.6 × 25.6 cm2, slice thickness (no
gap) = 1 mm). Functional images were collected with an echo pla-
nar sequence (TR/TE = 2000 ms/30 ms, flip angle = 90°, matrix
size = 64 × 64, field of view = 24 × 24 cm2, thickness/gap = 4
mm/0.4 mm), and a total of 405 volumes (32 slices per volumes)
were also obtained over an 810 s period.

2) Preprocessing: The first five volumes were first discarded to remove
the T1 saturation effects. Slice time correction, realignment, spa-
tial normalization (3mm× 3mm×3mm), and spatial smoothing
(8-mm full-width at half-maximum of an isotropic Gaussian
filter) were analyzed using SPM8. Next, to decrease the noise
level of the fMRI data and to increase calculation efficiency,
group spatial ICA (infomax algorithm) was applied to extract
the spatiotemporal features of the fMRI data (Calhoun et al.,
2001b). The optimal number of independent components was es-
timated at 38 based on the minimum description length criteria
(Li et al., 2007), and four components associated with the possi-
ble artifacts (such as head motion, cerebrospinal fluid, large ves-
sels, and dispersion of clusters) were visually inspected,
discarded, and rejected from further investigation.

3) emiCCA analysis: Data set X was defined by mean time courses of
independent components (ICs) over subjects (m = 34 dimen-
sions). Data set Y was defined by a design matrix in the fMRI
Table 2
Results of emiCCA performed on data sets of sample size= 500 towhichGaussian noise with a s
weights.

Linear Parabolic Absolute Cosinusoidal

R 0.9927 0.9309 0.9348 0.8576
α 1.7128 1.7103 1.7143 1.7115

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

β 1.7112 3.2929 3.4172 1.4196
0 0 0 0
0 0 0 0
0 0 0 0
data contained the onset times of the stimuli convolved with
HRFs of different onset times (−2 s, −1 s, 0 s, 1 s, and 2 s) and
their derivatives (finally generating q = 10 dimensions). Then
emiCCA was applied (The FDR was set at 0.01 to reject non-
significant MICs in MIC matrix), and the results corresponding
to the maximal MIECs were obtained.

4) emiCCA assessing: Additionally, to assess the performance of
emiCCA, lCCA (also conducted on the above-mentioned data
sets X and Y) and GLMs (stimulus onsets were convolved with
canonical HRF, and the activation was subsequently estimated
by SPM) were also investigated and compared with emiCCA.
Results

Simulation results

Table 2 shows the results (mean values) of the emiCCA that contains
maximal information eigen coefficients (MIECs) and solutions for the
weights (α and β). From linear, parabolic, absolute, cosinusoidal, expo-
nential, circular, nonseparable, and complex (equations) relationships,
the mean emiCCA MIECs were 0.9927, 0.9309, 0.9348, 0.8576, 0.9088,
0.5376, 0.3506, and 0.9586, respectively, and the p-values by permuta-
tion test for the pairs were all≪2 × 10−4. Fig. 2 shows themean values
that contain MIECs and the canonical coefficients of lCCA and kCCA.
Significant MIECs were obtained for all given relationships (linear or
nonlinear) but not for independent variables (random). Linear CCA pro-
duced significant canonical correlation coefficients for the linear rela-
tionship. For nonlinearity that can be approximately linearized to
some extent (e.g., exponential relationship), significant coefficients of
lCCA were also obtained. All canonical coefficients of kCCA approximat-
ed 1 (see Fig. 2), regardless ofwhether a relationship existed. By visually
inspecting scatter plots of the associations between the canonical vari-
ate of kCCA and the variable of original data (see Fig. S5), kCCA extracted
the correct features for linear, parabolic, absolute, circular, and
nonseparable relationships, but not for cosinusoidal and exponential
relationships. For complex relationships (equations), kCCA may have
ignored several relationships, even though kCCA correctly extracted
partial features. For independent data (random), kCCA produced false
canonical correlation coefficients (also ~1). In addition, the MIECs
were barely affected by increases in the dimensionality of the data for
these relationships, whereas the canonical correlation coefficients of
lCCA increased with increasing dimensions for nonlinear relationships
(Fig. 3).

To assess the effects of the data sample size and noise, different data
sizes and noise levels with different standard deviations were consid-
ered; the results of these simulations are shown in Fig. 4. For the linear
relationship, emiCCA and lCCA had similar performances. For the non-
linear relationships, emiCCA performed better than lCCA. As shown in
Fig. 4, the MIEC calculated by emiCCA decreased with increases in
tandard deviation of 0.05was added. R is themeanMIEC, andα and β are solutions for the

Exponential Circular Nonseparable Equations

0.9088 0.5376 0.3506 0.9586
1.7161 1.4200 1.2814 1.7149
0 0 1.0816 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1.2033 1.3974 2.9500 2.0658
0 0 0 0.8713
0 0 0 −5.84 × 10−18

0 0.0268 0 0



Fig. 2. The mean values (averaged over 20 repeats) that contain MIECs (emiCCA) and canonical coefficients of lCCA and kCCA. Results were obtained from data sets with a sample size =
500 to which Gaussian noise with a standard deviation of 0.05 was added. *Significant.
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noise, and small sample sizes with high noise levels may lead to a plau-
sible MIEC (not significant). Using lCCA, for the linear relationship, the
canonical correlation coefficients also decreased with increasing noise.
However, for all nonlinear relationships, the lCCA coefficients markedly
decreased with increases in data size.
Fig. 3.Mean results (averaged over 20 repeats) of emiCCA and lCCA in various dimensionswith a
parameters of data dimension (m, q) were set at (3, 2), (6, 4), (12, 8), (18, 12), (24, 16), and (3
Real data results

The real fMRI data were gathered during a task (motor execution
paradigm) that involved moving the palm up and down using the left
hand. The analyses of these data using emiCCA, lCCA, and GLMs (SPM)
data sample size set at 500 andGaussian noiseswith a standard deviation 0.05 added. The
0, 20). R/r is the mean MIEC/mean canonical correlation coefficient.



Fig. 4.Results of emiCCA and lCCAusing data sets of various sample sizes andnoise levelswith different standarddeviations. Thefirst and third columns illustrate themeanMIECs (R) of the
emiCCA, and the second and fourth columns illustrate the mean canonical correlation coefficients (r) of the lCCA.
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are shown in Fig. 5. The weights of kCCA were estimated in high-
dimensional space; therefore, kCCA was not suited to identify task-
related ICs in our framework.

These results show that extremely significant relationships may
have existed between the assumed brain activations and the fMRI
measurement. The p-value yielded by a permutation test for the
MIECs of emiCCA (R = 0.8005) was ≪2 × 10−4, while the p-value
of the canonical correlation coefficient (lCCA, r = 0.9955) was ~0.
The solutions for the weights (α) corresponding to the time courses
of all components were also obtained. For emiCCA, the first ten com-
ponents (the remaining 24 components and the rejected 4 compo-
nents related to possible artifacts are also showed in the Figs. S6
and S7, respectively) that corresponded to the larger weights of
the absolute α values were present as follows (Fig. 5, cyan back-
ground and Table 3):

IC27: the spatial distributions consisting of right precentral gyrus
[primary motor cortex, Brodmann area (BA) 4] and left anterior
lobe.
IC9: the insula network primarily encompassed the bilateral insula
and superior temporal gyrus (BA13/BA38).
IC20: the cerebellumnetwork primarily encompassed the cerebellar
tonsil, inferior semi-lunar lobule, and culmen.
IC11: the spatial distributions consisting of the supplementary
motor area (BA6) and bilateral insula (BA13).
IC31: the right lateral frontoparietal network showed spatial pat-
terns consisting of the inferior parietal lobule (BA39/BA40), superior
parietal lobule (BA7), middle frontal gyrus (BA6/BA10), and inferior
semi-lunar lobule.
IC12: the spatial patterns primarily encompassed the inferior frontal
gyrus (BA9), middle frontal gyrus (BA9), superior parietal lobule
(BA7), precentral gyrus (BA9), and pyramis.
IC24: the spatial patterns consisting of the posterior cingulate
(BA30), precuneus (BA31), and bilateral angular gyrus (BA39).
IC32: the visual networks including the occipital lobe (BA18), lingual
gyrus (BA17), and cuneus (BA18).
IC36: the spatial patterns primarily encompassed the medial frontal
gyrus (BA8), superior frontal gyrus (BA8/BA9), and inferior semi-
lunar lobule.
IC2: the spatial patterns consisting of the bilateral inferior frontal
gyrus (BA47), left superior frontal gyrus (BA6/BA8), and left middle
frontal gyrus (BA9).

Furthermore, for lCCA, only IC27was identified. The spatial distribu-
tions of these analyses are shown at the bottomof the cyan area in Fig. 5.
The results of the SPM analysis (Table 4) are also shown in the bottom
area (black background) of Fig. 5, and the activated regions revealed
by this analysis consisted of the right precentral gyrus and the left cere-
bellum, which was in accordance with the IC27 identified by the afore-
mentioned methods. Additionally, to further illustrate that nonlinearity
may exist in neural imaging, trend lines (referenced by polynomial
curve fitting, the order = 1, 2, or 3) between the time courses of the



Fig. 5. Real data results. In the upper area of the region with a cyan background, the left panel represents the weights of absolute values estimated by emiCCA (|α|), and the right panel
represents the weights of absolute values estimated by lCCA (|α′|). The T-maps of spatial ICs (family-wise error corrected, p b 0.001) corresponding to the larger absolute values of α
(first ten) are shown in the bottom area of the region with a cyan background. In the bottom area with the black background, the regions of activation as estimated by GLMs (SPM)
are shown, and the color bar represents the T-value (family-wise error corrected, p b 0.001). L: left; R: right.
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above-mentioned ICs and the assumed BOLD responses that were stim-
ulus onsets convolved with canonical HRF are also displayed (Fig. 6).
The relationship between the time course of IC27 and the assumed
BOLD response was obviously linear, while other relationships were
parabolic or cubic (remaining 9 components).

Discussion

In this paper, we present a novel unsupervised method called
emiCCA for fMRI data analysis. The simulation was implemented to
demonstrate the performance of emiCCA, and fMRI data gathered dur-
ing amotor execution paradigmwere also analyzed in thiswork to illus-
trate the superiority of emiCCA.

Methodological considerations of emiCCA

To illustrate the performance of emiCCA, the data sample size (set at
500) and Gaussian noises (standard deviation = 0.05) were initially
fixed to obtain the results. For the linear situation, emiCCA performed
as well as lCCA in capturing the features between the two data sets.
For the nonlinear situations, emiCCA also performed well in detect-
ing the parabolic, absolute, cosinusoidal, exponential, and complex
(equations) relations, even the circular and nonseparable relation-
ships were to some extent captured (see Fig. 2 and Table 2). Further-
more, the MIECs of emiCCA were barely affected by increases in the
dimensionality of the data for these relationships (Fig. 3). To further
assess the properties of emiCCA, the effects of the data sample size
and noise on the performance of emiCCA were investigated. As
shown in Fig. 4, the MIECs of emiCCA generally decreased as the
noise increased. For the situation of autoregressive process, emiCCA
could also tolerate this situation to some degree and performed
well in detecting relationships (more details can be seen in supple-
mentary material A). The stability and reliability of the results bene-
fit from large sample sizes and low noise levels in real data sets.
Additional stimuli or runs during fMRI recording may, to some ex-
tent, increase the accuracy of the results. Moreover, the noise of the
original fMRI data acquisition may be produced at the levels of
local field potentials, hemodynamics and recording (Roebroeck



Table 3
One-sample t-test results of the ten components identified by emiCCA. The significance threshold was set at p b 0.001 (family-wise error corrected, cluster size N 23 adjacent voxels).

MNI coordinates L/R Lobe Brodmann area T-value Voxels

x y z

IC 27 39 −24 66 R Precentral gyrus BA 4 25.24 1262
−3 −6 60 L Medial frontal gyrus BA 6 14.53
−9 −51 −24 L Anterior lobe 19.96 406

IC 9 −45 12 −9 L Insula/superior temporal gyrus BA13/BA38 26.28 824
−36 18 −6 L Insula/inferior frontal gyrus BA13/BA47 22.96

33 24 −12 R Insula/inferior frontal gyrus BA47 23.96 1165
42 12 −9 R Insula BA13 22.69

IC 20 33 −72 −36 R Cerebellar tonsil 34.31 5265
−15 −66 −45 L Inferior semi-lunar lobule 27.87

24 −66 −27 R Culmen 25.65
IC 11 6 0 72 R Medial frontal gyrus BA6 27.03 4936

6 12 48 R Superior frontal gyrus BA6 26.08
6 12 39 R Cingulate gyrus BA24 25.20

−42 6 0 L Insula BA13 22.61 670
66 −33 21 R Superior temporal gyrus BA42 13.01 169
36 45 27 R Middle frontal gyrus BA9 11.96 21

−57 −39 21 L Superior temporal gyrus BA13 10.89 95
−30 48 24 L Superior frontal gyrus BA9 10.18 25

IC 31 45 −60 39 R Inferior parietal lobule BA39/BA40 32.02 1190
33 −69 48 R Superior parietal lobule BA7 18.54
42 21 48 R Middle frontal gyrus BA8/BA9 20.03 1146
27 18 54 R Superior frontal gyrus BA8 19.82

−45 −63 48 L Inferior parietal lobule BA39/BA40 18.15 345
−36 −75 45 L Superior parietal lobule BA7 11.41
−15 −6 57 L Medial frontal gyrus BA6 13.39 63

36 51 3 R Middle frontal gyrus BA10 12.61 93
6 −36 33 R Cingulate gyrus BA31/BA23 12.00 119

−33 −72 −42 L Inferior semi-lunar lobule 11.79 82
−30 −63 −36 L Cerebellar tonsil 9.34

IC 12 45 15 30 R Middle/inferior frontal gyrus BA9 20.31 574
48 −3 30 R Precentral gyrus BA6 12.64
33 −72 48 R Superior parietal lobule BA7 19.50 782

−48 21 30 L Middle frontal gyrus BA9 19.46 543
−45 12 33 L Precentral gyrus BA9/BA6 17.71
−27 −69 45 L Superior parietal lobule BA7 19.05 723
−27 −81 30 L Middle occipital gyrus BA19 14.34
−9 −81 −30 L Pyramis 14.70 117

9 −87 −39 R Inferior semi-lunar lobule 9.37
30 21 −9 R Inferior frontal gyrus BA47 11.90 60
33 9 57 R Middle frontal gyrus BA6 11.46 119
−3 6 72 L Superior frontal gyrus BA6 11.08 96

IC 24 −6 −48 27 L Posterior cingulate/precuneus BA30/BA31 29.60 2226
6 −60 33 R Cingulate gyrus BA31 24.76
6 −27 27 R Posterior cingulate BA23 24.68

42 −66 48 R Inferior parietal lobule BA40 13.44 55
−39 −63 39 L Angular gyrus BA39 10.63 79

IC 32 −21 −96 −6 L Occipital lobe BA18 27.44 674
−18 −105 −6 L Lingual gyrus BA17 24.82
−12 −108 6 L Cuneus BA18 10.85

27 −99 −3 R Inferior occipital gyrus BA17 25.54 790
42 −63 −6 R Occipital lobe BA37 9.05

IC 36 3 48 48 R Medial frontal gyrus BA8 27.88 2108
−6 51 42 L Superior frontal gyrus BA8/BA9 25.47

0 57 30 Medial frontal gyrus BA9/BA10 22.33
−33 −84 −36 L Inferior semi-lunar lobule 12.61 119
−30 −87 −24 L Uvula 9.43

33 −84 −36 R Pyramis 11.41 181
15 −90 −18 R Declive 9.72
30 −15 48 R Precentral gyrus BA4 11.12 82

IC 2 −45 24 −9 L Inferior frontal gyrus BA47 26.02 1434
−45 39 −3 L Inferior frontal gyrus BA46 16.75
−9 27 57 L Superior frontal gyrus BA6/BA8 17.36 869
−6 54 30 L Medial frontal gyrus BA10 16.57

−39 9 45 L Middle frontal gyrus BA9 15.41 204
−51 −54 24 L Supramarginal gyrus BA40 15.29 342

45 33 −12 R Inferior frontal gyrus BA47 13.40 145
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et al., 2005), and traditional preprocessing, such as spatial smoothing
with a Gaussian kernel (Friston, 2007) can always be used to effec-
tively suppress noise. Furthermore, principal component analysis
(PCA) and ICA have also been widely applied to remove artifacts or
extract data features and decrease the noise in neural imaging data
sets (Calhoun et al., 2001b; Calhoun et al., 2009). In brief, to analyze
real data with emiCCA, preprocessing steps seeking to remove
artifacts are, to some extent, preferred to better capture the



Table 4
Results of SPM analysis (p b 0.001, family-wise error corrected, cluster size N 23 adjacent
voxels).

MNI coordinates L/R Lobe Brodmann area T-value Voxels

x y z

33 −21 60 R Precentral gyrus BA4 16.06 324
−12 −51 −24 L Anterior lobe 12.55 228
−21 −48 −24 L Culmen 12.02
54 −18 18 R Postcentral gyrus BA43 10.93 75
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relationships, and sample sizes should be sufficiently large so that infor-
mation regarding the potential relationships is effectively provided.

Because theMIC is anunivariatemethod that can identify interesting
relationships between pairs of variables in large data sets (Reshef et al.,
2011), the elements of MICmatrix,Φ in Eq. (11), are calculated from all
pairs of variables between or within data sets X and Y, respectively (a
total of (m + q)(m + q − 1)/2 MICs will be calculated). Therefore, the
time cost of emiCCA may mainly depend on the MIC calculation.
Fig. 6. Linear and nonlinear relationships between IC time courses (red lines) and the assumed
canonical HRF). Time courses for the ten ICs (identifiedby emiCCA) and their spatial distribution
to fit the trend lines (magenta lines) between the time courses and the assumed BOLD respons
right.
However, the time costs of emiCCA calculation are acceptable when the
data dimensions and sample sizes are increasing, whereas the time cost
of kCCA calculation mainly depends on the sample size of data set
(Fig. S4). Reshef et al. (2013) have suggested that the modified parame-
ters and improved approximation algorithm in calculation of MIC can
gain a significant decrease in runtimewithout significant loss of MIC per-
formance. Therefore, the calculation of emiCCA can benefit not only from
the development of computer (e.g., parallel computing) but also from the
development of MIC algorithm and modification in the future.

In addition, it is worth noting that emiCCA can be relative with the
lCCA conceptually in an unknown space (a proof is provided in
Appendix B); however, the objective of emiCCA is, to some extent, dis-
tinct from lCCA (Eqs. (1) and (12)). Because, considering two data sets
X and Y, we have

maximize
α;β

αTΦX;Yβ≠maximize
α;β

ΦX�α;Y�β

maximize
α;β

αTCX;Yβ ¼ maximize
α;β

CX�α;Y�β

8><
>: ð15Þ
BOLD response (the cyan line on the bottom of the figure; stimulus onsets convolved with
s inone slice are also shown. Thepolynomial functions (the order=1, 2, or 3)were utilized
e, and they are displayed on the right of the corresponding spatial distributions. L: left; R:
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whereΦ(⋅,⋅) is the MIC matrix, C(⋅,⋅) is the correlation matrix, and α and
β are weights in original data sets. Therefore, the involved assumption
and computational implementation of emiCCA are to some degree dif-
ferent from lCCA.

lCCA vs. emiCCA

For the linear relationship, lCCAproduced canonical correlation coef-
ficients that were in accordance with the performance of emiCCA. How-
ever, for nonlinear relationships, the coefficients of the lCCA cannot
assess these relationships well (see Figs. 2 and 4). The linear nature of
lCCA (Hotelling, 1936) is limited in its potential to uncover more com-
plex relationships. In Fig. 4, the coefficients of lCCAmarkedly decreased
with increases in data size, which may have been caused by lCCA ap-
proximating linear situations when the information about the relation-
ships is insufficient (i.e., when the sample size is too small). With
increases in data sizes, the true relationships (e.g., nonlinear relation-
ships) became more stable and obvious, and lCCA was not suitable for
these situations. In addition, considering that the coefficients of lCCA in-
crease with increasing dimensions for nonlinear relationships, CCAwas
not suitable for nonlinearity. Due to the generality of MIC in that a wide
range of associations (linear or nonlinear) can be captured (Reshef et al.,
2011), emiCCA would have better generality and performance than
lCCA.

kCCA vs. emiCCA

As a nonlinear version of lCCA, kCCA extends lCCA using the kernel
method to transform the original data into high-dimensional Hilbert
space, such that their correlation is maximized (Akaho, 2006). Based
on previous studies (Akaho, 2006; Fukumizu et al., 2007; Hardoon
et al., 2004), we used a fixed kernel function, Gaussian kernel, in the
kCCA. In our simulation, all canonical coefficients of kCCA approximated
1 (see Fig. 2). By visual inspection (see Fig. S5), the kCCA performance
worked well for the linear, parabolic, absolute, circle, and nonseparable
relationships yet failed in the cosinusoidal and exponential relation-
ships. Furthermore, kCCA may have also ignored several complex
(equations) relationships. One crucial problem of kCCA is that false ca-
nonical coefficients (also ~1) are obtained from random data where
no relationships exist because the kernel method is likely to overfit
data. Another problem is that it is difficult to distinguish the true from
false (or plausible) results of kCCA. Several regularization techniques
have been utilized to avoid the overfitting of kCCA (Akaho, 2006); how-
ever, kCCA also confronts the problems regarding how to choose the op-
timal regularization coefficient in practice and optimal kernel functions
(Fukumizu et al., 2007). Meanwhile, the workspace is the transformed
high-dimensional data space (Akaho, 2006); therefore, the weights es-
timated by kCCA did not directly represent the weightiness of each
piece of original dimensional data and may have reduced its applicabil-
ity. In brief, the above-mentioned factorsmay have limited the potential
of kCCA for applications. The emiCCA directly investigates the
eigenspace of the MIC matrix that is generated from original data sets
and does not use the kernel method. The emiCCAmay avoid these prob-
lems of kCCA and produces acceptable results. While in the present
paperwe found that emiCCA performed better than kCCA in our simula-
tions, it is conceivable that there might be version of kCCA (e.g., imple-
mented other kernel functions) that are comparable to our method.
Further work is required to answer this issue.

Application to real data

In the real data set, the above-mentioned methods were utilized to
characterize brain activation during a motor execution paradigm
(Fig. 5). Using lCCA, one consistently task-related component that
consisted of the right precentral gyrus and left cerebellum was identi-
fied, and this relationship was strongly linear. Due to the weights of
kCCA that did not directly represent the weightiness of each indepen-
dent component, kCCA was not suitable for our framework of fMRI
data analysis.

For emiCCA, linearity and nonlinearity between the assumed BOLD
responses (related to task) and the ICA time courses (related to fMRI re-
cordings) were found in various independent components (IC27, IC9,
IC20, IC11, IC31, IC12, IC24, IC32, IC36, and IC2). The relationships be-
tween the time course of IC27 and the assumed BOLD response were
obviously linear, while nonlinearities were present in the other 9 com-
ponents (Fig. 5). In previous studies, various cortical networks have
been found during motor execution task (Kansaku et al., 2005;
Sharma and Baron, 2013). In our work, the emiCCA identified IC27 (in
primary motor cortex) as consistently related to the motor execution
task, which corroborates previous studies (Gao et al., 2011; Halder
et al., 2011; Kansaku et al., 2005). The supplementary motor cortex im-
plicated in motor planning and learning (Halsband and Lange, 2006;
Kansaku et al., 2005) was identified by IC11. Furthermore, vast net-
works (such as IC9, IC20, IC11, IC12, IC32, and IC2) may reflect a tran-
sient and rapid process that is associated with IC27 and may play an
important role in supporting IC27 during the task. The precuneus
(IC24) and medial frontal gyrus (IC36) may have exhibited task-
induced deactivation (TID) that represents the reallocation of process-
ing resources from areas in which TIDs occurred to areas that have
been identified in task performance (McKiernan et al., 2006;
McKiernan et al., 2003). It is not surprising that the execution of move-
ments of the hand involves many cognitive components, such as per-
ception, attention/working memory, response selection, and execution
as well as including harmonizing of brain regions in vast networks,
such as the visual (Calhoun et al., 2001a; Damoiseaux et al., 2006),
attention (Fox et al., 2006a), and sensorimotor networks (Fox et al.,
2006b). In addition, it is worth noting that some of the remaining 24
components may not be irrelevant (or meaningless) components.
Descending absolute α values of all 34 components demonstrated that
the different components perhaps had different contributions to the
execution ofmovements of hand andmight depict the results of harmo-
nizing of brain regions in vast networks.

Linearity and nonlinearity in neural imaging

It is traditionally assumed that the neuronal electrophysiological re-
sponse is linearly correlatedwith the BOLD fMRI signal. However, a cer-
tain extent of nonlinearity should be acknowledged in this relationship,
and these nonlinearities can be present in the associations between
tasks and neural activation, between neural activity and the BOLD re-
sponse, or between tasks and the BOLD response (He and Liu, 2008;
He et al., 2011).Many potential factors lead to nonlinearity in neural im-
aging, for example, nonlinearitymay be derived fromneural and/or vas-
cular sources that reflect neurophysiological mechanisms (Birn and
Bandettini, 2005; Zhang et al., 2008). In addition, some nonlinearity
may be due to non-neurophysiological sources such as the vastly differ-
ent temporal and spatial scales of hemodynamic and electrophysiologi-
cal responses and even the variety of methods used to quantify signals
(He et al., 2011). Using traditional lCCA, one might find that the linear
relationships are involved in the fMRI data (see Fig. 5 for lCCA); howev-
er, one might lose important information related to nonlinearity that
may be useful and meaningful. In this work, our emiCCA method,
which is generalizable because it directly detected both linearity and
nonlinearity in original data space (see Fig. 5 for emiCCA and Fig. 6),
was utilized to detect novel relationships between the assumed BOLD
responses (related to task) and ICA time courses (related to fMRI
recording) in a motor execution paradigm.

Additionally, it is well established that HRFs vary across brain re-
gions (Handwerker et al., 2004; Miezin et al., 2000), and this variation
may potentially lead to nonlinearity (see Fig. S8). However, ourmethod
can, to some extent, perform well in this situation and further optimize
the assumed BOLD response during calculation. In other words, emiCCA
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tolerates several variably shaped HRFs due to its nonlinear processing
ability. Considering that convolving neural activity with canonical
HRFs of varying shapes (e.g., different onset times) is necessary in
fMRI data analysis, defining the data set when applying emiCCA is
good practice. Furthermore, based on the aforementioned evidence,
the concepts of linearity and nonlinearity are represented in a Venn di-
agram using information theoretic quantities (Fig. 7). The relationships
between assumed BOLD responses (related to task/stimulus) and fMRI
data (related to recording) are linear or/and nonlinear; thus, it is better
to use a more generalized method to explore these potential relation-
ships. Because the MIC measure finds the maximal mutual information
between two variates (Reshef et al., 2011), emiCCA may optimize the
mutual information between assumed BOLD responses (related to
task/stimulus) and fMRI recordings. Thus, the emiCCA method may
extend our perspectives from linearity to nonlinearity and help us to
better understand the potential process of brain activity.
Virtues of emiCCA and its applicability in the future

Currently, supervised methods always require that the experimen-
tally controlled stimulation can be modeled. However, because of the
complex neurovascular coupling mechanism, brain activity is always
difficult to model. Thus, “noise” (so-called only because we do not
have a good model) that is not directly reflected by, or related to, the
stimulus may play a constructive role in neural activity (Biessmann
et al., 2011; Ermentrout et al., 2008). The emiCCA can directly assesses
various relationships in the original data space (no need to find optimal
kernel functions to transform data); therefore, this method may have
better general applicability than kCCA and lCCA andmay help to explore
and identify interesting and novel patterns in various data. Further-
more, in view of different measurements (e.g., EEG and fMRI) that
have respective strengths and weaknesses that are complementary,
multimodal fusion has been widely researched as a means to achieve
more accurate information regarding brain activity (Dong et al., 2014;
Huster et al., 2012). Various fusion techniques have been developed,
and the three most influential approaches for EEG-fMRI integration
are (He et al., 2011; Huster et al., 2012; Rosa et al., 2010) fMRI-
informed EEG (Lei et al., 2011), EEG-informed fMRI (Debener et al.,
2005; Lei et al., 2010; Luo et al., 2010), and symmetric EEG-fMRI fusion
(Valdes-Sosa et al., 2009). As a data-driven method, emiCCA symmetri-
cally analyzes both modalities simultaneously and avoids any possible
bias and has the potential to uncover the underlying mechanisms of
brain activity in multimodal fusion studies. Thus, emiCCA could consti-
tute a counterpart to model-driven neuro-generative approaches. In
brief, because the definitions of data sets can be very flexible on emiCCA,
emiCCA is likely to provide important information that will extend our
Fig. 7. Illustration of the linear and nonlinear aspects of neural imaging. Information the-
oretic quantities are displayed as areas in a Venn diagram. The intersection between the
assumed BOLD responses (related to task) and the fMRI recordings may contain both lin-
earity and nonlinearity. Linearity may be primary, and nonlinearity that directly reflects
nonlinear neurophysiological mechanisms may also exist. However, nonlinearity that is
due to non-neurophysiological sources (such as vastly different spatial/temporal scales
of BOLD and electrophysiological response, unsuitable HRFs, and various methods of
quantifying multimodal signals) can also be considered.
understanding of brain functions and dysfunctions and represents a
promising technique for various areas of research, such as target detec-
tion in cognitive processing (Calhoun et al., 2006), interictal epileptic
discharges (Luo et al., 2010; Marques et al., 2009), and resting-state
processes (Damoiseaux et al., 2006).

Limitations

Several limitations and suggestions for the further development of
the approach should be considered. First, Kinney and Atwal have argued
the “equitability” property of MIC is not strictly satisfied (Kinney and
Atwal, 2013); therefore, it is necessary to pay attention to this issue
when using emiCCA to examine the relationships between data sets.
However, more evidence and applications are needed to assess our
method in the future. Second, because MIC does not detect for various
complex relationships (e.g., circular and nonseparable relationships)
very well (not ~1), emiCCA may not capture these features perfectly
(see Fig. 4). However,we suggest that preprocessing to remove artifacts,
to extract features (e.g., using PCA and ICA), and to develop a sufficient
sample sizes can alleviate this problemand can also generate reliable re-
sults. Additionally, we were only concerned about themaximal MIEC in
our work, which according to the generality of MIC, may be reasonable
in practical applications; however, other MIECs may be useful depend-
ing on the experimental context. Despite these potential limitations,
the further development and application of emiCCA will be the focus
of future research.

Conclusion

In conclusion, the novelty of this work encompasses that, in the
process termed emiCCA, we utilized the MIC approach to directly
identify potential relationships between data sets to increase the
generalizability of various data analyses (e.g., potential nonlinear-
ities, different data sets) that were demonstrated with simulation
data. Furthermore, an example framework based on emiCCA was
proposed for the analysis of fMRI data, and this example performed
well in revealing underlying brain functions of a real fMRI data set.
This method has the potential for applications involving unimodal
analyses andmultimodal fusion andwill likely provide important in-
formation that will further our understanding of various cognitive
processes.
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Appendix A

For two data sets, X = X′ + εx ∈ Rn × m and Y = Y′ + εy ∈ Rn × q,
where ε is a random noise term, we define the MIC matrix,

Φ ¼ ΦX;X ΦX;Y
ΦY;X ΦY;Y

� �
ðA:1Þ

whereΦ(⋅,⋅) is theMICmatrix between or within data sets. Here, we use
Lagrange multipliers to solve the following problem:

maximize
α;β

αTΦX;Yβ

subject to var X � αð Þ ¼ var Y � βð Þ ¼ 1
ðA:2Þ
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whereα andβ are vectors of relativeweights corresponding to data sets
X and Y, respectively. First, considering the constraint in Eq. (A.2),
generally, we can suppose that

αTΦX;Xα ¼ C1≠0 ðA:3Þ

βTΦY;Yβ ¼ C2≠0 ðA:4Þ

where C1 and C2 are constant. Then the Lagrangian equation can be
given as

L λ;α;βð Þ ¼ αTΦX;Yβ−
1
2
λ

ffiffiffiffiffiffi
C2

C1

s
αTΦX;Xα−C1

� �
−1

2
μ

ffiffiffiffiffiffi
C1

C2

s
βTΦY;Yβ−C2

� �
ðA:5Þ

Taking derivatives in respect to α and β, we obtain:

∂L
∂α ¼ ΦX;Yβ−λ

ffiffiffiffiffiffi
C2

C1

s
ΦX;Xα ¼ 0 ðA:6Þ

∂L
∂β ¼ ΦY;Xα−μ

ffiffiffiffiffiffi
C1

C2

s
ΦY;Yβ ¼ 0 ðA:7Þ

Subtracting βT times Eq. (A.7) from αT times Eq. (A.6), we have

0 ¼ βTΦY;Xα−μ

ffiffiffiffiffiffi
C1

C2

s
βTΦY;Yβ−αTΦX;Yβþ λ

ffiffiffiffiffiffi
C2

C1

s
αTΦX;Xα

¼ λ

ffiffiffiffiffiffi
C2

C1

s
αTΦX;Xα−μ

ffiffiffiffiffiffi
C1

C2

s
βTΦY;Yβ

ðA:8Þ

which together with the constraints (Eqs. (A.3) and (A.4)) implies that

λ ¼ μ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
C1C2

p αTΦX;Yβ ðA:9Þ

Assuming ΦX,X and ΦY,Y are invertible, we have

Φ−1
X;XΦX;Yβ ¼ λ

ffiffiffiffiffiffi
C2

C1

s
α ðA:10Þ

Φ−1
Y;YΦY;Xα ¼ μ

ffiffiffiffiffiffi
C1

C2

s
β ðA:11Þ

substituting Eqs. (A.11) and (A.10) into each other gives

Φ−1
X;X ΦX;Y Φ−1

Y;Y ΦY;Xα ¼ λμα ¼ λ2α ðA:12Þ

Φ−1
Y;Y ΦY;X Φ−1

X;X ΦX;Yβ ¼ λμβ ¼ λ2β ðA:13Þ

We are therefore left with an eigenproblem of the form Aν = λ*ν.
The vectors of weights (α and β) that represent the weightiness of
each dimension of data in the crossMICmatrixΦX,Y are the eigenvectors
of the following two matrices, respectively:

Φ−1
X;X ΦX;Y Φ−1

Y;Y ΦY;X ðA:14Þ
Φ−1

Y;Y ΦY;X Φ−1
X;X ΦX;Y ðA:15Þ

The maximal information eigen coefficient (MIEC) is λ N 0, which is
the square root of the eigenvalues (λ⁎).
Appendix B

For two data sets, X = X′ + εx ∈ Rn × m and Y = Y′ + εy ∈ Rn × q,
where ε is a random noise term, assuming there exists an unknown
and nowhere-constant function f that

Y0
j ¼ f i j X

0
i

� �
; i∈Dx⊆ 1;…;mf g; j∈Dy⊆ 1;…; qf g ðB:1Þ

Then we have

ϕ Xi;Y j

� �
N0; i∈Dx; j∈Dy ðB:2Þ

whereϕ is themaximal information coefficient (MIC) that falls between
0 and 1 (Reshef et al., 2011). Between stochastic variables x and y, the
MIC can be given as

ϕ x; yð Þ ¼ max
Xj j Yj jbB

I� X;Yð Þ
log2 min Xj j; Yj jf gf g
	 �

ðB:3Þ

whereX andY are bins of a rectangular grid on the x–y scatter plot, and
I*( .;.) is the maximal mutual information achieved by any grid on the
data. Xj j Yj jbB means that the total number of bins is less than some
number B. With the same function fij, generally, we can suppose that

corr f i j X0
i þ εix

� �
;Y0

j þ ε j
y

� �
≥0; i∈Dx; j∈Dy ðB:4Þ

where corr(.,.) is the Pearson correlation. Due to the property of MIC
that it roughly equals the squared correlation (coefficient of determina-
tion) of the data relative to the noiseless function, it increases with the
increase of the squared correlation in the domain [0, 1] (and vice
versa) (Reshef et al., 2013; Reshef et al., 2011). Thus, we have

corr2 f i j X0
i þ εix

� �
;Y0

j þ ε j
y

� �
≅ΦXi ;Y j

; i∈Dx; j∈Dy ðB:5Þ

where ΦX,Y is the MIC matrix between X and Y. Furthermore, we can
suppose two new data sets, X⁎ and Y⁎, let

corr X�
i ;Y

�
j

� �
¼ ΦXi ;Y j

≅corr2 f i j X0
i þ εix

� �
;Y0

j þ ε j
y

� �
; i∈Dx; j∈Dy ðB:6Þ

which indicates that relationships between X and Y are approximately
represented in data sets X⁎ and Y⁎. Then considering weights (linear
combinations)

U� ¼
Xm
i¼1

aiX
�
i ¼ X�a∈Rn�m ðB:7Þ

V� ¼
Xq
j¼1

b jY
�
j ¼ Y�b∈Rn�q ðB:8Þ

such that the pairwise correlation across the two new data sets (X⁎ and
Y⁎) is maximized, where a, b≠ 0. According to Eqs. (B.5) and (B.6), we
have

max corr U�
;V�� � ¼ max aTcorr X�

;Y�� �
b ¼ max aTΦX;Yb ðB:9Þ

To reduce the freedomof the scaling of a and b, wemay add a further
constraint:

var X�a
� � ¼ var Y�b

� � ¼ 1 ðB:10Þ
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where var(⋅) is the variance. Noting that X⁎ and Y⁎ are unknown, the
optimization can be equivalent to solving the following problem:

maximize
a;b

aTΦX;Yb ¼ maximize
a;b

corr U�
;V�� �

subject to var Xað Þ ¼ var Ybð Þ ¼ 1
ðB:11Þ

whereΦX,Y is theMIC between X and Y, and var(⋅) is the variance. Prob-
lem (B.11) means that emiCCA may be related to a generalized lCCA in
which the eigenvectors a and b in emiCCA are the generalized eigenvec-
tors of lCCA in its unknown linearized space. However, this is merely of
conceptual relevance, as the requirement in Eq. (B.6) is very complex
(also not necessary) to generate the two new data sets (X⁎ and Y⁎)
from the original data (X and Y). In general, it is also hard to find the op-
timal kernel functions or family of kernel functions in the kCCA; there-
fore, we consider emiCCA as a different method instead of a different
version of kCCA.

Appendix C

Here, we assume that the significance of each MIEC can be obtained
through random permutation tests of MIC between the weighted sum
of X and Y. The direct hypothesis test of the emiCCA is as follows:

αTΦX;Yβ ¼ 0;α;β≠0 ðC:1Þ

whereΦ(⋅,⋅) is theMICmatrix. Nowwe use apagoge to prove the follow-
ing proposition: ifϕ(U; V)=0, thenαTΦX,Yβ=0,whereϕ isMIC, andU
and V are the weighted sum of X and Y, respectively, which are derived
from the following equations:

U ¼
Xm
i¼1

α iXi∈Rn�m ðC:2Þ

V ¼
Xq
j¼1

β jY j∈Rn�q ðC:3Þ

Supposing that ∃ α, β ≠ 0 makes αTΦX,Yβ ≠ 0, where α, β =
argmax αTΦX,Yβ. Obviously, we have

αTΦX;Yβ≠0⇒ΦX;Y≠0 ðC:4Þ

Because MIC assigns scores that approach 0 to the statistically inde-
pendent variables (Reshef et al., 2011), it yields U is not independent of
V and ϕ(U; V)≠ 0. This conflicts with our assumption, and the proposi-
tion is proved. Therefore, because MIC depends only on the rank order-
ing of the data (Reshef et al., 2011), the p-value of each MIEC can be
obtained through random permutation tests of MIC, ϕ(U; V).

Appendix D. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2015.01.006.
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