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Local Multimodal Serial Analysis for Fusing
EEG-fMRI: A New Method to Study Familial

Cortical Myoclonic Tremor and Epilepsy
Li Dong, Pu Wang, Yi Bin, Jiayan Deng, Yongjie Li, Leiting Chen, Cheng Luo, and Dezhong Yao

Abstract—Integrating information of neuroimaging multi-
modalities, such as electroencephalography (EEG) and functional
magnetic resonance imaging (fMRI), has become popularly for
investigating various types of epilepsy. However, there are also
some problems for the analysis of simultaneous EEG-fMRI data
in epilepsy: one is the variation of HRFs, and another is low
signal-to-noise ratio (SNR) in the data. Here, we propose a new
multimodal unsupervised method, termed local multimodal serial
analysis (LMSA), which may compensate for these deficiencies
in multimodal integration. A simulation study with comparison
to the traditional EEG-informed fMRI analysis which directly
implemented the general linear model (GLM) was conducted to
confirm the superior performance of LMSA. Then, applied to
the simultaneous EEG-fMRI data of familial cortical myoclonic
tremor and epilepsy (FCMTE), some meaningful information of
BOLD changes related to the EEG discharges, such as the cere-
bellum and frontal lobe (especially in the inferior frontal gyrus),
were found using LMSA. These results demonstrate that LMSA
is a promising technique for exploring various data to provide
integrated information that will further our understanding of
brain dysfunction.
Index Terms—Familial cortical myoclonic tremor and epilepsy

(FCMTE), local multimodal serial analysis (LMSA), multimodal
fusion, simultaneous EEG-fMRI.

I. INTRODUCTION

I NTEGRATING information of neuroimaging multimodal-
ities that can alleviate limitations of a single modality

has become increasingly popular for neuroscience research
and clinical application [1]. In view of their noninvasiveness
and complementarity of spatiotemporal resolution, electroen-
cephalography (EEG) and functional magnetic resonance
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imaging (fMRI), have been widely integrated for investigating
human brain function and dysfunction, and various multimodal
methods based on EEG and fMRI have been developed [2],
[3]. In general, there are three most influential approaches
for EEG-fMRI fusion. (1) fMRI-informed EEG analysis:
fMRI spatial information with high spatial resolution assists
the inverse problem of EEG source reconstruction [4], [5].
(2) EEG-informed fMRI analysis: being implemented through
a general linear model (GLM), suitable EEG features (with high
temporal resolution), such as ERP amplitudes [6], the power
spectrum [7], and epileptic spikes [8], assists in detecting the
blood oxygen level-dependent (BOLD) changes in fMRI. This
strategy is widely utilized for event-free or event conditions
during simultaneous EEG-fMRI recording. (3) symmetric
EEG-fMRI analysis: EEG and fMRI data are jointly integrated
through a common generative model [9] or in a common
data/feature space [10], [11]. In brief, the first two approaches
emphasize the benefits from the strength of another modality,
and the third approach emphasizes the common information
while avoiding a bias of either.
Considering the scalp EEG is an effective technique for ob-

serving epileptic discharges and fMRI allows measurement of
BOLD changes related epileptic discharges in the brain with
high spatial resolution, combining EEG-fMRI has been pop-
ularly applied in various types of epilepsy, and the approach
of EEG-informed fMRI analysis is traditional method to ana-
lyze simultaneous EEG-fMRI in epilepsy [12], [13]. In this ap-
proach, the epileptic discharges are first marked from artifact re-
moved EEG data. And then, onset times of discharges which are
convolved with a conventional hemodynamic response func-
tion (HRF) are implemented in the GLM to detect the voxels
related to the EEG discharges in fMRI. The EEG informed-
fMRI analysis approach has been demonstrated its ability to lo-
calize epileptic foci which providing complementary informa-
tion in epilepsy, such as the focal epilepsy [14], [15] and the
idiopathic generalized epilepsy [16]. However, there are also
some problems for the analysis of EEG-fMRI data using GLM
in epilepsy. One is the choice of the HRF in creating the model.
Masterton et al., have been found that canonical HRF may not
provide the best model for the BOLD changes related to spikes
[17]. And a compensatory strategy is using various HRFs to de-
tect BOLD changes related with epileptic discharges [18], [19].
Another problem is that while the noise level of the simulta-
neous EEG (e.g., gradient artifact and ballistocardiogram arti-
facts) and fMRI data [high-resolution fMRI has an intrinsically
lower signal-to-noise ratio (SNR) [20]] acquisitionwas high, the
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simple GLM may be difficult to uncover the fMRI weak neural
signals in epilepsy [8], especially in the epilepsy of few epileptic
discharges. Therefore, a more flexible and sensitive multimodal
method that performs well in analyzing and exploring BOLD
changes related with epileptic discharges is expected.
Familial cortical myoclonic tremor and epilepsy (FCMTE),

which is characterized by a myoclonus of the extremities,
tremor, infrequent epileptic seizures and nonprogressive dis-
eases, has been reported and investigated since 1980s in Japan
[21], [22]. As a rare autosomal inheritance syndrome, FCMTE
have been reported only in about 70 families around the world
[23], and currently only one candidate causative gene, CNTN2,
has been identified in autosomal recessive FCMTE [24]. Ab-
normalities in the sensorimotor cortex, subcortical areas and
cerebellum have been found in various histological [25], [26],
structural [27] and functional [28], [29] studies. Thus far, the
pathophysiologic mechanism of FCMTE remains speculative.
Compared to the role of single modality in epilepsy studies
[30], [31], multimodal methods perhaps promise to provide
further functional complementary information and insight into
our understanding of FCMTE.
In this paper, in view of emphasizing common substrate

of modalities, decreasing uncertainty in fusion of EEG-fMRI
[32] and compensating for the aforementioned deficiencies,
we present a new method, termed local multimodal serial
analysis (LMSA), to detect the potential BOLD changes related
with EEG features. The paper is organized as follows. The
mathematical theory of LMSA is described in the next section
in detail. Then, the performance of LMSA is demonstrated by
means of one simulation, and an example of real simultaneous
EEG-fMRI data of FCMTE patients. Finally, discussions are
provided regarding the performance of the method and the
resultant BOLD changes in FCMTE.

II. METHOD AND MATERIALS

A. Local Multimodal Serial Analysis

Here, we demonstrate a new method that is serially fusing
EEG and fMRI in the local region to efficiently capture the po-
tential brain functional activities. This method is called the local
multimodal serial analysis.
As an example, we are formally considering the two fol-

lowingmultimodal data, EEG, and fMRI data (Fig. 1). For fMRI
data, where M is the number of time points and N
is the number of voxels, time courses of th voxel
and its neighboring voxels (26 voxels) can be defined as matrix

. For EEG data, the lagged discharge functionmatrix, (also
named lagged matrix which contains the onset times related to
the epileptic discharges and downsampled to fMRI time scale),
can be given as

...
...

. . .
...

...
...

...
...

(1)

Fig. 1. The framework of local multimodal serial analysis. (a) Time courses of
th voxel and its neighboring 26 voxels, are obtained from fMRI data, and the
lagged function matrix of discharge onsets is also obtained from EEG data.
(b) Canonical correlation analysis is utilized to obtain the canonical variate
which is corresponding to the maximal correlation between EEG and fMRI data
sets. (c) The activity intensity ( ) is estimated by the multiple linear regress
model where are nuisance covariates such as head motion and linear trend
signals during fMRI recording. (d) The aforementioned procedure is performed
for the whole brain, and the T-map of estimated can be finally obtained.

where is the number of time points which is matched to fMRI
data, and is the number of the lagged time points. First, the
maximal correlations between these two data sets, and ,
can be solved by canonical correlation analysis, which finds the
matrices of weights and such that the linear combinations

and maximize the pair-wise correlations across the
two data sets, that is

maximize

subject to var var
(2)

where var (.) is the variance and is Pearson correlation.
Then, the significant canonical variate ( and

is column vector, and the sign is determined by sign of
maximal absolute value in ) which is corresponding to the
maximal canonical correlation coefficient, is obtained. The HRF
in the local region is also estimated by weight . Next, a
multiple linear regress model is utilized to estimate the activity
of the voxel , that is

(3)

where ( th element) and (column vector) are the regres-
sion coefficients, is canonical variate related to the maximal
correlation between EEG and fMRI data sets, is nuisance
covariate matrix contained headmotion and linear trend signals
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TABLE I
DETAILED DEMOGRAPHIC INFORMATION AND CLINICAL CHARACTERISTICS OF FCMTE

CBZ: carbamazepine, VPA: valproic acid, GTCS: generalized tonic-clonic seizures, : few seizures per lifetime and good control with medication :
present few seizures per year on medication.

during fMRI recording, and is residual error. And, the re-
gression coefficient which represents the activity intensity of
voxel can be estimated by the following:

(4)

where is the pseudoinverse operator. Finally, the aforemen-
tioned procedure is performed for all voxels, and the T-map of
all estimated regression coefficients can be calcu-
lated by

(5)

where is standard error corresponding to .

B. Simulation

To illustrate the performance of the aforementionedmethod, a
simulation that consisted of a 2D fMRI map of grey matter
voxels (a local region of one slice) was designed. For simula-
tion of epileptic discharges, because the generating of epileptic
waves is not focus in the study, 30 discharge events were random
occurred in one run, and the lagged discharge function matrix

was assumed to be directly obtained. In one simulated run,
25 time courses (250 points) were generated by convolving 30
epileptic discharge events with hemodynamic response function
(HRF). The TR (2 s), 3 conventional hemodynamic response
functions (HRFs) of different onset times (0 TR, 1.5 TR, and 3
TR corresponding to HRF-1, HRF-2, and HRF-3) and 1 nega-
tive HRF (HRF-4) were used to generate fMRI data. Indepen-
dent Gaussian noises were added in the simulation data, and
SNRwas set at 0.1 which is consistent with typical experimental
data. Furthermore, to assess the performance of LMSA, tradi-
tional EEG-informed fMRI analysis which was implemented by
GLM (convolved with conventional HRF, HRF-1) was consid-
ered in the simulation, and the different SNRs ( , 10,
1, 0.5, 0.2, 0.1, 0.05, 0.001) were also set in the simulation. In
addition, the whole simulation process was repeated 50 times,
and the mean of the results is reported.

C. Real EEG-fMRI Data

Subjects: Seven male FCMTE patients (mean age: 57 yr, age
range: 46–69 yr) from a Chinese FCMTE genealogy showing
autosomal dominant inheritance and linkage to 8q23.3–24.13
were investigated in this study. All of patients had cortical my-
oclonic tremor in the upper limbs and rare generalized tonic-
clonic seizures (GTCS). The EEG showed the burst of sharp
theta waves or intermixed epileptiform activity when being un-
derwent a 24 h-video EEG. The detailed demographic informa-
tion and clinical characteristics of subjects were summarized
in Table I. The family tree of FCMTE patients can be seen in
the Fig. S1 in the supplementary materials. All of patients were
signed the written informed consent. The study was approved
by the Ethics Committee of the University of Electronic Sci-
ence and Technology of China.
Simultaneous EEG-fMRI Recording: EEG data were

recorded using a 64-channel MR compatible EEG system
(NeuroScan, Charlotte, NC, USA). The EEG cap consisted
of 62 scalp electrodes (Ag/AgCl ring electrodes with built-in
k resistors) distributed according to 10-20 cap system

and two additional electrodes, one placed below the left eye
and the other attached below the clavicle (about 4 cm) for
electrocardiogram (ECG) recording. The data were referenced
to the vertex, and sampling rate was set at 5000 Hz (a low-pass
filtered at 2000 Hz).
The fMRI data were recorded using a 3-T scanner (Discovery

MR750, GE, USA). T1-weighted images were acquired using a
three-dimensional fast spoiled gradient echo (3D-FSPGR) se-
quence. Generating 152 axial slices, the imaging parameters
were as follows: ms ms, flip angle

, field of view mm , voxel size
mm , slice thickness (no gap) mm. Functional im-

ages were collected using a gradient-echo echo-planar imaging
(EPI) sequence, and the imaging parameters were as follows:

ms ms, flip angle , matrix size
, field of view mm , slice thickness

mm. A total number of 255 volumes (35 slices per vol-
umes) were obtained over a run period (510 s), and all functional
images were obtained from five repeated runs (a total of 40.25
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TABLE II
THE SUMMARY OF SIGNIFICANT BOLD CHANGES RELATED TO DISCHARGES UNCOVERED BY LMSA

: activation; : deactivation; B: bilateral; L: left; R: right.

Fig. 2. The mean results of simulation. The first row illustrates the various
shapes of HRFs, and the second row shows the true situations of neural positive
(first column to third column) and negative (fourth columns) activity. Mean
regression coefficients of LMSA (third row), estimated HRFs of LMSA (mean
and standard deviation, fourth row) and GLM (fifth row) are also showed.

min). During scanning, all patients were instructed to close their
eyes and relax without falling asleep.
Real Data Processing: EEG data of all runs were primarily

analyzed using the Curry 7 (NeuroScan software). All EEG data
were re-referenced to the common average reference, then ana-
lyzed. Briefly, gradient artifacts were removed using a local av-
erage artifact template procedure [33] while a moving average
width of 15 MR volumes was used. In addition, the EEG data
were 1–30-Hz passband filtered and downsampled to 250 Hz.
Next, most of the ballistocardiogram (BCG) artifacts were re-
moved using the OBS-based BCG correction [34]. Then, the
onset times of epileptic discharges were independently identi-
fied by two experienced neurologists with the best agreement.

Fig. 3. The performances of LMSA and GLM using simulation data with dif-
ferent SNRs (from 20 to 0.001). Mean regression coefficients (with standard
error) of the center voxel (one voxel) estimated by LMSA and GLM with var-
ious HRFs and SNRs are showed. SNR: signal-to-noise ratio. *: significant
( ).

Runs were excluded if the number of epileptic discharges less
than 5 TR time points during simultaneous fMRI scanning.
The first five volumes were first discarded to remove the T1

saturation effects. Slice time correction, realignment, spatial
normalization ( mm ) and spatial smoothing (8 mm
full-width at half-maximum of an isotropic Gaussian filter)
were conducted by SPM8 (http://www.fil.ion.ucl.ac.uk/spm).
Runs were excluded if head motion exceeded 1.5 mm (transla-
tion) and (rotation) during fMRI acquisition.
In this paper, onsets of epileptic discharge obtained from EEG

data and preprocessed fMRI data were finally analyzed with
aforementioned LMSA procedures. To assess the performance
of LMSA, traditional EEG-informed fMRI analysis (GLM con-
volved with conventional HRF) was also conducted.
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III. RESULTS

A. Simulation Results

In the simulation, three positive HRFs of different onset times
(0 TR, 1.5 TR, and 3 TR) and 1 negative HRF were first consid-
ered, and the SNR was set at 0.1. Fig. 2 shows the mean values
( ) of regression coefficients estimated by LMSA (the
lagged time points, , was set at 15) and GLM (using stan-
dard HRF, i.e., HRF-1). LMSA accurately detected the all as-
sumed neural activities which convolved with various HRFs,
but also had ideal ability to distinguish between the true ac-
tivities and stochastic disturbance. As a core procedure of tra-
ditional EEG-informed fMRI analysis, GLM could accurately
uncover the assumed activities while using appropriate HRFs
(using HRF-1 while the true HRFs are HRF-1 and HRF-4).
However, in the case of convolving with unfitting HRFs (using
HRF-1 while the true HRFs are HRF-2 and HRF-3), GLM ob-
viously produced decreased coefficients, even did not capture
the potential neural activities. To assess the effects of the noise,
different noise levels ( 20, 10, 1, 0.5, 0.2, 0.1, 0.05, and
0.001) were also considered; the mean results of these simula-
tions (in the center voxel) are depicted in Fig. 3. Regression co-
efficients estimated by GLM and LMSA were trending to zero
0 with increasing noise, however, LMSA performed better than
GLM for detecting potential activities (paired t test, ).
In detail, for the HRF-1 and HRF-4, LMSA and GLM had sim-
ilar performances of uncovering neural activities with high SNR
level. For the HRF-2, LMSA produced higher coefficients than
GLM with all SNR levels ( for 20, 10, 1,
0.5, 0.2 and 0.1, for ). For the HRF-3,
GLM did not capture the assumed activities at all SNR levels,
but LMSA produced appropriate coefficients for uncovering the
potential activities ( for all SNRs).

B. Real Data Results

For the real simultaneous EEG-fMRI data, an example of
8 Hz sharp waves (PZ, P4, CP4, P7, P3, and CP3) in patient #7 is
showed in Fig. 4. The significant BOLD changes ( ,
uncorrected, voxel size mm ) related to the EEG dis-
charges revealed by LMSA (the lagged time points, , was set
at 10) in FCMTE patients contained the cerebellum, inferior
frontal gyrus, occipital lobe and sensorimotor cortex (Table II).
And, the details of results of LMSA and GLM (also using stan-
dard HRF, i.e., HRF-1) were present as follows (see Fig. 5, Table
S1, and Table S2).

Patient #1:
The activation regions uncovered by LMSA consisted
of the left precentral gyrus [Brodmann Area (BA) 3], bi-
lateral anterior cingulate (BA32/BA24), bilateral insula
(BA13) and right inferior frontal gyrus (BA9). The deac-
tivation regions revealed by LMSA encompassed the bi-
lateral occipital lobe (BA18), precuneus (BA31/BA23)
and right angular gyrus (BA40). For GLM, only the ac-
tivations were found in the bilateral insula (BA13), sup-
plementary motor area (BA6), precentral gyrus (BA6),
and inferior frontal gyrus (BA47).

Patient #2:
For LMSA, main activation regions consisted of the
bilateral basal ganglia, bilateral inferior frontal gyrus
(BA9/BA46), left supplementary motor area (BA6), left
precentral gyrus (BA6), right occipital lobe (BA18) and
bilateral cerebellum posterior lobe. And for GLM, only
the deactivation in the bilateral caudate was found.

Patient #3:
The activations uncovered by LMSA were in the right
cuneus (BA18), and the deactivation regions encom-
passed the bilateral cerebellum posterior lobe, bilateral
middle temporal gyrus (BA21), bilateral superior frontal
gyrus (BA9/BA9/BA10), bilateral middle cingulate
gyrus (BA32), bilateral inferior frontal gyrus (BA45),
and right thalamus. However, there were no regions
revealed by GLM.

Patient #4:
The activations in the right inferior frontal gyrus
(BA44), bilateral precentral gyrus (BA6), right superior
frontal gyrus (BA10), bilateral temporal pole (BA38),
and middle temporal gyrus (BA21), and deactivation in
the left cerebellum posterior lobe were found by LMSA.
For GLM, the activations in the bilateral precuneus
(BA7), superior frontal gyrus (BA10), supplementary
motor area (BA6), middle temporal gyrus (BA21), left
inferior frontal gyrus (BA47), and left middle occipital
gyrus (BA37) were revealed.

Patient #5:
The main activations in the bilateral middle frontal
gyrus (BA10), precentral gyrus (BA48), occipital lobe
(BA19), paracentral lobule (BA6), cerebellum poste-
rior lobe and middle frontal gyrus (BA8/BA10) were
found by LMSA, and the deactivation was found in the
bilateral putamen. There were no regions uncovered by
GLM.

Patient #6:
For LMSA, the main activation regions consisted of
the left inferior frontal gyrus (BA47/BA11), left occip-
ital lobe (BA18), bilateral cerebellum anterior lobe, left
postcentral gyrus (BA6/BA4), bilateral fusiform gyrus
(BA20) and right superior temporal gyrus (BA42), and
the deactivation encompassed the left inferior temporal
gyrus (BA20). For GLM, only the activations in the
right superior temporal gyrus (BA22), right postcentral
gyrus (BA4) and left middle temporal gyrus (BA37)
were found.

Patient #7:
The main activation regions revealed by LMSA encom-
passed the bilateral inferior parietal lobule (BA40), post-
central gyrus (BA43), cingulate gyrus (BA23/BA32),
right orbitofrontal area (BA11) and bilateral cerebellum
anterior lobe, and the deactivation regions contained
the bilateral cerebellum posterior lobe, right middle
temporal gyrus (BA37), right middle occipital gyrus
(BA19), left posterior cingulate (BA29) and left middle
frontal gyrus (BA6/BA8). For GLM, only the activation
in the left anterior cingulate (BA32) and the deactivation
in the right middle frontal gyrus (BA11) were found.
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Fig. 4. The EEG of patient #7. An example of 8 Hz sharp waves in the PZ, P4, CP4, P7, P3, and CP3 is showed, and the topography in one time point of discharge
is also displayed.

IV. DISCUSSION AND CONCLUSION

In this paper, we proposed a new multimodal method, termed
local multimodal serial analysis, for detecting the BOLD
changes related to EEG features. And, performance and superi-
ority of LMSA were investigated and illustrated in a simulation
and the simultaneous EEG-fMRI data of FCMTE patients in
this paper.
In the simulation, to illustrate the performance of LMSA for

the various shapes of HRFs (HRF-1 to HRF-4), the Gaussian
noises were initially fixed to obtain the mean results across 50
repeated calculations. For all situations of HRFs, LMSA per-
formed well in detecting the assumed BOLD changes, while
GLM could not tolerate several variably shaped HRFs due to
its fixedly convolving with a conventional HRF (Fig. 2). Fur-
thermore, although regression coefficients estimated by GLM
and LMSA both were trending to zero 0 with increasing noise,
however, LMSA performed better than GLM for detecting ac-
tivities (Fig. 3). It is well established that HRFs vary across brain
regions in the healthy subjects [35], [36] and also vary between
epilepsy patients [17] or between discharges in same patient [8],
and this variation may potentially lead to difficulty to detecting
the neural activities. For the GLM, using various HRFs [e.g.,
HRFs of peaking times [19], HRFswith optimal parameters [18]
and subject-specific HRFs generated from task [37]] may relax
this problem, however, it is also difficult to ensure the optimal
HRFs for detecting of BOLD changes related with epileptic dis-
charges. Because of implementing canonical correlation anal-
ysis (CCA) which optimizes the mutual information between
two modalities [1] and considering the EEG lagged matrix ( ),
freedom of LMSA is increased, and LMSA optimally empha-
sizes the common substrate of EEG and fMRI in local regions.
Therefore, LMSA offers higher sensitivity for detecting weak
changes of BOLD signals, and tolerates variably shaped HRFs.
Furthermore, because CCA has low specificity (may classify
nonactive voxels as active) and increased susceptibility to ar-
tifacts [38], in LMSA, canonical variates corresponding to the

EEG lagged matrix are selected as linear predictors to compen-
sate the deficiencies of CCA. That means LMSA also decreases
the uncertainty when considering the common subspace of EEG
and fMRI. In brief, LMSA may achieve the objects for any fu-
sions of two modalities should be emphasized [32]. In addition,
since the definitions of two data sets (EEG lagged matrix and
local fMRI signals in our paper) in CCA are quite flexible,
LMSA may have general applicability for various modalities.
That is, matrix could be EEG power spectrums, event-re-
lated potential amplitudes, or other EEG features, or for this
matter any type of neuroimages (such as near-infrared spec-
troscopy and magnetoencephalogram), and matrix could be
other types of varying parameters or even other types of neu-
roimages.
In the real EEG-fMRI data, the aforementioned methods

(LMSA versus GLM) were utilized to detect potential BOLD
changes related with EEG discharges in FCMTE patients. For
the GLM, few significant BOLD changes were found in 5/7
patients, and no significant results were obtained in 2/7 patients
(Fig. 5 and Table S2). For LMSA, significant BOLD changes
in the cerebellum, which was reported in previous histological
[25], [26], structural [27] and functional [28], [29] studies, were
found in 6/7 patients (Table II and Table S1). Although the role
of the cerebellum in FCMTE is also not very clear so far [22],
our study provided further EEG-fMRI functional evidence that
cerebellum might be related with the epileptic discharges in
FCMTE. The significant BOLD changes in the frontal lobe,
especially in the inferior frontal gyrus (7/7 patients, Fig. 5,
Table II and Table S1), was found in FCMTE patients, and
this region may be also related to the epileptic activity. In
general, the frontal lobe is related with the motor control. The
significantly altered BOLD signals in the inferior frontal gyrus
might reflect the association with myoclonic tremor in FCMTE
patients. In addition, information of BOLD changes in the
frontal lobe may provide useful information for suggesting a
candidate causative gene for FCMTE. BOLD changes related
to discharges in the sensorimotor cortex and occipital lobe (6/7
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Fig. 5. Results of real EEG-fMRI data of FCMTE patients using LMSA and GLM. The significance was set at 0.001 (uncorrected, voxel size mm ). T:
T-value; L: left; R: right.

patients, Fig. 5, Table II and Table S1) perhaps also reflect
the relation with myoclonic tremor [28], [29] and visuospatial
impairment [39] in FCMTE patients. The other regions detected
by LMSA would implicate their contribution to investigation
of epileptic network [40], [41]. In addition, the limitation of the
present study was the small number of FCMTE patients in each
group. However, to date, only about 70 FCMTE families have
been reported [23]; our study may provide useful information
for FCMTE, and also intend to increase the FCMTE patients
for further analyses in the future.
In conclusion, the novelty of this paper contains that, in the

process termed LMSA, we proposed a multimodal method
which emphasized both the common subspaces of two modali-
ties and decrease of the uncertainty in multimodal fusion. The
simulation shows its sensitivity and superiority for detecting
weak changes of BOLD signals related with EEG features.
Furthermore, in simultaneous EEG-fMRI data of FCMTE
patients, LMSA performed well in revealing the underlying
BOLD changes related with epileptic discharges which perhaps
provided important multimodal information for FCMTE. We
assume that this new method may have potential for providing
further integration information of various modalities that help
us understand the brain dysfunction.

REFERENCES

[1] F. Biessmann, S. Plis, F. C. Meinecke, T. Eichele, and K. R. Muller,
“Analysis of multimodal neuroimaging data,” IEEERev. Biomed. Eng.,
vol. 4, pp. 26–58, 2011.

[2] R. J. Huster, S. Debener, T. Eichele, and C. S. Herrmann, “Methods for
simultaneous EEG-fMRI: An introductory review,” J. Neurosci., vol.
32, pp. 6053–60, May 2, 2012.

[3] H. Laufs, “A personalized history of EEG-fMRI integration,” Neu-
roimage, vol. 62, pp. 1056–67, Aug. 15, 2012.

[4] W. Ou, A. Nummenmaa, J. Ahveninen, J. W. Belliveau, M. S.
Hamalainen, and P. Golland, “Multimodal functional imaging using
fMRI-informed regional EEG/MEG source estimation,” Neuroimage,
vol. 52, pp. 97–108, Aug. 1, 2010.

[5] X. Lei, P. Xu, C. Luo, J. Zhao, D. Zhou, and D. Yao, “fMRI functional
networks for EEG source imaging,” Hum. Brain Mapp., vol. 32, pp.
1141–60, Jul. 2011.

[6] S. Debener, M. Ullsperger, M. Siegel, K. Fiehler, D. Y. von Cramon,
and A. K. Engel, “Trial-by-trial coupling of concurrent electroen-
cephalogram and functional magnetic resonance imaging identifies
the dynamics of performance monitoring,” J. Neurosci., vol. 25, pp.
11730–7, Dec. 14, 2005.

[7] R. Scheeringa, K. M. Petersson, R. Oostenveld, D. G. Norris, P. Ha-
goort, and M. C. Bastiaansen, “Trial-by-trial coupling between EEG
and BOLD identifies networks related to alpha and theta EEG power
increases during working memory maintenance,” Neuroimage, vol. 44,
pp. 1224–38, Feb. 1, 2009.

[8] C. Luo, Z. Yao, Q. Li, X. Lei, D. Zhou, and Y. Qin et al., “Imaging
foci of epileptic discharges from simultaneous EEG and fMRI using
the canonical HRF,” Epilep. Res., vol. 91, pp. 133–42, Oct. 2010.



318 IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT, VOL. 7, NO. 4, DECEMBER 2015

[9] K. J. Friston, L. Harrison, andW. Penny, “Dynamic causal modelling,”
Neuroimage, vol. 19, pp. 1273–302, Aug. 2003.

[10] M.Moosmann, T. Eichele, H. Nordby, K. Hugdahl, and V. D. Calhoun,
“Joint independent component analysis for simultaneous EEG-fMRI:
Principle and simulation,” Int. J. Psychophysiol., vol. 67, pp. 212–21,
Mar. 2008.

[11] N. M. Correa, T. Adali, Y. O. Li, and V. D. Calhoun, “Canonical cor-
relation analysis for data fusion and group inferences: Examining ap-
plications of medical imaging data,” IEEE Signal Process. Mag., vol.
27, pp. 39–50, 2010.

[12] J. Gotman, “Epileptic networks studied with EEG-fMRI,” Epilepsia,
vol. 49, pp. 42–51, 2008, Suppl 3.

[13] J. Gotman and F. Pittau, “Combining EEG and fMRI in the study of
epileptic discharges,” Epilepsia, vol. 52, pp. 38–42, Jul. 2011, Suppl 4.

[14] R. Rathakrishnan, F. Moeller, P. Levan, F. Dubeau, and J. Gotman,
“BOLD signal changes preceding negative responses in EEG-fMRI
in patients with focal epilepsy,” Epilepsia, vol. 51, pp. 1837–45, Sep.
2010.

[15] J. Jacobs, P. Levan, F. Moeller, R. Boor, U. Stephani, and J. Gotman et
al., “Hemodynamic changes preceding the interictal EEG spike in pa-
tients with focal epilepsy investigated using simultaneous EEG-fMRI,”
Neuroimage, vol. 45, pp. 1220–31, May 1, 2009.

[16] J. Gotman, C. Grova, A. Bagshaw, E. Kobayashi, Y. Aghakhani, and F.
Dubeau, “Generalized epileptic discharges show thalamocortical acti-
vation and suspension of the default state of the brain,” in Proc. Natl.
Acad. Sci., Oct. 18, 2005, vol. 102, pp. 15236–40.

[17] R. A. Masterton, A. S. Harvey, J. S. Archer, L. M. Lillywhite, D. F.
Abbott, and I. E. Scheffer et al., “Focal epileptiform spikes do not show
a canonical BOLD response in patients with benign rolandic epilepsy
(BECTS),” Neuroimage, vol. 51, pp. 252–60, May 15, 2010.

[18] F. Grouiller, L. Vercueil, A. Krainik, C. Segebarth, P. Kahane, and O.
David, “Characterization of the hemodynamic modes associated with
interictal epileptic activity using a deformable model-based analysis of
combined EEG and functional MRI recordings,” Hum. Brain Mapp.,
vol. 31, pp. 1157–73, Aug. 2010.

[19] A. P. Bagshaw, Y. Aghakhani, C. G. Benar, E. Kobayashi, C. Hawco,
and F. Dubeau et al., “EEG-fMRI of focal epileptic spikes: Anal-
ysis with multiple haemodynamic functions and comparison with
gadolinium-enhanced MR angiograms,” Hum. Brain Mapp., vol. 22,
pp. 179–92, Jul. 2004.

[20] K. Tabelow, V. Piech, J. Polzehl, and H. U. Voss, “High-resolu-
tion fMRI: Overcoming the signal-to-noise problem,” J. Neurosci.
Methods, vol. 178, pp. 357–65, Apr. 15, 2009.

[21] A. Ikeda, R. Kakigi, N. Funai, R. Neshige, Y. Kuroda, and H.
Shibasaki, “Cortical tremor: A variant of cortical reflex myoclonus,”
Neurology, vol. 40, pp. 1561–5, Oct. 1990.

[22] S. Sharifi, E. Aronica, J. H. Koelman, M. A. Tijssen, and A. F. Van
Rootselaar, “Familial cortical myoclonic tremor with epilepsy and
cerebellar changes: Description of a new pathology case and review
of the literature,” Tremor Other Hyperkinet Mov (NY), vol. 2, 2012.

[23] L. Licchetta, T. Pippucci, F. Bisulli, G. Cantalupo, P. Magini, and L.
Alvisi et al., “A novel pedigree with familial cortical myoclonic tremor
and epilepsy (FCMTE): Clinical characterization, refinement of the
FCMTE2 locus, and confirmation of a founder haplotype,” Epilepsia,
vol. 54, pp. 1298–306, Jul. 2013.

[24] E. Stogmann, E. Reinthaler, S. Eltawil, M. A. El Etribi, M. Hemeda,
and N. E. Nahhas et al., “Autosomal recessive cortical myoclonic
tremor and epilepsy: Association with a mutation in the potassium
channel associated gene CNTN2,” Brain, vol. 136, pp. 1155–60, Apr.
2013.

[25] A. F. van Rootselaar, S. M. van der Salm, L. J. Bour, M. J. Edwards,
P. Brown, and E. Aronica et al., “Decreased cortical inhibition and
yet cerebellar pathology in ‘familial cortical myoclonic tremor with
epilepsy’,” Mov. Disord., vol. 22, pp. 2378–85, Dec. 2007.

[26] A. F. van Rootselaar, E. Aronica, E. N. Jansen Steur, J. M. Rozemuller-
Kwakkel, R. A. de Vos, and M. A. Tijssen, “Familial cortical tremor
with epilepsy and cerebellar pathological findings,”Mov. Disord., vol.
19, pp. 213–7, Feb. 2004.

[27] A. W. Buijink, M. W. Caan, M. A. Tijssen, J. M. Hoogduin, N. M.
Maurits, and A. F. van Rootselaar, “Decreased cerebellar fiber density
in cortical myoclonic tremor but not in essential tremor,” Cerebellum,
vol. 12, pp. 199–204, Apr. 2013.

[28] A. F. van Rootselaar, N. M. Maurits, R. Renken, J. H. Koelman, J. M.
Hoogduin, and K. L. Leenders et al., “Simultaneous EMG-functional
MRI recordings can directly relate hyperkinetic movements to brain
activity,” Hum. Brain Mapp., vol. 29, pp. 1430–41, Dec. 2008.

[29] A. F. van Rootselaar, N. M. Maurits, J. H. Koelman, J. H. van der
Hoeven, L. J. Bour, and K. L. Leenders et al., “Coherence analysis
differentiates between cortical myoclonic tremor and essential tremor,”
Mov. Disord., vol. 21, pp. 215–22, Feb. 2006.

[30] K. Xue, C. Luo, D. Zhang, T. Yang, J. Li, and D. Gong et al., “Dif-
fusion tensor tractography reveals disrupted structural connectivity in
childhood absence epilepsy,” Epilepsy Res., vol. 108, pp. 125–38, Jan.
2014.

[31] C. Luo, Q. Li, Y. Lai, Y. Xia, Y. Qin, and W. Liao et al., “Altered
functional connectivity in default mode network in absence epilepsy:
A resting-state fMRI study,” Hum. Brain Mapp., vol. 32, pp. 438–49,
Mar. 2011.

[32] J. Daunizeau, H. Laufs, and K. J. Friston, “EEG–fMRI information
fusion: Biophysics and data analysis,” in EEG-fMRI. New York, NY,
USA: Springer-Verlag, 2010, pp. 511–526.

[33] P. J. Allen, O. Josephs, and R. Turner, “Amethod for removing imaging
artifact from continuous EEG recorded during functional MRI,” Neu-
roimage, vol. 12, pp. 230–9, Aug. 2000.

[34] R. K. Niazy, C. F. Beckmann, G. D. Iannetti, J. M. Brady, and S. M.
Smith, “Removal of FMRI environment artifacts from EEG data using
optimal basis sets,” Neuroimage, vol. 28, pp. 720–37, Nov. 15, 2005.

[35] F. M. Miezin, L. Maccotta, J. M. Ollinger, S. E. Petersen, and R. L.
Buckner, “Characterizing the hemodynamic response: Effects of pre-
sentation rate, sampling procedure, and the possibility of ordering brain
activity based on relative timing,” Neuroimage, vol. 11, pp. 735–59,
Jun. 2000.

[36] D. A. Handwerker, J. M. Ollinger, and M. D’Esposito, “Variation of
BOLD hemodynamic responses across subjects and brain regions and
their effects on statistical analyses,”Neuroimage, vol. 21, pp. 1639–51,
Apr. 2004.

[37] S. Proulx, M. Safi-Harb, P. Le Van, D. An, S. Watanabe, and J.
Gotman, “Increased sensitivity of fast BOLD fMRI with a subject-spe-
cific hemodynamic response function and application to epilepsy,”
Neuroimage, Feb. 25, 2014.

[38] R. Nandy and D. Cordes, “Improving the spatial specificity of canon-
ical correlation analysis in fMRI,” Magn. Reson. Med., vol. 52, pp.
947–52, Oct. 2004.

[39] A. Suppa, A. Berardelli, F. Brancati, M. Marianetti, G. Barrano, and C.
Mina et al., “Clinical, neuropsychological, neurophysiologic, and ge-
netic features of a new Italian pedigree with familial cortical myoclonic
tremor with epilepsy,” Epilepsia, vol. 50, pp. 1284–8, May 2009.

[40] H. Laufs, “Functional imaging of seizures and epilepsy: Evolution from
zones to networks,” Curr. Opin. Neurol., vol. 25, pp. 194–200, Apr.
2012.

[41] C. Luo, D. An, D. Yao, and J. Gotman, “Patient-specific connectivity
pattern of epileptic network in frontal lobe epilepsy,” Neuroimage
Clin., vol. 4, pp. 668–75, 2014.

Li Dong was born in Chongqing, China, 1988.
He received the B.S. degree in mathematics and
applied mathematics from the Beijing Institute of
Technology, Beijing, China, in 2009.
Since 2010, he is a Ph.D. degree candidate in

biomedical engineering, School of Life Science and
Technology, University of Electronic Science and
Technology of China, Chengdu, China. His current
research interests include functional connectivity
and spatiotemporal features of the brain in fMRI
(resting state), brain network and its topological

property, EEG-fMRI multimodal integration, and also the application for the
neuropsychiatric disorder (e.g., epilepsy) and cognitive science.

PuWang received theM.S. degree in neurology from
Luzhou Medical College in 2012.
She is the attending doctor at the Department

of Neurology, Sichuan Provincial People’ Hospital
Branch of Chongzhou and Chongzhou People’s
Hospital, Chongzhou, Sichuan, China. Her current
research interests include resting state functional
connectivity and imaging genetics of epilepsy.



DONG et al.: LOCAL MULTIMODAL SERIAL ANALYSIS FOR FUSING EEG-FMRI 319

Yi Bin received the B.S. degree from the Civil Avia-
tion University of China in 2013.
He then joined the Key Laboratory for NeuroIn-

formation of Ministry of Education in 2014, as
a postgraduate in the School of Life Science and
Technology, University of Electronic Science and
Technology of China. His research interests include
brain network and AI.

Jia-yan Deng received the B.S. degree in biomedical
engineering from North Sichuan Medical College in
2013.
Now, she also pursues her graduate work in

biomedical engineering at the University of Elec-
tronic Science and Technology of China. Her
research interests include applications of fMRI in
epilepsy and Parkinson’s disease.

Yong-Jie Li (M'XX) received the Ph.D. degree in
biomedical engineering from the University of Elec-
tronic Science and Technology of China (UESTC),
Chengdu, China, in 2004.
He is currently a Professor with the Key Labora-

tory for Neuroinformation, Ministry of Education,
School of Life Science and Technology, UESTC,
China. His research interests include visual mech-
anism modeling, image processing, and brain-like
computation.

Lei-ting Chen (M'XX) was born in Taiyuan City,
Shanxi Province, China, in 1966. He received the
B.S. degrees in information system engineering
from Northwestern Polytechnical University, Xi’an,
Shanxi, China, in 1987, the M.S. degree in computer
software from the University of Electronic Science
and Technology of China (UESTC), Chengdu,
Sichuan, China, in 1994, and the Ph.D. degree in
computer application technology from the UESTC
in 2007.
From 1994 to 1999, he was an Assistant Professor

with the Microcomputer Institute, UESTC. From 1999 to 2005, he was an As-

sociate Professor with School of Computer Science and Engineering, UESTC.
Since 2005, he has been a Full Professor with School of Computer Science and
Engineering, UESTC, and the Director of the Key Laboratory for Virtual Re-
ality Technology of Ministry of Information Industry of China. Since 2010, he
has become the Director of the Key Laboratory for Digital Media Technology
of Sichuan Province, and joined the Key Laboratory for NeuroInformation of
Ministry of Education (UESTC) in 2013. He is the author of three books, more
than 150 articles, more than 40 inventions, and holds 16 patents. His research
interests include digital medical image processing, computer graphics, virtual
reality, digital media.
Dr. Chen is a member of editorial board of the Journal of Computer Ap-

plications. Since 2009, he has been a member of IET and ACM. He won a
Second Class Prize of the National Scientific and Technological Progress Award
of China in 2011.

Cheng Luo received the Ph.D. degree in biomed-
ical engineering from University of Electronic Sci-
ence and Technology of China (UESTC), Chengdu,
China, in 2011.
Between 2012 and 2013, he was a Postdoctoral

Fellow at the Montreal Neurological Institute,
McGill University, Montreal, Canada, working
on epileptic functional connectivity based on
EEG-fMRI. He is currently with the Key Laboratory
for NeuroInformation of Ministry of Education,
School of Life Science and Technology, UESTC,

as an Associate Professor. His current research focuses on the functional and
structural connectivity study in epilepsy, schizophrenia, and aging.

De-Zhong Yao was born in Chongqing, China,
1965. He received the Ph.D. degree in applied
geophysics from the Chengdu University of Tech-
nology, Chengdu, China, in 1991, and completed his
postdoctoral fellowship in electromagnetic field with
UESTC in 1993.
He has been a faculty member since 1993, a pro-

fessor since 1995, and the Dean of the School of Life
Science and Technology, UESTC, since 2001; as well
as Director of the Key Laboratory for NeuroInforma-
tion of Ministry of Education, since 2009. He was

a visiting scholar with the University of Illinois at Chicago, IL, USA, from
September 1997 to August 1998, and a visiting professor with McMaster Uni-
versity, Canada, from November 2000 to May 2001 and with Aalborg Univer-
sity, Denmark, from November 2003 to February 2004. He has published more
than 100 peer reviewed papers in international journals and conferences. His
current research interests include EEG and fMRI with their applications in cog-
nitive science and neurological problems.


