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Abstract: With very simple implementation, regression-based color constancy (CC) methods
have recently obtained very competitive performance by applying a correction matrix to the
results of some low level-based CC algorithms. However, most regression-based methods, e.g.,
Corrected Moment (CM), apply a same correction matrix to all the test images. Considering
that the captured image color is usually determined by various factors (e.g., illuminant and
surface reflectance), it is obviously not reasonable enough to apply a same correction to different
test images without considering the intrinsic difference among images. In this work, we first
mathematically analyze the key factors that may influence the performance of regression-based
CC, and then we design principled rules to automatically select the suitable training images
to learn an optimal correction matrix for each test image. With this strategy, the original
regression-based CC (e.g., CM) is clearly improved to obtain more competitive performance on
four widely used benchmark datasets. We also show that although this work focuses on improving
the regression-based CM method, a noteworthy aspect of the proposed automatic training data
selection strategy is its applicability to several representative regression-based approaches for the
color constancy problem.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The change of the light source color results in the change of the image color appearance captured
by a camera [1, 2]. Such color shift may raise the difficulty to many computer vision tasks such
as object recognition, tracking, and human pose estimation, all of which need to first discount
the light source color and then retrieve the true color features of the images [3–6]. Many color
constancy (CC) methods have been accordingly designed to solve this problem. According to
whether or not involving the training procedure, the CC approaches can be divided into the
statistic-based and learning-based methods.

For example, the gray-world-based algorithms [7–11] calculate the mean in each color channel
of the image to estimate the illuminant. There are also other physically-based methods [12, 13],
which introduce specific physical constraints (e.g., specular reflection) to estimate the scene
illuminant. Recently, several CC algorithms that introduce various constraints of neural
computation [14–18] have been proposed in order to build a framework of visual color constancy.
In contrast, learning-based methods often require extensive feature extraction and training

[19–23], and in general perform quite better than statistic-based methods, but with the much
higher computational cost. Recently, some relatively simple regression-based methods with
the state-of-the-art performance have been proposed [24–27]. These learning-based methods
work usually in the form of first extracting features and then finding a regression to capture the
mapping between the features and the illuminant ground truth.
One of the representative regression-based CC methods is the so-called Corrected Moment

(CM) illuminant estimation [28]. CM provides an efficient framework to integrate the illuminant
estimation from multiple low level-based methods by using polynomial regression to find a
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mapping between the features and the illuminant. Recently, based on the same rule, other more
complicated regression techniques (e.g., regression tree [21] and deep learning [19, 29]) have
been proposed to improve the learning based CC performance. We will call these algorithms as
the CM-like methods in the following parts.

Although CM-like regression methods can currently produce the state-of-the-art performance
among learning-based CCmethods, the disadvantage of these methods is that they treat illuminant
estimation as a black box without further considering the rule of image formation (e.g., similar
scenes may have similar illuminants [30]). Moreover, CM applies a same correction matrix to all
the test images without discriminating the intrinsic difference of various images. Thus, CM-like
methods can not find an optimal model for each image according to its intrinsic property. We will
fully discuss this in Section II. Moreover, we mainly focus on estimating the illuminant of the
scene assuming that the illuminant is uniform over the entire scene in this work. For the scene
with the varying illuminant, please refer to the excellent work on color constancy algorithms that
try to estimate the illuminant on a per pixel basis [31–34].
The contributions of this work are as follows. According to the image formation model, we

mathematically analyze one of the key factors (e.g., the novel feature F
′ introduced in this work)

that influences the performance of regression-based CC. (2) A tenfold cross-validation based
procedure is designed to automatically determine a proper size of the training subset for the test
images. (3) A selection mechanism based on the feature F

′ is designed to adaptively pick a
suitable subset of training data for each test image. (4) With this adaptive procedure, we build
a general framework that can significantly improve the performance of many regression-based
learning methods.

The related work is discussed in Section 2. The proposed method is presented in Section 3, in
which we utilize the state-of-the-art CM to validate our proposed method. We then show the
experimental results in Section 4. Finally, we conclude the work in Section 5.

2. Related work

There are mainly two ways to improve the performance of learning-based CC. The first way is to
introduce more effective regression framework (e.g., deep learning), but with more complicated
implementation. For example, Bianco et al. [19] used a Convolutional Neural Network (CNN) to
build the mapping between the images and the illuminants. There are also other CNN-based
CC methods adopting various strategies [20, 29, 35, 36]. Recently, to make deep-learning-based
CC more understandable, Hu et al. [36] proposed a mechanism to reveal the confidence of deep
CNNs in each region of the input images.
The regression-based CCs have typically the simple implementation and competitive perfor-

mance [21, 28] compared to the classification-based CCs [37, 38]. The regression-based CCs
evaluate their performance with the three-fold cross-validation procedure, i.e., randomly dividing
the dataset into three parts. Then one part is selected as the test set and another two parts are left
as the training set. Such procedure is repeated three times to make sure each part to be tested
once. In one run of this procedure, all the images in the test set always share the same training
set. However, considering each test image has its own intrinsic property, correcting each test
image using a fixed correction matrix learned from a fixed training set may not work very well.
The second way to improve the performance of learning-based CC is to introduce the scene

classification technique to select a suitable CC (e.g., grey edge [10]) to predict the illuminant
according to the classification of each image [30, 37–39]. How to pick a suitable CC model
according to the property of each test image has also been considered as a scene classification
problem. These methods first group the training image set into several parts, and then train a
particular CC model for each part. When a new test image comes, the CC model trained on the
images that have the similar properties (e.g., similar SIFT features) to this test image will be used.
For example, Gisenij et al. [37, 39] utilized the Weibull parameterization and MOG (Mixture of
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Fig. 1. The flowchart of the proposed method. For a given test image, some suitable images
are selected from the original training set based on the proposed F

′ feature, which are used
to train a specific regression based color constancy model (e.g., CM [28].)

Gaussian)-classifier to select a suitable CC method for each image. Bianco et al. [38] divided the
images into indoor and outdoor scenes and selected the suitable CC methods accordingly.

Since these methods use the statistic-based CCs (e.g., grey edge [10]) to estimate the illuminant,
their performance reaches no higher than the best of these low level-based algorithms for specific
images. Moreover, these methods mentioned above classify the images based on the color
distribution similarity of the retrieving images [30, 37, 40, 41] by assuming that the images with
similar illumination have similar color distribution. Since similar or neighboring images are not
always precisely affected by the similar illumination, thus the methods based on such assumption
are not reasonable enough. Therefore, in order to further improve the CC performance, instead
of selecting the statistic-based algorithms to estimate the illuminant, Wu et al. applied different
learning-based CC algorithms for each class [42]. However, their method does not learn an
optimal model for each image, but applies the same model to all the test images of each class.
Exemplar-Based method [30] finds the nearest surface for the target surface, which also implicitly
assumes that the similar images share the similar illuminants.
In short, all of the methods do not consider the fact that each image has its own particular

properties [2], and thus should learn a correction model for each image. Moreover, which kind of
features are more suitable to select the appropriate images to improve the training process has
not been clearly explained in previous work. In this work, we introduce a selection mechanism to
pick a suitable subset of training data for each test image using a novel illuminant related feature
F
′ , and the size of this training subset is automatically determined based on the whole training

set. With these principled rules, a dynamic correction matrix is learned for each test image.

3. Proposed method

3.1. Image formation model

The response of a sensor to light and surface can be calculated as [43],

ρE,S(x) =
∫
ω

R(λ)E(λ)S(λ, x)dλ (1)

where R(λ) denotes the camera sensor spectral sensitivity, E(λ) and S(λ, x) denotes respectively
the spectral power distribution of the scene illuminant and the surface reflectance. The integral is
taken over the visible spectrum ω. For practical application, if we define

ρE =

∫
ω

R(λ)E(λ)dλ

ρS(x) =
∫
ω

R(λ)S(λ, x)dλ.
(2)

Equation (1) can be further simplified to a vector form [44],

ρSE (x) = ρE ·ρS(x) (3)

                                                                                        Vol. 27, No. 18 | 2 Sep 2019 | OPTICS EXPRESS 25613 



where ρE denotes the scene illuminant vector that is commonly assumed to be uniform across
the scene, ρS(x) denotes the true surface color at location x viewed under a uniform white light
source. Note that Eq. (3) generally holds in some sensor basis for a linear combination of the
sensors [45].
We further abstract the regression-based method as follows,

ρE = F ·C (4)

where F denotes the feature vector extracted from the original color-biased image and C denotes
the regression mapping. Determined by the specific technique used, C can be a mapping matrix,
a regression tree or a neural network.

3.2. Definition of feature moments

For a given N-pixel color-biased image, if we extract its feature vector F as a statistical moment
of the image’s RGB values, we have

F = moment(ρSE (x1), ρ
SE (x2), · · · , ρ

SE (xN )). (5)

The simplest example of the moment(.) is the global mean of per-channel (e.g., R,G, B). For
the per-channel moments, it is natural to further introduce the “cross moments” (e.g., RG

0.5,
indicating the square root of the global mean of the multiplication of R and G channels). We can
further introduce the higher order moments. For a monomial of degree M and 3 variables the
number of moments is equal to (M+2)!

2M! [28].
In this work, we define the moment(·) as that of used in [28] for an image, i.e., the moments of

a RGB image containing the first- and second-order items are calculated as

moment(·)= (R,G, B, R2
0.5
,G2

0.5
, B2

0.5
,

RG
0.5
, RB

0.5
,GB

0.5
)

(6)

where R represents the global mean of the R channel of the image, R2 denotes to calculate the
intensity’s square of each pixel in the R channel, and R2

0.5
represents the square root of the

global mean of R2. Similar representations hold true for other channels. Hence, each element in
moment(·) defined by Eq. (6) is a number and this moment is a feature vector with 9 dimensions,
which is used to represent the features extracted from an image. Since the moment(.) defined by
Eq. (6) maintains the intensity-scaling property, which could well preserve the object colors and
thus has been used for color correction and illuminant estimation [28, 46].
Based on Eqs. (3) and (5), we can rewrite Eq. (4) as

ρE=moment(ρE ·ρS(x1), ρ
E ·ρS(x2),

· · · , ρE ·ρS(xN ))·C.
(7)

Due to the intensity-scaling property of the moment feature mentioned above, Eq. (7) can be
further written as

ρE=ρE ·moment(ρS(x1), ρ
S(x2), · · · , ρ

S(xN ))·C (8)
if we further denote the moment term in Eq. (8) as

F
′

=moment(ρS(x1), ρ
S(x2), · · · , ρ

S(xN )) (9)

then Eq. (8) could be further written as

ρE = ρE ·F
′

·C. (10)
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Obviously, Eq. (10) teaches that for a regression-based illuminant estimation algorithm, the
aim of training phase is to learn a mapping C so that the term F

′

·C in the right side equals to
an identity matrix. Thus, the performance of regression-based illuminant estimation is totally
determined by how well the C can regress the moment F

′ of an image so that their multiplication
equals to an identity matrix.

In other words, in order to find the optimal training images to learn the regression matrix C of
a given test image, the training images should have exactly the same moment F

′ as the test image.
Thus, the similarity of the moment F

′ between the test and the training images totally determines
the final regression performance of illuminant estimation.

3.3. Calculation of feature moments

By comparing the expressions of Eqs. (4) and (10), we can get

F = ρE·F
′

. (11)

Then, we can simply calculate the moment F
′ as

F
′

= ρE†·F (12)

where ρE† denotes the Moore-Penrose pseudo inverse of the scene illuminant vector ρE . The
moment F

′ will be the key vector influencing the performance of a regression-based CC.
Equation (12) also teaches a fact that the final estimation of regression-based CC is affected not

only by the surface reflectance (e.g., the statistical moment F), but also by the scene illuminant
(e.g., the Moore-Penrose pseudo inverse of the scene illuminant vector ρE†). The images
having same surface reflectances may have various illuminants and their moment F

′ would
be also different. Thus, it is not reasonable for these regression-based methods mentioned
above [21, 28, 42, 47] to use the same correction matrix to predict the illuminant for different test
images. Moreover, previous CC algorithms [30,37,39] assume that the images with similar scenes
hold similar illuminants and they estimate the illuminant through measuring the image similarity
by using the general features (e.g., SIFT). However, our analysis indicates that we should use
the illuminant estimation related moment F

′ to measure the similarity of two images, since the
moment F

′ totally determines the performance of regression-based illuminant estimation.
Another contribution of our work is to introduce the statistical moment F

′ , which can be used
to help the selection of images with similar illuminants. It should be pointed out that, roughly,
our proposed method is limited to the situation that the training set includes the illuminants that
are similar to that of the test image. For example, it is difficult for our model to train using the
images captured in the morning and estimate the illuminants for the test images taken in the
nightfall, since these two conditions have very different illuminants.
Finally, most existing learning-based methods take the strategy that all the test images share

the same training image set, which seems redundant since our model only needs some similar
images (e.g., with similar illuminants) for each test image. Ideally, according to Eq. (12), if we
can accurately find the moment F

′ of a test image from the training set, we can get the perfect
illuminant estimate for this test image. However, in real situation the training images and the
test images are absolutely separated and thus there are no exactly the same images in both of
the training and test sets. Another problem is that in order to calculate the moment F

′ , we need
to know the illuminant ground truth for the test image. Obviously, this is not possible for our
current problem since our task is to infer the illuminant for a test image without any information
about the illuminant.

Thus, in order to avoid such a dilemma, we chose an alternative way to compute the moment
F
′ for the test image. Since the existing learning-based methods can get relatively accurate

illuminant estimation, we first utilize them to get a relatively accurate estimation of the moment
F
′ . Then, based on the estimation, the cosine distance of the moment F

′ vector between one
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training image and one test image can be used to represent the similarity of the two images. The
closer the distance between the two moments is, the more similar the illuminant and reflectance
are between the training and the test images. Thus, for each test image, we can automatically
pick the K most similar images from the original training dataset, or in other words, select the
training images with the K top shortest cosine distances to the test image as the training subset
for this test image, then learn a new illuminant prediction model based on the constrained subset
of the training images. Figure 1 shows the framework of our proposed method.

3.4. Determination of the parameter K value

Our method introduces an very important parameter K , the number of the selected training
images for a test image, and theoretically, the best K for each test image is different. However, in
the following experiments, we will show that using a same parameter K for all the test images
in a dataset can also greatly improve the performance. We firstly define the angular error (AE)
as the metric to evaluate the error during the optimization of parameter K . The angular error ε
between the estimated illuminant e and the illuminant ground truth e is computed as [48],

ε = cos−1
( (

e · e
)
/
(e

·e
)) . (13)

Then, the proper K value in our paper is automatically determined according to the tenfold
cross-validation based procedures listed below.
(1) The whole training dataset is randomly divided into ten parts, each of which contains N

images.
(2) At each time, only one part is selected as the validating set, and the remaining nine parts as

the temporary training set.
(3) Our method is ran for an exhaustive searching of parameter K on the temporary training

set and the selected K is evaluated on the validating set based on the metric of AE , by which we
can obtain a AE vs. K curve.
(4) The steps (2) and (3) are repeated 10 times with different validating sets at each time, by

which we get 10 AE vs. K curves.
(5) Finally, we average the ten curves into one and choose the value of K with the lowest AE as

the finally determined parameter K value.
To summarize the above procedures, we frame the criterion to estimate K as a cost function as

follows. If V(k) represents the AE of each validating image when selecting the k training images,
our aim is to minimize the following cost function,

K=arg min
k

10∑
i=1

N∑
j=1

Vi, j(k) s.t. 1≤ k ≤ 9·N (14)

where N is the image number in each part, “10” is the repeated times and “9” is the number of
the training parts when executing the tenfold cross validation. It is clear that the parameter K is
totally automatically determined only using the training set of a database, and this pre-determined
K value will be applied on all the test images of this database.

3.5. About the CM and the generalization of our model

In this paper, we use CM [28, 49] as the representative to verify the proposed strategy mentioned
above. In the following experiments, we will show that the proposed method can significantly
improve the performance of the original CM. It should be mentioned that besides CM, the CC
method used to provide a initial illuminant estimation can be any CC method. The reason
why we choose CM as the representative is primarily based on two considerations. On the one
hand, CM holds nearly the state-of-the-art performance similar to that of all regression-based
methods [19,21, 28, 42], but has very simple implementation. On the other hand, CM involves
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Fig. 2. The influence of the parameter K (i.e., the number of the selected similar images as
training set) on the mean and median angular errors tested on the three different datasets.

the nonlinear cross terms in its extracted features, thus we can test our approach under a more
complicated condition. In CM, the mapping between the image features and the illuminant is
represented as a correction matrix that is used for all test images. Therefore, in our proposed
strategy, the improved CM tries to find an optimal correction matrix for each image. In this work,
in order to fairly compare the experimental results with CM, we list the results of the original
CM reported in the literature [21, 28].

4. Experimental results

We evaluated the performance of our proposed strategy (selecting illuminant related moment
features, SIRMF) based on selecting suitable images with the novel F

′ feature on four widely
used benchmark datasets: the SFU lab dataset [25], the reprocessed version of the Gehler-Shi
dataset [26, 50, 51], the Grey ball dataset [27], and the recent NUS dataset [24]. For all the
comparisons, we only reported the best results of CM using the various number of edge moments
for different datasets [21, 28] (e.g., 19-edge moment for the first three datasets, and 9-edge
moment for the last dataset). Except that the AE defined in Eq. (13) is used as the metric to
evaluate the performance of a CC algorithm, we also used the recently proposed reproduction
angular error (RAE) to measure the illuminant estimate performance for each CC algorithm [44].
Similar to the recent literature [4], we used 3-fold cross validation to evaluate the proposed

method on the SFU lab dataset, Gehler-Shi dataset, and NUS dataset. For Grey-ball dataset,
since there is very strong correlation among images in this dataset, we used the training and test
set splitted by Bianco et al. [38, 52] to avoid overfitting.

Our proposed SIRMF method contains the only parameter K (i.e., the number of the selected
training images for a test image) that needs to be determined. Figure 2 shows the mean and median
angular errors changing with the parameter K on the SFU lab dataset, the Gehler-Shi dataset, and
the Grey ball dataset. For the SFU lab dataset, our method obtains the best illuminant estimation
performance by just selecting the first most similar training image, since the illuminants of SFU
lab dataset are primarily clustered within a small range. However, for the two natural image
datasets (i.e., Gehler-Shi dataset and Grey ball dataset), we can observe that with the increasing
of K , the angular error first increases and then decreases to the lowest point, and then increases
again. The reason why we get the initial increase in Fig. 2 is due to the fact that we calculate the
initial F

′ of test image based on the original estimation of CM, which is commonly not equal
to the ground truth illuminant. Thus, the first increase is because of the insufficient filtering of
training images, which means each image in the selected sub-training set can greatly affect the
final estimation especially for those images with illuminant conditions that are quite different from
the test image. With more images joining into the training set, the influence of those unrelated
images could be relatively weakened, which finally leads to the lowest angular error. With the
further increasing of K , more irrelevant training images would be again selected into the training
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subset, which results in the second increasing of angular error. For each dataset, the reported
results in the table are obtained using the same parameters (K) set at the point of lowest angular
error (the dashed purple line in Fig. 2). Note that fixing the parameters on the whole dataset
to report the performance of a CC method is a widely used strategy in CC community [4]. We
report the results of method of the fixed parameter K in each table as SIRMF(K). For comparison,
we also report the results with the automatically determined K in each table as SIRMF(auto).

Note that automatic selection of K happens only on the training set during the three-fold
cross-validation. It is clear that there should be a K determined by the training set on each fold,
and hence, three different K values should be reported, as shown in Table 1 (for the SFU lab
dataset) and Table 3 (for the Gehler-Shi dataset). In details, for the SFU lab dataset, the three K
values are all equal to 1, and for the Gehler-Shi dataset, the three K values are 86, 107 and 84,
respectively. But for the grey ball dataset, since the training and test sets were originally splitted
by Bianco et al. [38, 39], so we did not conduct the three-fold cross-validation, and there is only
one K value reported in Table 4 for our SIRMF(auto).

In the experiments, we found that on each dataset the automatically determined optimal value
of K using the principled way described earlier is quite close to the best one as shown in Fig.
2 (the dashed purple line in Fig. 2). For example, in Table 3 and Table 4 the automatically
determined optimal K values on the Gehler-Shi dataset and Grey Ball dataset are respectively
SIRMF(auto,K=86, 107, 84) and SIRMF(auto,K=110), which are quite close to the optimal K
values on the whole dataset (SIRMF(K=100) and SIRMF(K=84)).

Basically, the illuminant estimation performances on the four datasets are significantly improved
by selecting similar images from the training set for each test image to correspondingly learn a
correction matrix using SIRMF. Since we aim to improve the performance of regression-based
methods (e.g., CM), we mainly compared our proposed SIRMF with CM. Besides, we also
compared with other recent state-of-the-art CC models [53].

4.1. SFU lab dataset

From Table 1, we can see that our model performs best in comparison to other CC algorithms
on the SFU lab dataset. Particularly, our approach obtains an improvement of up to 52% over
the original CM [28] in terms of AE’s median. In order to understand that our method can find
the most suitable training images to learn an optimal correction matrix for each test image, Fig.
3 illustrates five test images in this dataset under the condition of K=1, where K indicates the
number of the selected most suitable images according to the cosine distance of the moment F

′

Table 1. AE and RAE of Various Methods on the SFU Lab Dataset.

Methods
AE RAE

Median Mean Median Mean

WP [8] 6.48◦ 9.09◦ 7.4◦ 9.7◦

GW [7] 7.00◦ 9.78◦ 7.5◦ 10.1◦

GE2 [10] 2.74◦ 5.19◦ 3.0◦ 5.8◦

PBG [54] 2.27◦ 3.70◦ 2.8◦ 4.2◦

EBG [54] 2.3 3.9 2.7◦ 4.5◦

SS [55] 3.45◦ 5.63◦ − −

WGE [11] 2.4 5.6 3.6◦ 6.1◦

CM(9 edge) [28] 2.0◦ 2.6◦ − −

SIRMF(auto & K=1,1,1) 0.96◦ 2.10◦ 1.09◦ 2.42◦
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’

Fig. 3. The scatter plot of the illuminants of training images, illuminant ground truth of five
test images, the corresponding illuminant estimates by CM, and the improved illuminant
estimates by the proposed method.

between each training image and a given test image. Here, K=1 means that our proposed model
only selects one most suitable training image to learn a new correction matrix for each test image
on this dataset. Note that on this dataset, the optimal parameter of K determined by SIRMF(auto)
is same to the best K value as densely searched in Fig. 2.

We can observe from Fig. 3 that for the group #2, #4 and #5, our method obtains the illuminant
estimates that are much closer to the ground truth. Figure 4 visualizes the test images and the
selected training images of the group #2, #4 and #3 by our proposed F

′ and SIFT. We can see
that our proposed SIRMF model can select the training images with quite similar illuminants to
the test images to learn a new correction matrix and thus can improve the accuracy of illuminant
estimation. While SIFT can only select the images with similar scene contents but with quite
different illuminants. It should be noted that in the first and second row of Fig. 4, although the
test image (left) and the selected training image (middle) are different (please notice the little
scene difference between the left image and the middle image in the first row), they indeed have
the similar illuminants. Table 2 shows the corresponding AE trained using the selected images
shown in middle and right columns of Fig. 4. It is clear that the performance of our proposed
F
′ outperforms greatly than that of the SIFT in terms of the AE. The high AE of the SIFT in

Table 2 teaches that selecting similar scene contents will lead to a great mistake under some
circumstances.
SFU lab dataset includes 31 different objects under 11 different illuminant conditions, most

images in this dataset with similar scene contents have quite different light source colors. Thus,
particularly in this image dataset, selecting images with similar scene contents will lead to quite
wrong illuminant estimate (e.g, the images in the second row of Fig. 4). Our proposed strategy
is try to select the images with similar illuminants to help the re-training of correction matrix,
instead of selecting the images with similar scene contents. Thus, evaluating our proposed model
on SFU lab dataset is very challenging.

However, there is also the situation of group #3, for which the accuracy of illuminant estimation
Table 2. AE of the Test Image on the SFU Lab Dataset in Fig. 4 by Using the Proposed
Feature F

′ and the SIFT to Select the Training Images.

Image Group #2 Group #4 Group #3

F
′ 0.95◦ 0.99◦ 6.71◦

SIFT 7.80◦ 10.95◦ 15.55◦
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(0.40,0.26,0.35)(0.33,0.33,0.34)

Fig. 4. The test and the selected training images of group #2, #4, and #3 in Fig. 3 by the
features of F

′ and SIFT (from top to bottom : the images of group #2, #4, and #3). The
numbers under each image denote the RGB components of the true light source color.

is reduced by the proposed F
′ based method. The reason is that we first use the illuminant

estimation of the original CM to calculate the moment F
′ , and we might get quite wrong

estimation of moment F
′ if the illuminant estimated by CM has quite large error. Thus, we could

not find the most suitable training images with similar illuminants to further learn an accurate
correction matrix. For example, in the last row (group #3) of Fig. 4, although our method can
select out the training image of similar scenes to the test image, they actually have different
illuminants.
Therefore, to keep a stable improvement by our method, it is necessary to make a constraint

stating that the new illuminant estimation can not deviate from the original illuminant estimation
more than certain degree. In all the experiments on the four datasets tested here, we found that an
angular error of 5◦ is an appropriate degree to measure the deviation between the new illuminant
estimation by our strategy and the original illuminant estimation by CM. If the deviation is
beyond this limitation, we will give up the new illuminant estimation and still use the original
estimate obtained by CM.

4.2. Gehler-Shi dataset

The Gehler-Shi dataset contains 568 images captured by two digital cameras (CANON 1D and
CANON 5D). For unbiased evaluation, the color checker utilized to calculate the ground truth in
each image was masked out during the experiment as did by others [21, 28]. In Table 3, we show
the results of several state-of-the-art methods on this dataset. The mean and median AEs of the
original CM are cited directly from [28]. On this dataset, our proposed SIRMF method obtains
slight improvement in comparison to the original CM (i.e., 1.89◦ vs 2.0◦ in terms of median AE,
6% improvement). Furthermore, our proposed model also obtains quite competitive performance
compared with other state-of-the-art learning-based methods (note that on this dataset, Barron’s
result [58] is quite beyond the performance of other learning-based methods).
Figure 5 displays two exemplar images. When the proposed model correctly selects the

training images, both the test image and the selected training images are quite similar in both the
illuminant and scene content (e.g., for the case #1, both the test and the selected training images
are from the indoor environments and with the similar color-bias). However, when the proposed
model wrongly selects the training images, both the test image and the selected images are quite
different in both the illuminant and scene (as indicated by the case #2). We also list the training
images selected by SIFT, which are mostly similar in the scene contents but with quite different
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Fig. 5. The selected training images returned by the proposed model using the proposed
feature F

′ and the SIFT on the Gehler-Shi dataset. The numbers reported in the second
column are the angular errors of the test images corrected using the matrix derived from the
selected images.
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Fig. 6. The influence of the parameter K on the mean and median angular error on the
Gehler-Shi dataset when using the SIFT feature and our proposed F

′ feature.

illuminants (e.g., the selected images include both the indoor and outdoor environments).
To further validate that our proposed feature F

′ is useful to find more suitable training images
to improve the performance of the original CM, we tried to replace our proposed feature F

′ with
SIFT and predict the illuminant estimate by the original CM in our framework. We ran this new
version of our model on the Gehler-Shi dataset to evaluate the illuminant estimation performance
under the condition of varying parameter K . In Fig. 6, the brown line indicates the results of the
proposed model using the SIFT to select the training images for illuminant estimation. The model
based on SIFT finds wrong images at the beginning and thus leads to very high angular error.
With the increasing of parameter K , more similar images are selected into the training set, which
results in a continuous decreasing of the angular error. However, our proposed method using the
feature F

′ can always correctly select the suitable images no matter in the conditions of small K
(e.g., K = 1) or large K values (e.g., K = 100), and thus always obtain better performance for
illuminant estimation than using the SIFT. In the experiments, we found that SIFT often returns
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Table 3. AE and RAE of Various Methods on the Gehler-Shi Dataset.

Methods
AE RAE

Median Mean Median Mean

WP [8] 5.68◦ 7.55◦ 6.5◦ 8.1◦

GW [7] 6.28◦ 6.36◦ 6.8◦ 7.0◦

NIS [37] 3.13◦ 4.19◦ 3.5◦ 4.8◦

PBG [54] 2.3◦ 4.2◦ 2.7◦ 4.8◦

EB [30] 2.3◦ 3.1◦ 2.6◦ 3.4◦

CNN fine-tuned [19] 1.98◦ 2.63◦ − −

CNN+SVR [56] 1.44◦ 2.36◦ − −

SVRC_R [57] 1.97◦ 2.36◦ − −

Cheng et al. [21] 1.65◦ 2.42◦ − −

Barron [58] 1.22◦ 1.95◦ − −

AlexNet-FC4 [36] 1.11◦ 1.77◦ − −

Fast Fourier [59] 0.86◦ 1.61◦ − −

CM(19 edge) [28] 2.0◦ 2.8◦ − −

SIRMF(auto, K=86,107,84) 1.97◦ 2.83◦ 2.17◦ 3.33◦

SIRMF(K=100) 1.89◦ 2.80◦ 2.11◦ 3.29◦
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Fig. 7. The influence of the parameter K on the mean and median angular errors on the
Gehler-Shi dataset when selecting suitable training images with the K-NN, CM-estimated
illuminant and our proposed F

′ feature.

the images with similar scene contents as done by most of learning-based methods [30,37–39].
In contrast, our proposed feature F

′ basically returns the images with similar lighting conditions
(e.g., the # 1 first row in Fig. 5) that is quite helpful of learning an optimal correction matrix for
each test image.
This conclusion is further grounded by Fig. 7, which shows the angular errors of mean and

median by respectively using the CM-estimated illuminant and our proposed feature F
′ to select

the similar images to re-train the correction matrix. The global tendency of the curves obtained by
CM illuminant estimation and our F

′ is quite similar, which indicates that our F
′ indeed selects

the suitable images with similar illuminants. Moreover, in comparison to the results by using
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our feature F
′ (green line), the results based on the selection using CM illuminant estimation

seems worse in terms of both mean and median AEs. We got similar observation on the SFU lab
dataset (not shown here). In short, in comparison to the SIFT and CM estimated illumiants, our
proposed feature F

′ is more useful to select the suitable images for re-training the correction
matrix and thus further improve the performance of the original CM.
To further prove the effectiveness of the proposed F

′ feature, we also tested a weighted
version of the K-Nearest Neighbors (K-NN) to select the illumination of training images as the
illuminant estimation of each test image. The weight of each image was determined by the
cosine distance between the F

′ features of the test image and the training images. We simply
averaged the illumination of the selected K nearest illumination of training images as a baseline
for comparison. The K-NN based mechanism directly picks the ground truth illuminant of
training images according to the cosine distance measure, which is quite similar to the way used
by the Exemplar-based color constancy [30]. We can see from the blue curves in Fig. 7 that the
angular error of K-NN based mechanism is gradually increasing with the number of the selected
K ground truth illuminant and its overall performance is worse than the mechanism based on our
proposed F

′ . One main reason is that K-NN based selection mechanism simply averages the
illumination of the selected images without any filtering mechanisms.

4.3. Grey ball dataset

Grey ball dataset contains 11346 images, which were mainly extracted from the video captured
under 15 different locations. Due to there is very strong redundancy in the original dataset
[4, 10, 28], Bianco et al. removed the correlation among images by video analysis and the final
dataset totally contains 1135 images, which were splitted into 340 images for training and 795
images for test. It should be noted that the results of other methods listed in Table 4 were mostly
based on the evaluation on the whole dataset [4] or a subset that just contains 150 images [28].
Table 4 shows that our proposed method performs best among all the methods evaluated here and
an improvement of around 0.5 degree in the median of AE over the original CM.

4.4. NUS dataset

NUS dataset is one of the quite recent CC dataset, which is composed of 1736 high quality
images collected by eight different commercial cameras [24]. To the best of our knowledge, the

Table 4. AE and RAE of Various Methods on the Grey Ball Dataset.

Methods
AE RAE

Median Mean Median Mean

WP [8] 6.30◦ 7.72◦ 5.5◦ 7.1◦

GW [7] 5.68◦ 6.49◦ 7.6◦ 8.7◦

GE2 [10] 5.08◦ 5.70◦ 5.0◦ 6.5◦

NIS [37] 4.39◦ 5.14◦ 4.3◦ 5.5◦

PBG [54] 5.8◦ 7.1◦ 5.9◦ 7.5◦

Wu et al. [42] 2.90◦ 4.19◦ − −

EB [30] 3.4◦ 4.4◦ 3.7◦ 4.8◦

CM(9 edge) [28] 3.3◦ − − −

SIRMF(auto, K=110) 2.82◦ 4.56◦ 3.15◦ 5.02◦

SIRMF(K=84) 2.76◦ 4.46◦ 2.98◦ 4.89◦
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Table 5. AE of Various Methods on the NUS Dataset.
Methods WP GW GE2 NIS Cheng CM CM(9 edge)∗ Our(auto) Our(best K)

Dataset Median

Canon1Ds 6.19◦ 4.15◦ 2.44◦ 3.04◦ 1.57◦ 1.98◦ 2.13◦ 1.82◦ 1.73◦

Canon600D 12.44◦ 2.88◦ 2.29◦ 2.46◦ 1.62◦ 1.85◦ 1.74◦ 1.66◦ 1.63◦

FujiXM1 10.59◦ 3.30◦ 2.00◦ 2.96◦ 1.58◦ 2.11◦ 1.96◦ 1.91◦ 1.66◦

NikonD5200 11.67◦ 3.39◦ 2.19◦ 2.40◦ 1.65◦ 2.04◦ 1.84◦ 1.69◦ 1.62◦

OlympEPL6 9.50◦ 2.58◦ 2.18◦ 2.17◦ 1.41◦ 1.84◦ 1.73◦ 1.61◦ 1.52◦

LumixGX1 18.00◦ 3.06◦ 2.04◦ 2.28◦ 1.61◦ 1.77◦ 1.70◦ 1.53◦ 1.48◦

SamNX2000 12.99◦ 3.00◦ 2.32◦ 2.77◦ 1.78◦ 1.85◦ 1.95◦ 1.81◦ 1.64◦

SonyA57 7.44◦ 3.46◦ 2.70◦ 2.88◦ 1.51◦ 2.05◦ 1.83◦ 1.63◦ 1.51◦

Dataset Mean

Canon1Ds 7.99◦ 5.16◦ 3.47◦ 4.18◦ 2.26◦ 2.94◦ 2.70◦ 2.57◦ 2.53◦

Canon600D 10.96◦ 3.89◦ 3.21◦ 3.43◦ 2.43◦ 2.76◦ 2.52◦ 2.44◦ 2.45◦

FujiXM1 10.20◦ 4.16◦ 3.12◦ 4.05◦ 2.45◦ 3.23◦ 2.69◦ 2.54◦ 2.64◦

NikonD5200 11.64◦ 4.38◦ 3.47◦ 4.10◦ 2.51◦ 3.46◦ 2.80◦ 2.73◦ 2.69◦

OlympEPL6 9.78◦ 3.44◦ 2.84◦ 3.22◦ 2.15◦ 2.95◦ 2.60◦ 2.53◦ 2.51◦

LumixGX1 13.41◦ 3.82◦ 2.99◦ 3.70◦ 2.36◦ 3.10◦ 2.38◦ 2.28◦ 2.23◦

SamNX2000 11.97◦ 3.90◦ 3.18◦ 3.66◦ 2.53◦ 2.74◦ 2.60◦ 2.53◦ 2.37◦

SonyA57 9.91◦ 4.59◦ 3.36◦ 3.45◦ 2.18◦ 2.95◦ 2.28◦ 2.21◦ 2.18◦
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Fig. 8. Four images of the SFU lab (top two) and Gehler-Shi (bottom two) dataset corrected
by the original CM and our proposed method. The numbers in the lower right corner show
the angular errors and reproduction errors.

eight cameras used in this dataset have nearly similar camera spectral sensitivity curves and each
camera contains almost the same scenes as other cameras. On this dataset, we found that the
9-edge moment based CM (marked as CM (9 edge) with asterisk in Tables 5 and 6) performs
better than the 19-edge moment based CM, so we utilized the 9-edge moment based CM to
evaluate our method. For better comparison, we also list the results of the CM implemented
by [21].

Tables 5 and 6 show that our SIRMF model obtains at least 5% improvement in mean angular
error and 10% improvement in median angular error compared with the original CM (our
implementation), which are quite remarkable considering that the error obtained by the original
CM is quite low. In comparison to the more recent regression-based CC algorithm proposed
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Fig. 9. Improvements of more methods on the Gehler-Shi dataset, (a) using gray world
(GW) [7], gray edge (GE, 2nd-order) [10], Max-RGB (M-RGB) [8], shades of gray (SG,
norm=4, sigma=4) [9] to replace CM to provide the initial illuminant. (b) using thin-plate
spline interpolation (TPS) [60], support vector regression (SVR, 3D) [57,61], spatio-spectral
statistics (SSS, ML Estimate) [55], committee-based CC (CBCC, edge moment) [47] to
replace the original CM as the learning model and provide the initial illuminant.

in [21], our proposed model also obtains competitive performance in total, and even obtains better
performance on several subsets. For example, on the sets of camera LumixGX1 and SamNX2000,
the median AE of our method and Cheng’s method are respectively SIRMF (1.48o) vs Cheng
(1.61o) and SIRMF (1.64o) vs Cheng (1.78o). Interestingly, since our strategy is to try to pick
the images with similar illuminants and Cheng et al. [21] also gathered the images with similar
illuminants using regression tree based on four illuminant estimates, the good performance
of [21] also proves the effectiveness of illuminant related feature for illuminant estimation. Our
F
′ is a mathematically designed feature closely related to the illuminant, which could also be

used to replace the four simple features proposed in [21] . In short, the main difference is that
we use the proposed F

′ feature as a gating mechanism to filter out the unrelated training images
when training a regression-based CC. In contrast, Cheng et al. developed an effective regression
tree-based CC using four hand-crafted features. In other words, Cheng’s method [21] is inherently
similar to the original CM [28].
We also compared with two deep learning based methods in the Table 7, i.e., the fast Fourier

CC (FFCC) algorithm [59] and the FC4 algorithm [36] on the NUS dataset. These two methods
reported their performances for the whole NUS dataset by computing the geometric means of the
measures of the eight subsets. Following their way, we also reported the performance of our
method on the whole NUS dataset by computing the geometric means of the measures of the
eight subsets listed in Table 5. We can see from Table 7 that the two variations of our model can
provide quite acceptable performance in comparison to these two methods.
To further investigate the generalization ability of our approach, we also conducted the

inter-dataset-based evaluation on the NUS dataset. That is, we trained the learning-based model
on one subset (e.g., Canon1Ds) and tested it on another subset (e.g., SamNX2000). Since the
NUS dataset was captured by different cameras (each camera has its own intrinsic properties)
under various exposure conditions [24], training a CC model on one camera and then testing it
on another camera is a much more difficult task than the previous experiments. To the best of our
knowledge, there is no previous CC work considering such type of inter-dataset evaluation on the
NUS dataset except [2]. Table 8 lists four inter-dataset evaluations on the NUS dataset. We can
observe that our proposed method can greatly increase the performance of the original CM with
near 10% when conducting such a quite difficult inter-dataset evaluation. It should noted that the
sensors of each subset in the NUS dataset are different, but the differences are not too large [2],
which may help our proposed strategy get quite accurate F

′ feature and hence the quite accurate
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Table 6. RAE of Various Methods on the NUS Dataset.
Methods CM(9 edge)∗ Our(auto) Our(best K) CM(9 edge)∗ Our(auto) Our(best K)

Dataset Median Mean

Canon1Ds 2.57◦ 2.08◦ 2.20◦ 3.65◦ 3.37◦ 3.40◦

Canon600D 2.30◦ 2.14◦ 2.13◦ 3.38◦ 3.19◦ 3.33◦

FujiXM1 2.60◦ 2.54◦ 2.29◦ 3.76◦ 3.58◦ 3.78◦

NikonD5200 2.66◦ 2.30◦ 2.27◦ 4.04◦ 3.91◦ 3.86◦

OlympEPL6 2.27◦ 2.08◦ 2.05◦ 3.59◦ 3.45◦ 3.42◦

LumixGX1 2.30◦ 2.05◦ 1.99◦ 3.34◦ 3.21◦ 3.04◦

SamNX2000 2.60◦ 2.45◦ 2.26◦ 3.55◦ 3.42◦ 3.19◦

SonyA57 2.32◦ 2.19◦ 2.05◦ 3.14◦ 2.99◦ 2.95◦
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Fig. 10. Comparison of the 95th-percentile AE values of the original CM (Ori) and Our
SIRMF(auto) for each dataset.

illuminant estimation. Table 8 indicates that if the different sensors are not sufficiently diverse,
our method may capture something fundamental about the illuminant estimation process that
may suffice for general applicability across different image capturing configurations. We finally
trained our model on the Gehler-Shi dataset and then tested it on the NUS dataset or vice versa.
We can clearly see from Table 9 that our SIRMF(auto) performs well for this inter-dataset based
cross-validation, where both sensors and illuminants appeared in Gehler-Shi dataset are not at all
represented by the NUS dataset.
Figure 8 lists the examples of the color constancy results by the proposed method on the

SFU lab and Gehler-Shi datasets. These pictures show that compared with the original CM, our
proposed method clearly improves the results in both the visual appearance and the quantitative
measures of angular error and reproduction error.

Table 7. Results of Two Deep Learning Based Methods [36,59] and our SIRMF on the
NUS Dataset.

Methods FC4 FFCC SIRMF (auto) SIRMF (best k)

Median AE 1.53◦ 1.31◦ 1.60◦ 1.70◦

Mean AE 2.23◦ 1.99◦ 2.44◦ 2.47◦
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Table 8. Inter-dataset Based Evaluation on the NUS Dataset.
Methods CM(9 edge)∗ SIRMF(auto)
Dataset Median
Canon1Ds→Canon600D 2.01◦ 1.89◦

Canon600D→Canon1Ds 2.29◦ 2.11◦

Canon1Ds→SamNX2000 4.23◦ 4.03◦

SamNX2000→Canon1Ds 3.69◦ 3.33◦

Dataset Mean
Canon1Ds→Canon600D 2.54◦ 2.43◦

Canon600D→Canon1Ds 2.86◦ 2.67◦

Canon1Ds→SamNX2000 4.82◦ 4.80◦

SamNX2000→Canon1Ds 4.26◦ 4.03◦

Table 9. Training SIRMF on the Gehler-Shi Dataset and Testing it on the NUS Dataset.
Method SIRMF(auto)
Dataset Mean Median

Gehler-Shi→Canon1Ds 5.33◦ 4.85◦

Gehler-Shi→Canon600D 5.57◦ 5.32◦

Gehler-Shi→FujiXM1 5.63◦ 4.96◦

Canon1Ds→Gehler-Shi 5.38◦ 4.65◦

Canon600D→Gehler-Shi 5.67◦ 5.08◦

FujiXM1→Gehler-Shi 6.08◦ 5.62◦

Considering the long-tail nature of the angular error distribution, we finally present the
95th-percentile AE values for all the datasets. Figure 10 shows the results of the original CM
and the improved results using our SIRMF. We find that our strategy can also improve the worst
performance of original CM on most of the datasets.

4.5. Generalization of the proposed framework

Although the above methodology description and experiments focus on improving the regression-
based CC method of CM by using the proposed automatic training set selection strategy, we
believe that the proposed method is general and applicable to many other regression or learning
based CC methods. For example, we used the CC method of CM in this work to first get an
illuminant estimation for the calculation of F

′ of the test image, we can replace CM with other
CC methods (e.g., low-level based methods) for illuminant estimation at this step. To validate
this point, we selected four statistic-based methods (i.e., GW [7], GE [10], Max-RGB [8] and
SG [9]) to replace the method of CM to provide an initial illuminant for the test image in the
stage of selecting suitable training set, while keeping all the operations of other steps the same
as the original framework shown in Fig. 1. The results shown in Fig. 9(a) indicate that the

Table 10. Results of the Best Low-level CC and the Automatic Algorithm Selection
Based on the F

′ Measure for the SFU Lab Dataset and the Gehler-Shi Dataset.
Methods Low-level CC F

′ measure

Dataset Median Mean Median Mean

SFU lab (GE2) 2.74◦ 5.23◦ 2.68◦ 4.70◦

Gehler-Shi (SG) 4.01◦ 4.93◦ 3.45◦ 4.54◦
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proposed framework can improve the original statistic-based methods over than 20% in terms
of the mean and median angular errors. In general, the more accurate illuminant estimation is
provided by a CC method at this step, the more accurate F

′ we can get, and a better refined
illuminant estimation can be finally obtained.
As another more convincing attempt to validate the generalization ability of the proposed

framework, we selected four representative learning-based methods (i) to replace the method of
CM to provide an initial illuminant for the test image in the stage of selecting suitable training set
and (ii) to replace the method of CM in the stage of training and testing in the original framework
shown in Fig. 1. As indicated in Fig. 9(b), we obtain over than 10% improvements in terms of
the mean and median angular errors compared to the original learning-based methods listed here.
We finally investigated the function of proposed F

′ measure. Specifically, we firstly selected
five low-level based CC approaches including white patch (WP), grey world (GW), 1st-order
Grey-Edge (GE1), 2nd-order Grey-Edge (GE2), and shades of grey (SG). Then, based on the
F
′ measure for a given test image, we chose the training images as described in the previous

section. With the selected training images, the corresponding CC algorithm from the above list
that performs best on the selected training images is selected and finally applied to the test image.
We evaluated how the proposed F

′ measure improves the low-level based CC algorithm that
performs well on each dataset (e.g., GE2 performs best on the SFU lab dataset and SG performs
best on the Gehler-Shi dataset). We can see from Table 10 that the proposed F

′ measure could
effectively improve the performance of existing low-level based methods in terms of both mean
and median AEs on these two datasets.
For more general applications such as an illuminant (e.g., there are no “ground truth” for

natural scene images) that is not at all represented by the dataset, we may first create a minimum
training set that contains a variety of typical lighting scenes, and then pre-learn a correction
matrix for each typical illuminant. When a new test image comes, the model can choose the
most suitable correction matrix according to the calculated moment F

′ . In addition, the moment
vectors of all the training images can be previously computed, which can be directly used for the
computation of moment distance when no suitable “ground truth” is available.

4.6. Deviation of automatically selected K from the optimal and the possible explana-
tion

Our K is automatically estimated in an average sense for the whole dataset. To explore the
difference between the automatically selected K and the optimal K required per test image, we
first ran all the possible K values for each test image by exhaustive searching and defined Kopt (id)
as the optimal K value that produces the lowest AE , where id denotes a test image, indicating
that different test images may require different Kopt . Then, we defined the deviation ratio as
(Kopt (id)−K)/N , where N is the number of total training images in a dataset.
The scatter plots of deviation ratios for the three representative datasets are shown in Fig.

11. We computed the linear average of the deviation ratios over all the test images for each
dataset in Fig. 11, and we obtained 0.2416, -0.0461 and 0.0229 for the SFU Lab, Gehler-Shi
and NUS-FujiXM1 datasets, respectively, as illustrated by the dashed horizontal lines in Fig.
11. It is clear that except for the SFU Lab dataset, the values of these average deviation ratios
are quite close to zero, no matter the average deviation ratio is lower (Gehler-Shi) or higher
(NUS-FujiXM1) than zero. This indicates that in the sense of linear average, the automatically
determined values of global K are quite close the values of optimal Kopt for all the test images
contained in the datasets. In other words, from the point of view of average deviation ratio, the
bias between the global K and the individual optimal Kopt values of all the test images can be
almost neglected, as illustrated by the quite close distances between the solid and the dashed
horizontal lines for the Gehler-Shi and NUS-FujiXM1 datasets.

That is to say, for the Gehler-Shi and NUS-FujiXM1 datasets, although the deviation ratios of
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Fig. 11. The distribution of the deviation ratio of the automatically selected K for the test
images of the three datasets. Each dot corresponds to the deviation ratio of the optimal K for
one test image (i.e., Kopt (id)). On each panel, the solid horizontal line denotes the deviation
ratio of zero, and the dashed line denotes the average of the deviation ratios of all the test
images. The average deviation ratios are respectively 0.2416, -0.0461 and 0.0229 for the
SFU Lab, Gehler-Shi and NUS-FujiXM1 datasets. The quite close distances between the
solid and the dashed horizontal lines for the Gehler-Shi and NUS-FujiXM1 datasets indicate
that in an average sense, the bias between the global K and the individual optimal Kopt

values of all the test images can be almost neglected.

all the test images are not distributed evenly around zero (i.e., the majority of the dots have small
deviation ratios and are distributed below (but close to) zero, and the minority of the dots have
quite large deviation ratios and are distributed above (but far from) zero), they are concentrated
around zero in an average sense.
It can be easily imagined that if all the individual optimal numbers Kopt (id) required by

different test images are evenly distributed, the “optimal parameter K” should make all the
deviation ratios (computed with deviation ratio=(Kopt (id)−K)/N) distributed evenly around zero.
However, it seems that the Kopt (id) values for different test images are NOT evenly distributed.
As illustrated in Fig. 11, the uneven distribution of deviation ratios holds true for all the three
datasets, from which we can easily understand that the distribution of all Kopt (id) is also uneven,
with the majority of test images having small Kopt (id) and the minority having quite large
Kopt (id). With such biased distribution of Kopt (id), we can never obtain an even distribution of
deviation ratios no matter what a global K value is selected.

To get an insight understanding of the deviation distribution shown in Fig. 11, we pick out four
examples of the test images with the quite high deviation ratios (marked with the circles in Fig.
11) for each dataset and list them in the Fig. 12. We found that such test images always contain
quite simple scenes (Fig. 12). We speculated that more training images would be required for
these simple scenes in order to fully learn and code the implicit (e.g., high-order) features of
these scenes that can discriminate them from others, which is the reason resulting in the much
higher deviation ratios for these scenes.
We have also conducted a new experiment on the Gehler-shi dataset to check whether or not

our selection method can pick a global K value that makes the deviation ratios distributed evenly
around zero for a dataset of relatively less diversity. As demonstrated above, the images with
quite high deviation ratios are out of the ordinary. Therefore, we first excluded 43 images with
the deviation ratios above a threshold of 0.4 from the whole Gehler-shi dataset, and the subset
composed by the remaining 525 images is of course of relatively less diversity. Then, the value
of global K was automatically determined for this subset, and the deviation ratios were computed
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Fig. 12. Four example images from each dataset with high deviation ratios (marked with the
circles in Fig. 11).
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Fig. 13. The distribution of the deviation ratios of the automatically selected K for the test
images of the Gehler-Shi subset after excluding the images with the high deviation ratios
above a threshold of 0.4 from the whole dataset. The solid horizontal line denotes the
deviation ratio of zero, and the dashed line denotes the average deviation ratios, which is
0.0062.

for the 525 images, as shown in Fig. 13. From Fig. 13, we can clearly see that the deviation
ratios for this subset are distributed more evenly around the zero in comparison to that shown in
Fig. 11. In addition, the average of the deviation ratios in Fig. 13 is 0.0062, which is significantly
lower than -0.0461 in Fig. 11 in terms of absolute value. The results of this experiment further
support that our selection method could automatically find a good training set size in an average
sense that is suitable for most of the test images of common diversity.

4.7. Perceptual meaningful measures

Considering that what is finally evaluating the images is human visual system, we further
calculated respectively the errors in the CIELuv space and CIELab space. In the experiments, we
calculated the Euclidean distance between two vectors in the CIELuv space (e.g., the illuminant
ground truth and the estimated illuminant). This Euclidean distance shown in Table 11 is
represented as CIELuv DE. We can see that our proposed method (SIRMF(auto)) significantly
improves the performance of CM in terms of this perceptually uniform space. Figure 14 also
shows that there exists significantly positive correlation between the AE in RGB space and the
DE in CIELUV space. Moreover, we further used the Delta E2000 [62] to verify whether our

Table 11. Perceptually Meaningful Measures Evaluated on Two Datasets.
Methods CM SIRMF(auto)

Dataset CIELuv DE Delta E2000 CIELuv DE Delta E2000

SFU lab 5.66 2.56 4.86 (14%) 2.05 (20%)

Gehler-Shi 5.67 2.94 5.23 (7%) 2.76 (6%)
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Fig. 14. Correlation between the AE in RGB space and the DE in CIELUV space for the
SFU lab dataset (Left) and the Gehler-Shi dataset (Right).

proposed SIRMF(auto) substantially improves the existing methods based on the perceptual
measures. Results of Delta E2000 for our SIRMF(auto) and CM on two datasets are also shown
in Table 11. We can see that our SIRMF(auto) significantly improves the results of CM in terms
of Delta E2000.

5. Conclusion and discussion

We proposed a method to improve the regression-learning-based CC methods by selecting
suitable training images for each test image. One contribution is to introduce a novel feature F

′ to
improve the existing image edge (IE) based methods. The feature F

′ is directly derived from the
regression-based equation and the image formation model. Experimental results show that using
F
′ is more effective than directly using the estimated illuminant and other features (e.g., SIFT) to

select suitable training images. In particular, our proposal using this simple feature F
′ with only

9 dimensions can automatically find a good training set size in an average sense that is suitable
for most of the test images. Moreover, our proposal can obtain quite competitive performance
compared to many state-of-the-art approaches and also significantly improve the performance of
several regression learning-based CC algorithms using such a simple idea and simple feature.
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