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Motor imagery (MI)-based brain-computer interfaces (BCIs) have been widely used for rehabilitation of motor
abilities and prosthesis control for patients with motor impairments. However, MI-BCI performance exhibits a
wide variability across subjects, and the underlying neural mechanism remains unclear. Several studies have
demonstrated that both the fronto-parietal attention network (FPAN) andMI are involved in high-level cognitive
processes that are crucial for the control of BCIs. Therefore,we hypothesized that the FPANmayplay an important
role inMI-BCI performance. In our study, we recordedmulti-modal datasets consisting of MI electroencephalog-
raphy (EEG) signals, T1-weighted structural and resting-state functionalMRI data for each subject.MI-BCI perfor-
mance was evaluated using the common spatial pattern to extract theMI features from EEG signals. One cortical
structural feature (cortical thickness (CT)) and twomeasurements (degree centrality (DC) and eigenvector cen-
trality (EC)) of node centrality were derived from the structural and functional MRI data, respectively. Based on
the information extracted from the EEG and MRI, a correlation analysis was used to elucidate the relationships
between the FPAN andMI-BCI performance. Our results show that the DC of the right ventral intraparietal sulcus,
the EC and CT of the left inferior parietal lobe, and the CT of the right dorsolateral prefrontal cortex were signif-
icantly associated with MI-BCI performance. Moreover, the receiver operating characteristic analysis and ma-
chine learning classification revealed that the EC and CT of the left IPL could effectively predict the low-
aptitude BCI users from the high-aptitude BCI users with 83.3% accuracy. Those findings consistently reveal
that the individuals who have efficient FPAN would perform better on MI-BCI. Our findings may deepen the un-
derstanding of individual variability inMI-BCI performance, and alsomay provide a new biomarker to predict in-
dividual MI-BCI performance.

© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

Motor imagery (MI) is an internal mental rehearsal of a special
motor action without overt motor output, which reflects high-level as-
pects of action planning. Although this is an abstract description, nu-
merous studies have demonstrated that MI plays a crucial role in
motor skill learning, rehabilitation ofmotor abilities and prosthesis con-
trol (Burianova et al. 2013; Miller et al., 2010). Meanwhile, brain com-
puter interface (BCI) approaches hold promise to provide effective
treatment for people with motor impairments, such as spinal cord in-
jury (SCI), stroke, and amyotrophic lateral sclerosis (ALS) (Lebedev
and Opris, 2015). Moreover, BCIs can be utilized to enhance normal
brain function (i.e., sports skills) (Krauledat et al., 2009). Therefore,
roInformation of Ministry of
rsity of Electronic Science and
many recent efforts to develop MI-based BCI systems to obtain volun-
tary neural electroencephalography (EEG) signals (i.e., sensorimotor
rhythm (SMR) or mu rhythm) for the paralyzed patients or healthy in-
dividuals, allowing to control external devices and to better understand
cognitive behaviors (Alvarez-Meza et al., 2013; Friedrich et al., 2013;
Miller et al., 2010).

In real-word BCI applications, there are large inter-individual differ-
ences in MI-BCI performance, not all individuals show satisfactory per-
formance. For example, according to a study conducted by Blankertz
et al. (2010b), approximately 15% to 30% of subjects cannot successfully
voluntarily control an SMR-BCI, even after several weeks of training. In
an earlier study published in 2003, the percentage of subjects who
achieved a classification accuracy below 70% was even greater (48.7%)
(Guger et al., 2003). Therefore, it is important to better understand the
reasons for the individual differences in MI-BCI performance and find
reliable biomarkers to predict individual MI-BCI performance
(Blankertz et al., 2010a). The development of predictors could identify
potentially inefficient SMR-BCI subjects, thereby avoiding frustrating
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and costly training procedures. Thus, other studies on this topic may be
instructive for the establishment of enhanced training strategies for
subjects who exhibit poor performance on these tasks (Vidaurre and
Blankertz, 2010).

Due to the rapid development of neuroimaging techniques, such as
EEG, functional magnetic resonance imaging (fMRI), and structural
MRI (sMRI), the understanding of MI mechanisms has been progres-
sively improving. Using the direct neuro-recording, several studies re-
vealed that the primary motor cortex (M1) and posterior parietal
cortex (PPC) are rich sources of MI EEG signals that can be used to con-
trol BCIs (Aflalo et al., 2015; Hochberg et al., 2006). Meanwhile, MRI
technique is also growing attraction and has gain researchers attention.
Based on fMRI, MI-BCI performance has been found to be correlated
with the activation of the supplement motor area (SMA) (Halder et al.,
2011), premotor-parietal network (Hanakawa et al., 2003) and a large
fronto-parietal network (Hetu et al., 2013). Moreover, studies based
on sMRI revealed that the gray matter volume of the SMA, supplemen-
tary somatosensory area and dorsal premotor cortex (Kasahara et al.,
2015) and the fractional anisotropy (FA) of the cingulum, corpus
callosum and superior fronto-occipital fascicle (Halder et al., 2013) are
closely correlated with MI-BCI performance. These related studies
were mainly focused on task-related performance and consistently il-
lustrated the important role of the fronto-parietal regions inMI-BCI per-
formance. Although many efforts (Kasahara et al., 2015; Zich et al.,
2015) were paid to understand these patterns, the underlying neural
mechanism remains unclear.

In recent years, functional connectivity changes in an intrinsic
resting-state brain network (i.e., the fronto-parietal attention network
(FPAN) and default mode network (DMN)) and neural structural pat-
terns have been increasingly used to investigate cognitive performance
(Alavash et al., 2015; Kasahara et al., 2015; Markett et al., 2014). The
FPAN is a task-positive network consisting of the areas of the cortex lo-
cated along the intraparietal sulcus (IPS), dorsolateral prefrontal cortex
(DLPFC), inferior parietal lobe (IPL), SMA, and frontal eye field (FEF)
(Fox et al., 2005; Ptak, 2012) that is crucially involved in high-level cog-
nitive processes, such as attention andworkingmemory (Markett et al.,
2014; Naghavi and Nyberg, 2005; Ptak, 2012; Scolari et al., 2015). Stud-
ies have also suggested thatMI has a critical functional relationshipwith
these high-level cognitive processes (Ashley Fox, 2013; Madan and
Singhal, 2012). Sustained attention and working memory are two cru-
cial factors for healthy subjects to successfully control an MI-based
BCI, and general mind wandering or lapses in attention can undermine
the user's efforts in performing this task (Friedrich et al., 2013; Lakey
et al., 2011). These studies imply that MI-BCI performance relies on
the interactions between high-level cognitive and low-level motor
functions (Lebedev and Opris, 2015; Moxon and Foffani, 2015). Thus,
in the current studywe combined EEG andMRI to characterize the rela-
tionships between the FPAN and MI-BCI performance.

Functional and structural MRI may offer two complementary
sources of information to facilitate an understanding of the relation-
ships between the FPAN and MI-BCI performance. First, the graph tool
from network analysis is an important method for capturing the intrin-
sic functional organization of the brain, which typically reflects the ex-
change of information (integration and segregation) among brain
regions (Sporns, 2013b; Tuladhar et al., 2015). In a functional brain net-
work, the hub plays a critical role in information processing and transla-
tion by altering its functional connectivity with other nodes (brain
regions) within the network to modulate the various cognitive pro-
cesses (Cole et al., 2013; Zanto and Gazzaley, 2013). Insults to a hub of
a network will result in a disproportionately high impact on behavior
or severe cognitive impairment (Osada et al., 2015). A variety of
methods allow for the characterization of the importance or ‘hubness’
of a node in the network, and eachmeasure seems to reflect unique net-
work patterns (Sporns, 2013b; Zuo et al., 2012). Here, the degree cen-
trality (DC) and eigenvector centrality (EC), two common centrality
measurements, were selected to assess the network properties of the
FPAN (Lohmann et al., 2010; Sato et al., 2015). Second, measurement
of the cortical thickness (CT) is other important method to capture the
cortical morphology feature of the brain. CT reflects cellular characteris-
tics, such as myelination, cell size, and cell packing density (Lerch et al.,
2006; Narr et al., 2007). Several studies have assessed cognitive ability
in healthy subjects or in populations with mental disorders using the
changes of CT that typically may reflect structural reorganization
(local alterations or network-level modulations) (Voss and Zatorre,
2015; Zielinski et al., 2014). Thus, the combination of regional CT and
functional network hub (DC and EC) evaluations may provide new in-
sights into the associations between the FPAN andMI-BCI performance.

We hypothesized that determining the specific patterns of FPAN or-
ganization, as reflected by the resting-state functional network and the
regional morphometric changes in cortical structural, would facilitate
our understanding of the individual differences in MI-BCI performance.
We also hypothesized that these functional and structural patterns of
the FPAN could be used to predict individual MI-BCI performance.
Therefore, in the present study, we assessed the structural and func-
tional patterns of the FPAN at the node level. Specifically, we examined
one structural measure (CT) and two resting-state functional network
node-centrality measures (DC and EC). Based on these functional and
structural measurements, we assessed the effects of different patterns
of the organization of the FPAN on individual MI-BCI performance
using a correlation analysis and a receiver operating characteristic
(ROC) analysis. Linear discriminant analysis (LDA) and support vector
machine (SVM) classifiers were then used to identify subjects with
poor MI-BCI performance.

2. Materials and methods

2.1. Subjects

A total of 40 healthy university students were initially recruited, and
26 (9 females and 17males, aged 22.85±2.48 years, range 19–26 years,
24 right hand-dominant) agreed to complete the EEG and MRI record-
ings. The subjects did not habitually consume drugs and alcohol, and
had no cognitive impairments or neurological disorders. Two subjects
had previous experience with MI-based BCI. The experimental protocol
was approved by the Institutional Research Ethics Board of the Univer-
sity of Electronic Science and Technology of China (UESTC). All partici-
pants were asked to read and sign an informed consent form before
participating in the study. After the experiment, all participants received
monetary compensation for their time and effort.

2.2. EEG data acquisition

EEG data were recorded using a Symtop amplifier (Symtop Instru-
ment, Beijing, China) with 15 Ag/AgCl electrodes (F3, F4, FC3, FC4, Cz,
C3, C4, C5, C6, CP3, CP4, P3, P4, O1, O2) from an extended 10–20 system.
The AFz electrode was adopted as the reference, and the signals were
sampled at 1000 Hz and filtered with a band-pass filter between 0.5
and 45 Hz.

2.3. Experimental procedure

At the beginning of the study, all subjects were told that the purpose
of the study was to investigate individual variability in controlling an
MI-based BCI. The subjects were then familiarized with the experimen-
tal paradigm as shown in Fig. 1. Specifically, the participants were
instructed to use kinesthetic rather than visual imagery (Neuper et al.,
2005). To achieve reliable MI-BCI performance, the EEG experimental
datasets consisted of two sessions. All 40 subjects participated in the
first session. Twenty-six subjects returned to participate in the second
session. The mean interval between the two sessions was approxi-
mately 3 months (95 ± 8 days), and the same tasks were performed



Fig. 1. BCI experimental paradigm. Offline experimental procedures and duration for one left/right hand trail, consisting of a 4 s rest period, indicated by gray bars on both sides; a 1 s cue,
indicated by a yellow bar on the left/right side; and a 5 s MI task, indicated by a green bar on the left/right side.
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in each session. For each session, allmeasurements fromoneparticipant
were recorded on the same day.

Each EEG session consisted of four runs, and each run consisted of 50
trials comprising approximately 25 trials for each MI condition (left or
right hand). A break of 2 min was given to allow the subjects to rest be-
tween the two consecutive runs. In total, each subject performed 200MI
trials. Each trail beganwith a 4 s rest period. A yellow bar then appeared
on the left or right side of the screen for 1 s to instruct the subjects to
perform the left or right hand MI task. When the yellow bar turned
green, the subjects performed the requested MI task for 5 s (see Fig. 1).

2.4. MRI data acquisition

The 26 subjects who completed both EEG experiments were further
asked to participate in MRI scanning. Images were acquired on a 3.0 T
MRI scanner (GE DISCOVERY MR750, USA) using an eight channel-
phased array head coil. Functional images were collected by a single-
shot, gradient recalled echo-planar imaging (EPI) sequences (TR =
2000 ms, TE = 30 ms, flip angle = 90°, matrix size = 64 × 64, field of
view (FOV) = 24 × 24 cm2, slice thickness/gap = 4 mm/0.4 mm, and
32 slices oriented in an AC-PC line). All subjects underwent an 8.5 min
resting fMRI scan. During the resting state fMRI scan, participates
were instructed to hold still, close their eyes, and relax their minds.
Fig. 2. The analys
High-resolution T1-weighted images were acquired by using a-
dimensional fast spoiled gradient echo (T1-3D FSPGR) sequence
(TR = 5.96 ms, TE = 1.968 ms, flip angle = 9°, matrix size =
256 × 256, FOV = 25.6 × 20.5 cm2, and slice thickness (no gap) =
1 mm).
2.5. Analysis procedure

Ablock diagramof the data analysis procedure is shown in Fig. 2. The
raw EEG, fMRI, and sMRI data were first preprocessed. Then, the
preprocessed datasets were analyzed. The MI EEG data were used to
evaluate MI-BCI performance. Based on graph-theory techniques, we
constructed a weighted graph for the FPAN using the resting state
fMRI and then extracted the weighted DC and EC for each node of the
FPAN. We also extracted the CT of the corresponding regions (nodes)
within the FPAN using the sMRI data. Finally, the associations between
the FPAN andMI-BCI performance were assessed using Pearson's corre-
lation. We used the results to determine whether the observed struc-
tural and functional features could accurately differentiate the low-
aptitude BCI group from the high-aptitude BCI group based on ROC
analysis and on LDA and SVM classification. The details of those steps
are described in the following sections.
is procedure.



Table 1
MNI coordinates and Brodmann area of the 16 ROIs in the FPAN.

Brain regions Brodmann MNI coordinates

x y z

L dorsal intraparietal sulcus (L.dIPS) 7 −23 −70 46
R dorsal intraparietal sulcus (R.dIPS) 7 25 −62 53
L inferior parietal lobule (L.IPL) 7 −42 −48 51
R inferior parietal lobule (R.IPL) 40 48 −41 54
L ventral intraparietal sulcus (L.vIPS) 19 −26 −84 24
R ventral intraparietal sulcus (R.vIPS) 19 35 −85 27
L fontal eye field (L.FEF) 6 −24 −15 66
R fontal eye field (R.FEF) 6 28 −10 58

Inferior precentral sulcus (IPCS) 6 −55 −2 38
Supplementary motor area (SMA) 2 −2 −2 55

L dorsolateral prefrontal cortex (L.DLPFC) 46 −40 39 30
R dorsolateral prefrontal cortex (R.DLPFC) 46 38 41 26
L ventral occipital lobe (L.vOC) 53 −47 −71 −8
R ventral occipital lobe (R.vOC) 54 55 −64 −13
L anterior insula (L.aIns) 19 −45 5 9
R anterior insula (R.aIns) 19 45 3 15
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2.6. MI-BCI performance

The trials with an absolute amplitude exceeding 100 μv were
discarded (Kasahara et al., 2015; Zhang et al., 2015a). For each experi-
mental EEG session, we used the first 2 runs of the EEG dataset as the
training set and the last 2 runs as the testing set. The aim of the training
set was to estimate the subject dependent parameters, such as the
band-pass filter and the common spatial pattern (CSP) spatial filters,
and then use these to train the corresponding classifier model. Based
on these parameters and the classifiermodel determined by the training
set, MI-BCI performance was estimated using the testing sets.

Based on the trials in training set, the subject-specific optimal band-
pass filter can be determined by r2 as shown below (McFarland et al.,
1997; Xu et al., 2011),

r2 ¼
ffiffiffiffiffiffiffiffiffi
L1L2

p
L1 þ L2

mean X1ð Þ−mean X2ð Þ
std X1∪X2ð Þ

� �2

ð1Þ

where X1 and X2 are the task related power spectrum of the two classes,
L1 and L2 are the number of trials in the two corresponding classes, and
r2 represents the power differences between two classes. The band-pass
filter corresponding to the largest r2 was treated as the optimal band-
passfilter for the current subject, andwas used tofilter both the training
and testing sets. Then, three pairs of optimal spatial filters were esti-
mated by CSP based on the band-pass filtered training EEG signals for
each subject (Li et al., 2013; Muller-Gerking et al., 1999; Zhang et al.,
2013b). The logarithm transformation of the variance of the spatially fil-
tered signals, resulting in a 6-dimensional CSP feature vector, served as
training features. Considering the heteroscedastic distribution situation
usually encountered in an MI BCI system, Z-score linear discriminate
analysis (Z-LDA) was used as the classifier for the recognition of tasks
(left or right MI) (Zhang et al., 2013a). The Z-score is an enhanced ver-
sion of LDA which identifies a decision boundary based on the Z-score
that utilizes both the mean and standard deviation of the projected
data to adaptively adjust the decision boundary to fit a heteroscedastic
distribution situation (Zhang et al., 2013a).

For the testing process, the same band-pass and spatial CSP filters
determined from the training process were used to filter the trials
from the testing set. Then, the 6-dimensional log-variance of the filtered
EEG signal was estimated for each trial, and the trained Z-LDA classifier
performed the recognition task by inputting the 6-dimentional testing
CSP feature. The mean accuracies of the two EEG sessions in the testing
set were regarded as themeasure ofMI-BCI performance for all subjects
(Zhang et al., 2015a).

2.7. fMRI data processing

For each participant, the firstfive volumeswere initially discarded to
ensuremagnetization equilibrium. Then, the remaining functional scans
were slice time corrected, 3D head motion corrected, spatially normal-
ized (3 × 3 × 3 mm3), and spatially smoothed (8 mm full-width at
half maximumGaussian kernel) in SPM8 software package. Participants
with headmotion less than ±1.5 mm in the x, y, or z direction and less
than ±1.5° rotation in each axis were included. Next, temporally band-
pass filtering (0.01–0.08Hz)was employed to reduce the effects of low-
frequency drift and high-frequency physiological noises. To further re-
move several spurious sources of variance, the filtered time series
were regressed out the six head motion parameters, white matter sig-
nals, cerebrospinal fluid and whole brain signals.

2.8. Measurement of cortical thickness

The T1-weighted images were processed using the Free-Surfer
image analysis suite v5.0.4 (http://surfer.nmr.mgh.havard.edu) to gen-
erate a cortical surface model that provided a measure of cortical thick-
ness (Dale et al., 1999). The processing details have been described
previously (Han et al., 2006; Kuperberg et al., 2003). Briefly, the auto-
matedmorphometric procedures included normalization, spatial trans-
forms, tissue segmentation, and surface tessellation. Cortical thickness
was quantified at each surface location or vertex as the shortest distance
from thewhite surface to the pial surface (Li et al., 2014). Following sur-
face extraction, sulcal and gyral features across individual subjects were
aligned by morphing each subject's brain to an average spherical repre-
sentation, which allows accurate matching of cortical thickness mea-
surement locations among participants, while minimizing metric
distortion. For the whole brain analysis, thickness data were smoothed
on the tessellated surfaces using a 20-mm full-with-at-half-maximum
Gaussian kernel prior to statistical analysis. Selecting a surface-based
kernel reduces measurement noise but preserves the capacity for ana-
tomical localization, as it respects the cortical topological features
(Bernhardt et al., 2014). The data quality of the native space cortical
thickness images was controlled by visual inspection to avoid aberra-
tions in the estimates of cortical thickness.

2.9. Region of interests

In previous studies (Fox et al., 2005; Markett et al., 2014; Toro et al.,
2008), different groups have consistently found sixteen independent re-
gions of interest (ROIs) that could delineate the FPAN. Here, we ob-
tained 16 ROIs (Table 1) according to the coordinates that were
reported in these studies and converted them to MNI coordinates. In
the resting-state fMRI, we defined 6-mm-radius spheres around these
MNI coordinates as the ROI and then the averaged the BOLD time series
across the 33 voxels within each ROI, which was used to construct the
brain's functional network. For the sMRI data, we followed previously
described procedures to extract the regional cortical thickness of each
node within the FPAN (Bernhardt et al., 2014; Sowell et al., 2004).

2.10. Weighted graph construction of the FPAN

Anetwork typicallymodeled by graph theory includes a collection of
nodes (brain regions) and edges. In this study, we set the ROIs shown in
Table 1 as the nodes. Then, the averaged time series of each node was
extracted to calculate a correlation matrix using Pearson's correlation.
The correlation coefficients between nodeswere set as the edges. To ob-
serve the topological properties of the network, we constructed a
weighted graph for the FPAN. Because calculation of the centrality in-
dexes requires entries to have the same sign (Markett et al., 2014;
Sporns, 2013a), edges with negative correlations were set to zero. Fi-
nally, a weighted and undirected adjacency matrix (correlation matrix)
was obtained for each subject. The EC and DC values were extracted for

http://surfer.nmr.mgh.havard.edu


Table 2
Descriptive statistics of participants who fully completed the EEG and fMRI experiments. LH (RH) represents left (right) handedness. An invalid session indicates that the subject had ex-
cessive head motion during the resting-state fMRI scanning. High-aptitude MI-BCI users are marked with an asterisk (*) in the corresponding column. LA (HA) represents low- (high)-
aptitude BCI users.

Subject Male/female Age (years) LH (RH) MI-BCI performance (%) High-aptitude Invalid session

Sub-01 M 26 RH 92 * No
Sub-02 F 24 RH 66 No
Sub-03 F 24 RH 99 * No
Sub-04 F 24 RH 70 No
Sub-05 M 23 RH 80 * No
Sub-06 F 26 RH 80 * No
Sub-07 M 19 RH 74 No
Sub-08 F 22 RH 82 * No
Sub-09 M 23 RH 78 No
Sub-10 M 24 LH 78 No
Sub-11 M 24 RH 86 * No
Sub-12 M 22 RH 85 Yes
Sub-13 F 24 RH 79 * No
Sub-14 F 22 RH 78 No
Sub-15 M 25 RH 96 Yes
Sub-16 M 19 RH 92 * No
Sub-17 M 20 RH 56 No
Sub-18 F 26 RH 61 No
Sub-19 M 23 RH 77 No
Sub-20 M 22 RH 57 No
Sub-21 M 22 RH 58 Yes
Sub-22 M 23 RH 58 No
Sub-23 M 20 RH 85 * No
Sub-24 F 21 RH 52 No
Sub-25 M 24 LH 79 * No
Sub-26 M 25 RH 93 * No
Sums 26(17 M/9F) – 26(24RH/2LH) – 23(9LA/11HA) –
Mean – 22.8 ± 2.48 – – – –
Median – – – 78 – –
Range – 19–26 – 52–99 (52–77)/(79–99) –
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each region within the FPAN based on theweighted and undirected ad-
jacency matrix using the Brain Connectivity Toolbox (Rubinov and
Sporns, 2010).

2.11. Weighted graph metric definitions

2.11.1. Degree centrality
Degree centrality (DC) is defined as the sum of all neighboring link

weights (sometimes referred to as the strength) (Rubinov and Sporns,
2010). If a node has strong connections to many other nodes in the net-
work, then the DC for this node is high. The DC describes local directed
connectivity relationships which can be computed as follows:

DC ið Þ ¼
XN

j¼1
aij ð2Þ

whereN is the number of nodes in the network, and aij is the connection
strength between node i and node j.

2.11.2. Eigenvector centrality
Eigenvector centrality (EC) is defined as the first eigenvector of the

adjacency matrix, which corresponds to the largest eigenvalue λ1

(i.e., the principal eigenvalue). EC is calculated as follows:

EC ið Þ ¼ μ1 ið Þ ¼ 1
λ1

Aμ1 ð3Þ

where A is the adjacency matrix of the graph, μ1 is the eigenvector, and
λ1 is the eigenvalue. Because of the recursive property of this calcula-
tion, a high EC for a node means that are themselves highly connected
(Thomas et al., 2015; Zuo et al., 2012). Compared to the DC, the EC re-
flects the global hierarchical relevance of a node within the network.
Thus, when a node with high EC (i.e., more central) is damaged or ‘in-
fected’, there is a greater impact on the network's efficiency or func-
tional performance (Thomas et al., 2015).
2.12. Correlation analysis
Themajor focus of the current investigation was to explore the rela-

tionships between the functional and structural features of the FPAN
and MI-BCI performance. For each subject, we extracted the resting-
state functional network properties (DC and EC) and a regional cortical
structural feature (CT) for each ROI within the FPAN. Pearson's correla-
tion was then performed to assess the relationships between the struc-
tural and functional features of the FPAN and MI-BCI performance.
2.13. Categorization into low- and high-aptitude users
Two steps were needed to classify the subjects into the two groups.

The first stepwas the selection of critical featureswith good discrimina-
tive abilities. The second step was to perform the classification based on
the selected features in thefirst step. In the pattern recognition commu-
nity, a ROC curve is one of the most common criteria used to evaluate
the classification ability of a feature.

A ROC curve is a plot of the false positive rate (FPR) against the true
positive rate (TPR), which is generated by varying the range of discrim-
ination thresholds (Fawcett, 2006; Zalesky et al., 2010). An ideal point
would be located in the upper left corner of the ROC curve,which repre-
sents 100% sensitivity and 100% specificity. Regarding the ROC, the area
under the curve (AUC) is typically used to quantify the classification
ability of a feature, and a large AUC indicates a strong classification abil-
ity of a feature. In thepresent study, a ROCanalysiswas performed using
all subjects.

Based on the ROC analysis, the features with a strong discriminative
ability (i.e., a large AUC) can be determined. Therefore, by concatenating
the selected features, we further evaluated the possibility of classifying
the participants into high- and low-aptitude BCI users using both LDA
and a radial basis function (RBF) kernel SVMclassifierwhichwas imple-
mented using the LIBSVM toolbox (Chang and Lin, 2011; Liu et al.,
2013a). The classifier performance was validated using a leave-one-
out cross validation (LOOCV) strategy. Specifically, for n samples, in
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each LOOCV test, n-1 samples were chosen for training, and the remain-
ing one sample was used for testing. This procedure was repeated n
times until all samples had served as the testing set. Regarding the opti-
mal values for the RBF kernel parameters C and γ, we performed an-
other nested LOOCV on the training set (i.e. n-1 samples), which will
result in the corresponding optimized C and γ for each training set.
Then the SVM classifier will be trained by applying the optimized pa-
rameters to the training set, based on which the testing set will be fi-
nally classified (Chang and Lin, 2011; Kothari et al., 2013; Liu et al.,
2013b).

3. Results

3.1. MI-BCI offline performance

Of the 26 subjects who fully completed the EEG and fMRI recordings
in the study, three subjects were excluded due to excessivemotion dur-
ing resting-state fMRI scanning. Table 2 list a detailed overview of all
subjects. The MI-BCI performances were used to divide the subjects
into low- and high-aptitude groups. Following the criteria proposed in
the Halder studies (Halder et al., 2011; Halder et al., 2013), the median
performance value (78%) was used to separate the subjects into good
and poor performance groups. To prevent possible overlap between
the two groups, 3 subjects with 78% accuracy were excluded. This re-
sulted in nine low- and 11 high-aptitude BCI users as the two groups.

3.2. Node centrality and MI-BCI performance

Table 3 summarizes all correlation analysis results between node
centrality and MI-BCI performance (Table 3a). We found that MI-BCI
performance was positively correlated (r = 0.4378, p = 0.0367) with
the DC of the right ventral intraparietal sulcus (vIPS, x = 35,
y = −85, z = 27) (Fig. 3a), but negatively correlated (r = −0.5048,
p = 0.0140) with the EC of the left inferior parietal lobule (IPL,
x = −42, y = −48, z = 51) (Fig. 4a). Analysis of differences between
the low- and high-aptitude groups revealed a significantly lower DC of
the right vIPS and a higher EC of the left IPL for the low-aptitude
group (Wilcoxon rank sum test, low-aptitude users n = 9, high-
aptitude users n = 11, p b 0.05) (Fig. 3b and Fig. 4b).

3.3. Regional cortical thickness and MI-BCI performance

Table 3 also summarizes up all the correlation analysis results be-
tween the regional (node) CT and MI-BCI performance (Table 3b). We
found that MI-BCI performance was negatively correlated with the CT of
both the left inferior parietal lobule (IPL, x = −42, y = −48, z = 51)
(Fig. 4c) and the right dorsolateral prefrontal cortex (DLPFC, x = 38,
y = 41, z = 26) (Fig. 5a). Analysis of the differences between the low-
and high-aptitude groups revealed a significantly greater CT of the left
IPL in the low-aptitude group (Fig. 4d), while no significant difference
was observed in CT of the right DLPFC (Fig. 5b) (Wilcoxon rank sum
test, low-aptitude users n = 9, high-aptitude users n = 11, p b 0.05).

3.4. Classification of the two groups

As revealed in Fig. 6, the ROC analysis demonstrates that the EC and
CT of the left IPL have good classification capabilities with AUC values of
0.82 and 0.81, respectively. To further evaluate the classification capa-
bility of the left IPL, we constructed a multivariate feature by
concatenating the EC with the CT of the left IPL, generating a two-
dimensional feature vector. Fig. 7 shows the scatter plot of this 2-
dimensional feature vector for the two groups. In order to obtain rela-
tively robust classification accuracy, we calculated theMahalanobis dis-
tance (Blankertz et al., 2010b; Zhang et al., 2015b) to the data center for
each sample. We found that two points marked with green circles in
Fig. 7 in the high-aptitude group have greater Mahalanobis distances.



Fig. 3. The relationship between the DC of the right vIPS (x = 35, y =−85, z = 27) and MI-BCI performance. (a) Correlation between the DC of the right vIPS and MI-BCI performance.
(b) The difference (means± SD) between the low-aptitude group (blue bar) and the high-aptitude group (red bar) based on theDC of the right vIPS in the FPAN. The asterisk (‘*’) denotes
a significant difference in the DC of the right vIPS between the two groups.
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Applying this technique two points of sample were considered outliers
and removed from classification. Table 4 shows that LDA classification
achieved an accuracy of 77.8%, a sensitivity of 66.7%, and a specificity
of 88.9%. In contrast, the RBF kernel SVM classification achieved an accu-
racy of 83.3%, a sensitivity of 77.8%, and a specificity of 88.9%. The details
of the performance of each classifier are shown in Table 4.
4. Discussion

In the current study, we appliedweighted graphmeasures to under-
stand how specific patterns of FPAN organization (intrinsic functional
connectivity) during rest affect individual MI-BCI performance. We
also used structuralMRI to quantify a specific regional-dependent corti-
cal structural morphometric feature (cortical thickness) within the
FPAN to further understand individual variations in MI-BCI perfor-
mance. Our findings showed that node-level functional or structural
changes in three ‘core’ regions in the FPAN, right vIPS, left IPL, and
right DLPFC, were associated with MI-BCI performance.
Fig. 4. The relationships between the CT/EC of the left IPL and MI-BCI performance. (a) Correlat
(b) The difference (means± SD) between the low-aptitude group (blue bars) and the high-apt
the CT of the left IPL andMI-BCI performance; (d) The difference (means± SD) between the low
left IPL in the FPAN. The asterisk (*) denotes a significant difference in the EC and CT of the lef
The FPAN is crucially involved in high-level cognitive processes, such
as working memory, attention, and motor function (Markett et al.,
2014; Molinari et al., 2013; Neuper et al., 2005; Ptak, 2012). Addition-
ally, the performance ofMI has been shown to involveworkingmemory
and attention (Ashley Fox, 2013). Extensive evidence indicates that the
FPAN plays an important role in MI modulation (Grosse-Wentrup and
Schölkopf, 2013; Hetu et al., 2013). Recently, Cole and his colleagues
(Cole et al., 2013) showed that the flexible hubs of the fronto-parietal
network play a central role in cognitive control and adaptive implemen-
tation of the demands of various tasks. However, the individual role of
the sub-regions within the FPAN during a specific task state
(i.e., motor imagery) are still unknown (Scolari et al., 2015).

Therefore, the present study was done to further understand how
functional and structural pattern changes in the FPAN affect inter-
individual differences in MI-BCI performance. Using the fMRI, the first
centrality measurement we assessed for the FPAN in our study was
the DC, which reflects the number and strength of local network con-
nections and also highlights the capacity of a node to catch (i.e., share
and propagate stimulus information) local information flowing through
ion between the EC of the left IPL (x =−42, y =−48, z = 51) and MI-BCI performance.
itude group (red bars) based on the EC of the left IPL in the FPAN. (c) Correlation between
-aptitude group (blue bars) and the high-aptitude group (red bars) based on the CT of the

t IPL between the two groups.



Fig. 5. The relationship between the CT of the right DLPFC (x= 38, y= 41, z=26) andMI-BCI performance. (a) Correlations between the CT of the right DLPFC andMI-BCI performance;
(b) The group difference (mean± SD) between the low-aptitude group (blue bar) and the high-aptitude group (red bar) according to the CT of the right DLPFC in the FPAN. No significant
difference in the CT was observed between the two groups in the right DLPFC.
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a network (Borgatti, 2005). A recent graph-theoretical study showed
that working memory was significantly positively correlated with the
DC, primarily in the bilateral parietal and right superior temporal
gyrus and the right insular cortex (Langer et al., 2013). In this study,
we found a significant positive correlation (r= 0.4378, p= 0.0367) be-
tween theDCof the right vIPS andMI-BCI performance, and a significant
increase in the DC of the right vIPSwas observed in subjects who exhib-
ited good MI-BCI performance (see Fig. 3b). Several studies examining
both the human and macaque monkey, have determined that the
right vIPS is correlated with mental rotations and translations, which
are usually involved in the imagery process (Chen et al., 2011;
Guipponi et al., 2013; Zacks, 2008). Furthermore, in a recent study,
Markett et al. (2014) revealed that the DC of the right vIPS in the
resting-state FPAN contributed to alerting and executive functions,
two domains of attention. This is consistent with our finding that the
DC of the right vIPS is correlated with MI-BCI performance. Similar to
previous conclusions (Alavash et al., 2015; Power et al., 2013), our find-
ings suggest that the higher DC in the right vIPS might enhance the di-
rect and efficient information transfer (i.e., sustain attention while
ignoring distractors) of the FPAN during MI. In addition to the vIPS,
the dorsal IPS was found to be involved in the FPAN. Similar to that of
the vIPS, the DC of the left IPS showed a relatively strong positive corre-
lation (r= 0.3075, p= 0.1535)withMI-BCI performance, although the
Fig. 6. The ROC curves for the four predictors. The x-axis denotes the false positive rate,
and the y-axis denotes the true positive rate. The green line indicates the EC of the left
IPL. The dark blue line indicates the CT of the left IPL. The black line indicates the DC of
the right vIPS. The bright blue line indicates the CT of the right DLPFC.
correlation was not significant. The human IPS region is crucial for pro-
cessing the signals involved in multisensory attention and is thought to
be a site for the top-down control of attention (Anderson et al., 2010).
The dorsal and ventral IPS regions have different functional contribu-
tions to attentional modalities. Specifically, the brain region around
the dorsal IPS shows a more sustained activation during tasks requiring
spatial attention, whereas the vIPS is more activated during spatial se-
lection tasks (Corbetta et al., 2002; Corbetta and Shulman, 2002;
Hopfinger et al., 2000). Moreover, previous studies have found that
the left PPC (mainly the left dIPS region) is activated earlier than the
right region during a mental imagery task (Formisano et al., 2002;
Luckmann et al., 2014; Sack, 2009; Sack and Schuhmann, 2012).

The second centrality measurement of the FPAN that we evaluated
was the EC, which reflects the global association structure of the net-
work and is sensitive to different layers of network hierarchy
(Binnewijzend et al., 2014; Lohmann et al., 2010). According to previous
studies, a highly associated structure is more vulnerable (i.e., suffers
more severe effects on network efficiency) to localized damage to
those nodes with high EC values (Bullmore and Sporns, 2009; Osada
et al., 2015). Previous work has shown that a stable decrease of EC in
the cortex (caudate and parahippocampal cortex) and in non-cortical
regions (cerebellum and thalamus) may be associated with the devel-
opment of the voluntary modulation of behaviors, such as fear and in-
hibitory control, which are observed in adults (Sato et al., 2015). In
our study, we found that the EC of the left IPL showed a significant neg-
ative association (r =−0.5048, p = 0.0140) with MI-BCI performance
and a significantly decreased EC of the left IPL was observed in those
subjects with good MI-BCI performance (see Fig. 4b). These results
Fig. 7. Scatter plot for the multivariate features of the EC and CT of the left IPL. The blue
rhombuses represent the high-aptitude group, and the red triangles represent the low-
aptitude group. The green circles denote outlier subjects.



Table 4
Multivariate classification performance for the non-linear SVM and LDA classifiers.

Method Sensitivity Specificity Accuracy

Non-linear SVM 77.8% (7/9) 88.9% (8/9) 83.3% (15/18)
LDA 66.7% (6/9) 88.9% (8/9) 77.8% (14/18)
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suggest that the left IPL has a lower hub-like influence on the other
nodes of the global FPAN in participants with goodMI-BCI performance.
However, this finding does not necessarily indicate the left IPL is a brain
region with functional disruption. In a recent study, Aflalo et al. pre-
sented direct neuro-recording evidence that the PPC, in the left hemi-
sphere, which includes the left IPL, of humans is involved in high-level
aspects of action and that the PPC is a rich source of MI EEG signals re-
lated to controlling BCIs (Aflalo et al., 2015). Meanwhile, previous stud-
ies on other aspects of the PPC found that lesions in the PPC cause
deficits in movement rehearsal (Pisella et al., 2000; Sirigu et al., 1996).
Using the conditional Granger causality, Gao et al. also revealed that
the left IPL serves as the causal source in MI task (Gao et al., 2011). Fur-
thermore, Hetu et al. conducted a meta-analysis on the various types of
MI and found that the left IPL was consistently activated during MI of
theupper limb, especially duringfirst perspectiveMI orwhile imagining
more complex movements (Hetu et al., 2013). It is well established that
the left IPL is an important hub in MI performance. Thus, we speculated
that the decreased EC in the left IPL could be attributed to FPAN reorga-
nization according to the following explanations: The decreased EC
might reduce the distraction risk of this node (region) while enhancing
the capacity of the individual to resist a disturbance (i.e., maintain
sustained attention), and the decreased ECmight denote optimized net-
work (FPAN) resource allocation.

Previous studies have shown that MI-BCI performance is correlated
with gray matter volume and fractional anisotropy (Halder et al.,
2013; Kasahara et al., 2015), but there is no report on the correlation be-
tween CT and MI-BCI performance. Structural MRI provided an in vivo
proxy of the CT and allowed measurement of the distance from the
pial/cortical border to the gray/white matter border (MacDonald et al.,
2000; Zhou et al., 2015). CT changes may reflect local functional alter-
ations or global network-level modulations, which have been shown
to correlatewith cognitive abilities aswell as physical and emotional be-
haviors (Shaw et al., 2013; Voss and Zatorre, 2015; Zhou et al., 2015;
Zielinski et al., 2014). Using sMRI, we also extracted the CT of the ROIs
within the FPAN to better understand the inter-individual differences
in MI-BCI performance. Based on CT analysis, we found a significantly
negative correlation (r = −0.4155, p = 0.0486) between the CT of
the left IPL and MI-BCI performance, and a significantly decreased CT
of the left IPL was observed for subjects with good MI-BCI performance
(see Fig. 4d). Previous studies have found that CT changes are related to
high level cognitive abilities, such as working memory and relational
thinking (Vendetti and Bunge, 2014). Specifically, cortical thinning has
been regarded as a form of the structural reorganization of the cerebral
cortex, which is thought to be integral for the functional neural network
to enhance the efficiency of information processing (Luna et al., 2010;
Zhou et al., 2015). For instance, through the structural function mode,
Wendelken has found that cortical thinning in the left IPL leads to
greater efficiency in processing first-order relations, thereby reducing
dependence on the rostrolateral prefrontal cortex (Wendelken et al.,
2011). According to Zielinski et al, there are two possible reasons for
cortical thinning: high levels of synapt
ic pruning and a shift in the observed boundary between the gray and
white matter (Zielinski et al., 2014). Taking into account both the func-
tional and structural pattern changes of the left IPL, it is plausible to sug-
gest that the thinner CT of the left IPL in better-performing subjects
might facilitate improvements in its neural efficiency and the modula-
tion of the FPAN configuration to process the related MI task.

Moreover, the DLPFC is known to participate in executive functions,
such as the allocation of attentional resources, performancemonitoring,
working memory, and response selection, which are thought to play
supporting roles for cognitively demanding tasks (Hampshire et al.,
2011; Vendetti and Bunge, 2014; Wendelken et al., 2008). Previous
studies have indicated that the right DLPFC is associated with move-
ment planning (Halder et al., 2011; Pochon et al., 2001). Additionally,
it has been found that the right DLPFC has a stronger activation scale
when performing tasks requiring the monitoring function (Sharp
et al., 2004). Similar to the left IPL, we found a significant negative cor-
relation (r =−0.5890, p = 0.0031) between the CT of the right DLPFC
and MI-BCI performance. However, no significant difference was found
between the two groups in the CT of the right DLPFC (Fig. 5b).We spec-
ulate that the reason for this is that the thinner CT of right DLPFC en-
hances the efficiency of the local neural region during information
processing but does not modulate network configuration as strongly
as the left IPL, which may account for the fact that we did not observe
significant correlations between the DC and EC of the right DLPFC and
MI-BCI performance (see Table 3). Therefore, we suggest that the thin-
ner CT in the right DLPFC might also facilitate neural efficiency in pro-
cessing specific aspects of MI tasks such as guiding and monitoring
(Halder et al., 2011; Kuhn et al., 2014).

Furthermore, to further explore the relationship between the FPAN
and MI-BCI performance. The subjects were divided into high- and
low-aptitude groups according to their MI-BCI performance. Using the
ROC analysis, we found that the reduced EC and CT of the left IPL in
the FPAN separated the low-aptitude BCI users from the high-aptitude
BCI users with a larger AUC. In addition, when we concatenated these
two features (EC and CT) of the left IPL as a multivariate predictor (the
scatter plot in Fig. 7), the classification accuracy rates were 77.8% and
83.33% using LDA and a SVM as classifiers, respectively, where the two
outliers in the high-aptitude BCI groupwere removed. In this study, be-
cause of the small sample size, even a small number of ‘abnormal’ sam-
ples may severely influence the classification. Thus, we treated the two
subjects who had high EC values in the high-aptitude BCI group as out-
liers (marked with green circles in Fig. 7), resulting in 9 low-aptitude
and 9 high-aptitude BCI users. The balanced of sample size of the two
groups was useful for reducing classification deviation (Japkowicz and
Stephen, 2002; Pereira et al., 2009). Although a small sample size was
used, our findings provide preliminarily evidence that features of the
left IPL can be considered as new biomarkers for predicting individual
MI-BCI performance.

Severalmethodological considerations and limitations of the present
study should bementioned. Due to the long duration of our experiment
(approximately 3 months), it was difficult to recruit a large number of
subjects, and therefore the current sample size is relatively small. Future
studies with imaging data frommore subjects will be necessary to con-
firm our preliminary results. The subjects in the current study were di-
vided into high- and low-aptitude groups according to their MI-BCI
performance utilizing the criteria proposed in (Halder et al., 2011). In
fact, there may exist more than two groups, such as the low, medium
and high performance groups. In the future studies, if the subject num-
ber is large enough, we will perform more accurate group divisions to
reveal the different neural mechanism among those subjects with dif-
ferent BCI performances. Although it has been shown that the fronto-
parietal network serves as a flexible hub among the networks used to
coordinate the various brain's processes (Zanto and Gazzaley, 2013),
self-configuration of the network is still important for supporting cogni-
tive efficiency (Fornito et al., 2013). Thus, we focused on the functional
and structural patterns of a single FPAN, which may also provide novel
insights for understanding the individual differences in MI-BCI perfor-
mance. Future studies based on whole-brain or voxel-wise node defini-
tion methods need to be performed, which may provide the new
insights into the mechanisms of MI from a global large-scale network
perspective (Thomas et al., 2015). In addition, in the present study,
only two common centralitymetrics (DC and EC)were used tomeasure
the properties of the undirected weighted resting-state functional net-
work. Future studies on the effective connectivity and the time-
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varying connectivity will be considered to better understand the indi-
vidual differences in MI-BCI performance (Calhoun et al., 2014).

5. Conclusions

In this study, we found that the structural and functional patterns of
the FPAN are associated with MI-BCI performance. Our findings re-
vealed that the individuals who have efficient FPANwould performbet-
ter on MI-BCI. Moreover, combining the structural and functional
features (i.e., EC and CT of the left IPL) of the FPAN, we were able to ac-
curately identify individuals as low- or high-aptitude BCI users using the
machine learning method. Therefore, our study will be helpful for im-
proving our understanding of individual differences in MI-BCI perfor-
mance. Advancing our understanding of BCI performance in relation to
its structural and functional correlate may enable better customization
of BCI systems, and be potentially useful for future studies in real-
world applications, specifically in BCI control and BCI-basedmotor func-
tion recovery. For instance, first, the study may provide a new bio-
marker to predict individual MI-BCI performance that can be used to
select potential subjects for BCI control and avoid the undesired waste
of time necessary for the long training times and the subject frustration
associated with these studies. Second, a new rehabilitation strategy
using BCI-based motor function recovery could be established where
the features of the FPANmay serve as an instructive guide for the design
of rehabilitation tasks and BCI systems.
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