Supplemental Material for “A Color Constancy Model with Double-Opponency Mechanisms”

Shaobing Gao¹, Kaifu Yang¹, Chaoyi Li¹², Yongjie Li¹
¹University of Electronic Science and Technology of China, Chengdu, China
²Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
{gao_shaobing, yang_kf}@163.com, cyli@sibs.ac.cn, liyj@uestc.edu.cn

S1. Both the Mean (left) and Worst-25% angular error (right) indicating with a 95% confidence interval for all the state-of-the-art algorithms on Gehler-Shi dataset.

S2. Both the Mean (left) and Worst-25% angular error (right) indicating with a 95% confidence interval for all the state-of-the-art algorithms on SFU lab database.
S3. Additional examples of color-biased images from Gehler-Shi dataset, accompanying with the corresponding images of canonical, corrected (angular error is indicated in the bottom right corner), DT map and scatter plot, respectively. DT map refers to the responses of double-opponent cells (DO) to the input color-biased image in the RGB space.
S4. Additional examples of color-biased images from SFU lab database, accompanying with the corresponding images of canonical, corrected (angular error is indicated in the bottom right corner), DT map and scatter plot, respectively. DT map refers to the responses of double-opponent cells (DO) to the input color-biased image in the RGB space.
S5. Some examples of images from SFU lab database, corrected by several the state-of-the-art algorithms. The Canonical indicates the image corrected with ground truth illuminant.