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A Retinal Mechanism Inspired
Color Constancy Model
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Abstract—1In this paper, we propose a novel model for the
computational color constancy, inspired by the amazing ability
of the human vision system (HVS) to perceive the color of objects
largely constant as the light source color changes. The proposed
model imitates the color processing mechanisms in the specific
level of the retina, the first stage of the HVS, from the adaptation
emerging in the layers of cone photoreceptors and horizontal
cells (HCs) to the color-opponent mechanism and disinhibition
effect of the non-classical receptive field in the layer of retinal
ganglion cells (RGCs). In particular, HC modulation provides a
global color correction with cone-specific lateral gain control, and
the following RGCs refine the processing with iterative adaptation
until all the three opponent channels reach their stable states
(i.e., obtain stable outputs). Instead of explicitly estimating the
scene illuminant(s), such as most existing algorithms, our model
directly removes the effect of scene illuminant. Evaluations on
four commonly used color constancy data sets show that the
proposed model produces competitive results in comparison with
the state-of-the-art methods for the scenes under either single or
multiple illuminants. The results indicate that single opponency,
especially the disinhibitory effect emerging in the receptive field’s
subunit-structured surround of RGCs, plays an important role
in removing scene illuminant(s) by inherently distinguishing the
spatial structures of surfaces from extensive illuminant(s).

Index Terms—Color constancy, retinal cells,

non-classical receptive field, disinhibitory effect.

ganglion

I. INTRODUCTION
HE LIGHTS entering into our eyes or cameras are
normally determined by three factors: the physical prop-
erties of the object surfaces, the spectral irradiance of the

Manuscript received July 6, 2015; revised December 1, 2015; accepted
January 5, 2016. Date of publication January 12, 2016; date of current
version January 26, 2016. This work was supported in part by the Major
State Basic Research Program under Grant 2013CB329401, in part by the
National Natural Science Foundation of China under Grant 61375115, Grant
91420105, and Grant 31300912, and in part by the 111 Project under B12027.
The associate editor coordinating the review of this manuscript and approving
it for publication was Prof. Jean-Francois Aujol. (Corresponding author:
Yong-Jie Li.)

X.-S. Zhang, S.-B. Gao, R.-X. Li, and Y.-J. Li are with the Key Lab-
oratory for Neuroinformation of Ministry of Education, School of Life
Science and Technology, University of Electronic Science and Technol-
ogy of China, Chengdu 610054, China (e-mail: zhangxianshi@163.com;
gao_shaobing@163.com; 312365641 @qq.com; liyj@uestc.edu.cn).

X.-Y. Du was with the School of Life Science and Technology, University
of Electronic Science and Technology of China, Chengdu 610054, China. He
is now with the Infrastructure Inspection Institute, China Academy of Railway
Sciences, Beijng 100081, China (e-mail: xinyudu@qq.com).

C.-Y. Li is with the Key Laboratory for Neuroinformation of Ministry of
Education, School of Life Science and Technology, University of Electronic
Science and Technology of China, Chengdu 610054, China, and also with the
Center for Life Sciences, Shanghai Institutes for Biological Sciences, Chinese
Academy of Sciences, Shanghai 200031, China (e-mail: cyli@sibs.ac.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIP.2016.2516953

illumination, and the spectral sensitivities of the sensors. Color
constancy means that the color perception of an object remains
largely constant as the light source color changes [1]. Such
an ability grants human beings clear evolutionary advantages
in adaptation to widely varying external environments and
also benefits a variety of computer vision applications [1]-[3].
Mathematically, it is an ill-posed problem, and without certain
restrictions on surfaces and (or) illuminants, it is impossible
to accurately and robustly recover the reflectance of surfaces
from the color-biased images.

Due to the difficulty of this problem, there exists a large
body of literature on the computational realization of color
constancy. The methods available are mainly divided into two
groups, i.e., illuminant estimation based approaches and color
invariant approaches [2], [3]. Most of the models are charac-
terized by the estimation of the illuminant. Typical examples
of these methods first globally estimate the illuminant that
is normally assumed to be uniform across the scene, and
then remove it from the color-biased image to obtain the
canonical image that seems captured under a white light source
(i.e., the canonical illuminant). In general, based on the
approaches of the illuminant estimation, these methods could
be further broadly divided into three types [3], i.e., physics-
based, low-level statistics-based and learning-based. The
physics-based methods estimate the illumination on the basis
of the physical interaction between the illuminants and the
object surfaces. For example, as a typical one, the method of
inverse-intensity chromaticity space (IICS) estimates the illu-
mination chromaticity from single-colored and multi-colored
surfaces [4].

The low-level statistics-based methods obtain the illuminant
estimation based on some statistical assumptions about the
distribution of colors in a scene. One of the well-known
algorithms of this type is the Grey-World (GW), which is
based on the assumption of achromatic average reflectance
in a scene under a neutral light source [5]. Another popular
algorithm in this group is the White-Patch (WP) with the
assumption of perfect-reflectance maximum response in the
RGB-channels [6]. Typical extensions of this type include
Grey Edge (GE) [7], General Grey World (GG) [7] and
Shades of Grey (SG) [8]. Our recent models based on double-
opponent mechanism of the visual system [9] and based
on local reflectance statistics [10] could be also classified
into this group. In general, all these methods are simple
in implementation, but most of them are based on specific
assumptions, which are difficult to be always satisfied perfectly
by the diverse reflectance distribution of real-world scenes.
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A learning-based method tries to learn using certain
machine learning method to get an appropriate parameter
setting on a given image set or a subset including a group
of images having similar properties (e.g., indoor or outdoor
images). The solutions could be classified into two groups,
both aiming to overcome the limitation of the simple assump-
tions about the reflectance distribution made by the low-level
statistics-based methods like GW and GE. (1) These methods
introduce more complex statistics and a priori information
about the surface reflectance and more sophisticated statistical
computation based on learning is employed to estimate the
illuminant. Typical examples include Gamut based meth-
ods (GM) [11]-[14], Bayesian [15], Regression (SVR) [16],
Spatial Correlations (SC) [17] and corrected-moment based
model [18]. For example, by assuming that the distribution of
RGB color values of an image captured under a canonical
illuminant is a limited set, the basic idea of gamut-based
methods learn gamuts for different cameras and then use them
to constrain the solution space for an input image. (2) These
methods use the content of individual images to automatically
select and tune the most appropriate (normally simple assump-
tion based) algorithm (or combination of multiple algorithms)
for each input image or a certain class of scenes. Typical
examples of this group include Classification and Regression
Trees (CART) based algorithm selection [19], Natural Image
Statistics (NIS) [20], [21], Exemplar [22], and so on. In gen-
eral, these learning-based methods could yield quite better
results compared to those non-learning-based ones. However,
they generally suffer from the complication in implementation
and the requiring of appropriate preprocessing [1]-[3].

Without explicitly estimating the scene illuminant, color
invariant approaches achieve color constancy by utilizing the
invariant structures of the target images [3]. More or less,
these methods are inspired by the information processing
mechanisms of the human visual system (HVS), which has the
amazing ability to achieve fairly good color constancy under
varying natural illuminants [1]. Conceived as a description of
human color perception, the Retinex model, the pioneering
work of this type, holds the principle that the spectral prop-
erties of any object surface area can be approximated by the
ratio of the reflected light in this area to the reflected light in
other areas [6], [23], [24]. From this principle, with changes
in the way to choose other areas, many extensions of this
model have been derived [25]-[27], [64]. Other well-known
methods in this type include the models based on retinal
mechanisms of adaptation [28], [29] and the models based
on neural networks [30], [31], [65], [66]. In general, these
HVS based models could produce human-like performance
on a variety of psychophysical paradigms designed to test
color constancy. However, most of these above models (except
for [28], [64]) did not show sufficient color constancy results
with real images, so it is unclear whether the models work
and how the models perform on various real scenes.

The model of Spitzer and Semo [28] is perhaps the
most related one to the proposed. They simulated the color
processing from the cone photoreceptors to the ganglion
cells. In particular, they simulated the receptive field of the
ganglion cells using a three-Gaussian model, which includes
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a difference-of-Gaussians (DOG) shaped single-opponent
classical receptive field (CRF) and a third broad Gaussian
defining a much larger peripheral area that extends far beyond
the CRF. Their model performs well in color correction of
still images and video sequences when emphasizing a kind of
remote adaptation as a gain control occurring in the peripheral
area (i.e., the third Gaussian).

Generally speaking, our proposed model belongs to the
color invariant based type. Different from most previous
studies, however, our neural network model achieves color
constancy by directly simulating the underlying mechanisms
at the level of retina of the visual systems. It is generally
suggested that retinal ganglion cells (RGCs), which respond
in a color-opponent fashion within the center-surround struc-
tured receptive field (RF) to the activations of different cone
classes, are the basis of color processing and the quite suitable
building blocks for human color constancy [32]-[34]. More
specifically, several physiological findings suggested that the
RF surround of RGCs consists of many inhibitory subunits
(or subfields), and inhibitory interactions among them lead to a
disinhibitory effect, which means a suppression of the center-
surround inhibition, in the region of non-classical receptive
field (nCRF) [35]-[40]. These findings inspired us to compu-
tationally investigate their functional role in color information
processing, which is not only an attempt to realize color
constancy for computer vision, but also a description about the
possible mechanisms of color constancy in biological vision.

The rest of this paper is organized as follows. In section 2,
we describe the proposed model in detail. In section 3, we
analyze the properties of the proposed model and evaluate it on
four commonly used datasets (three single-illuminant datasets
and one multi-illuminant dataset). In section 4, we present
some concluding remarks and future directions.

II. MODEL
A. General Description

The proposed neural network model follows the color
processing mechanisms in the retina (Fig 1). The color-biased
image is the network input and the image removed illuminant
color is the output.

The red (R), green (G) and blue (B) components of the
input color image are sent respectively into long-, medium-,
and short-wavelength cone photoreceptors (i.e., L, M, and
S cones). The cone activities are adjusted by the feedback
modulation from the horizontal cells (HCs), which can receive
the original cone signals within relatively large fields. The
modulated cone signals are then transmitted to the retinal
ganglion cells (RGCs) via several retinal sub-layers like bipo-
lar cells and amacrine cells. In the retinal ganglion layer,
the output layer of the retina, color signals are processed by
the RGCs with single-opponent receptive field (RF), which
receives opponent stimuli in its excitatory center and inhibitory
surround from two (or more) different cones. The surround
comprises many inhibitory subunits, each of which is first
inhibited by its neighboring subunits (i.e., disinhibit), and then
inhibits the neuronal response elicited by the stimuli within the
RF center. The disinhibition among subunits and the inhibition
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Fig. 1.

The network structure of the proposed model. The R, G and B components of the input color image are respectively sent into the corresponding

cone types at the level of cone photoreceptor, the outputs of which are modulated by horizontal cells with quite large receptive fields (RFs). The modulated
cone signals are then iteratively processed by the single-opponent retinal ganglion cells (RGCs), the RF of which consists of a small excitatory center and a
relatively large inhibitory surround (also named the non-classical receptive field, nCRF). The surround is composed of many inhibitory subunits, which first
inhibit each other, and then inhibit the center. The iterative processing in RGCs is executed in each opponent channel of R-G, G-R and B-Y till the channel’s
output is stable. In the expression of “A-B”, “A” and “B” denote respectively the signal components received by the excitatory center and the inhibitory

surround.

from subunits to RF center vary iteratively, till all the three
single-opponent channels reach stable outputs.

B. Horizontal Cell Modulated Cone Activities

Visual processing starts at the photoreceptor layer of the
retina. There are two types of photoreceptors, rods and cones.
According to the most sensitive wavelength, human cones
can be basically classified into three types in terms of the
most sensitive wavelength: short-wavelength cones (S-cones),
medium-wavelength cones (M-cones) and long-wavelength
cones (L-cones) with preferable responses to the blue (B),
green (G) and red (R) colors, respectively [41]. In the
following, we will use R, G and B to represent L, M and S,
respectively.

The color information into eyes is coded in a trichromatic
way via the three types of the cones. Given an input image
fe(x,y),c € {R, G, B}, the cone activity F.(x, y) is given by

Fe(x,y) = fe(x,y) @ g(x, y; 0) (D

where ® is a convolution operator, and g(x,y;o) is a
two-dimensional (2D) Gaussian function simulating the recep-
tive field (RF) of the cones

1
gryi0) = s e (~07 +3)/20Y) @

where o is the standard deviation controlling the RF size of
the cones. In this work, we experimentally set g(x, y; o) as a
rectangle template with ¢ = 3.0 and a size of 3x3 pixels.

After the light absorption by cones, bipolar cells transmit
the cone activities to ganglion cells. Horizontal cells (HCs)
provide a lateral modulation to this transmission [42]. HCs are
the laterally interconnecting neurons that span widely across
multiple cones and summate inputs from them. They help
integrate and regulate the inputs from cone cells by measuring
the average level of lights falling upon a relatively wide region
of the retinal surface. Among several speculated functional
roles, HCs have been best imagined as carrying out a global
adjusting of the signals for reception by the cells in the inner
retina, e.g., ganglion layer [42], and this global modulation by
HCs has been suggested to play important role in correcting
for the spectral composition of an illuminant [34], [43].

In the proposed model, we imitate this HC modulation as
a cone-specific lateral gain control mechanism [43], which is
written as

I(,‘:FC/PCa CE{R,G,B} (3)
with
P. = (mean(F/))"/? )

where p is a free parameter emphasizing the bright pixels
in an image [8]. P, simulates the lateral gain control
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contributed by HCs. Basically, the HC modulation described
by Egs (3) and (4) is consistent with the von Kries hypothesis
(or von Kries adaptation) [34] aiming to account for the
role of photoreceptor adaptation in color constancy, which is
written as

Ig 1/Pg 0 0 Fr
I | = 0 1/Pg 0 - | Fg 5)
Ip 0 0 1/Pp Fp

In fact, many existing color constancy models, e.g., grey-
world [5], are based on the diagonal transform described by
Eq (5), with different ways to compute the normalization
factors P. with ¢ € {R, G, B}. In particular, we compute P,
using Eq (4), a similar way as that introduced in General Grey
World (GG) (i.e., the Grey-World with pth-Minkowski norm
and zero-order spatial derivative) [7], considering that there is
no center-surround mechanism occurring at the levels of cones
and HCs for computing spatial image derivatives [33].

Because the strength of the modulatory signal from HCs
varies with the relative activities of the different cones, this
pathway helps counterbalance the gain of the cones [43].
For example, weakly activated cones receive a stronger HC
modulation than strongly activated cones, and consequently,
the spectral sensitivity of the cones is dynamically adjusted to
the characteristics of the illuminant accordingly [44], [45].

Many studies have suggested that von Kries adaptation
accounts only for a minor part of color constancy [11], [12],
[32]-[34], mainly due to the independent adaptation among
all three cone systems in the diagonal model of von Kries.
To account for the contribution of interactions between the
cone systems to the color perception [49], the diagonal model
has been extended by replacing the diagonal matrix with a
full matrix [34] or adding an offset term to the diagonal
matrix [12], [46]. Physiologically, our model implements the
interactions between the cone systems at the level of retinal
ganglion cells, some of which have center-surround and color-
opponent receptive fields integrating signals from different
cone types.

C. Single-Opponency With Disinhibition

Retinal ganglion cells (RGCs) receive multiple cone sig-
nals transmitted via bipolar cells (and other cells) and com-
pare them with the color-opponent mechanism. The receptive
field (RF) of most RGCs consists of two regions, i.e., a smaller
excitatory (ON) center and a larger inhibitory (OFF) annular
surround, and chromatically single-opponent RGCs receive
inputs of different cone types within these two different RF
regions [33], [40], [49]. In this work we consider three types
of single-opponent RGCs [47]-[49]: L-on/M-off, M-on/L-off,
and S-on/(L+M)-off, which means that the firing rate of a
RGC increases with the activation of one cone type (e.g., L)
and decreases with the activation of a different cone type
(e.g., M). In the following, we will use R-G, G-R, and B-Y for
short to denote respectively the above three single-opponent
channels.

The simple center-surround RF structure, also called
the classical receptive field (CRF), has conventionally
been described by the “difference of Gaussian” (DOG)
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model [50], [51], which postulates that a cell’s response is
equal to the difference of signals from the excitatory center
and the inhibitory surround, described by two Gaussian kernels
having different standard deviates. However, according to the
physiological experiments [35]-[39], [52], a secondary gentle
rise in neuronal responses of some RGCs has been clearly
observed when the stimulus was further extended beyond the
inhibitory near surround of CREF, indicating a disinhibitory
effect contributed by the extensive far surround outside the
DOG-shaped CRE, i.e., the activity elicited by the stimulus
in this far surround can reduce the inhibitory effect of the
near surround. We have speculated [40] that the near and far
surrounds could be unified as an extensive disinhibitory region
beyond the excitatory RF center, and this disinhibitory region
(also called the non-classical receptive field, nCRF) consists
of many inhibitory subunits, which first inhibit each other,
and then inhibit the RF center. This idea has the following
two possible biological plausibilities [53], [54]: (1) RGCs
receive excitatory inputs from multiple bipolar cells, which
have much smaller RFs than RGCs and therefore constitute
many subunits, especially within the extensive RF surround of
RGCs; (2) narrow-field amacrine cells covering several bipolar
cells help to construct direct interactions among a subset of
neighboring subunits via inhibitory amacrine synapses. This
work attempts to incorporate this mechanism of disinhibitory
effect into the surround of the color-opponent RGCs.

Let RGsub(x,y; 0u), GRsub(x,y;0u), BYsub(x,y;ou)
denote respectively the responses of the subunits in RF sur-
round after being inhibited by other neighboring subunits in
the R-G, G-R and B-Y single-opponent channels. We compute
them as

RGsup(x,y;04)

= MAX[0, Ig(x,y) — Ayc Ic(p,q)

>

(p,q)eSubunit\(x,y)
xg(p—xl,lg —yl:ou)]
GRsup(x, y; ou)
= MAXI0, Ir(x, y) — Ayr >
(p,q)eSubunit\(x,y)

x g(lp —xl,lg — yl; 0u)]
BYsup(x,y; ou)
= MAXI0, Iy (x, y) — Auy >
(p,q)eSubunit\(x,y)

xg(lp—xl,lg —yl;04)] (©)

IR(P» Q)

IY(P» Q)

where Iy = (Ig + Ig)/2, indicating that the yellow (Y)
signal received in the surround of B-Y ganglion cells results
from the combination of red (R) and green (G) cone signals.
Ayg, Aur and Ayy represent the sensitivities of the subunits
in R-G, G-R and B-Y channels, respectively. (p, g) belongs
to the point set in a subunit excluding its center. The MAX
operator is used to keep the neuronal responses of subunits
non-negative.

To compute the responses of the inhibited subunits using
formula (6), we first construct a 2D Gaussian template of
subunit based on the given standard deviation o,. Then we
set the value of template center to be zero. By convoluting the
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image, e.g., I (x, y), with this template, we obtain the inhibi-
tion from the subunit surround. Finally, we get the responses
of the inhibited subunits RGg,,(x, y; ;) by subtracting this
inhibition (weighted by Ayg) from Ig(x, y).

It is interesting to point out that Eq. (6) works like a
high pass filter, since Eq. (6) is computationally equivalent to
subtracting the Gaussian smoothed stimulus in the surround
from the original stimulus in the surround, which makes the
high frequency components of the stimulus remained in the
surround. The role of high pass behavior of the subunits will
be clarified in Section III.

Let RGsyr(x, y; 05), GRsyr(x, y; 05) and BYs,(x, y; o5)
denote the total responses of all the inhibited subunits in the
surround in R-G, G-R and B-Y channels. We compute them

as
(p.q)eSurround

x g(lp —xl,lg —yl; a5)

> GRsuw(p.q:ou)
(p,q)eSurround

xg(lp—xl,lg —yl; o)
Z BYSub(p» q. 0'u)

(p,q)eSurround
x g(lp—xl,lg — yl; a5) @)

where Asg, Asg and Agy are the sensitivities of the surround
in the R-G, G-R and B-Y channels. (p, g) belongs to the point
set in the inhibitory annular surround.

The final neuronal response is then computed by subtracting
the total surround inhibition from the response of excitatory
RF center, which is written as

RG(x,yi0) = MAX[0, >
(p,q)eCenter
X g(lp —x|,lg —yl; O'C)_RGSur(X, y; 05)]

GR(x,yio0) = MAX[0, > Ic(p.q)
(p,q)eCenter

x g(lp—xl,lqg —yl; 00)—GRsur(x,y; 04)]

BY(x,y:00) = MAX[0, > Ip(p.q)
(p,q)eCenter

xg(lp—x|,lg = yl;:0c)—BYsur(x, y; 05)]
8)

where RG(x, y; 0.), GR(x,y;o0.) and BY (x, y; o.) are the
final responses of the single-opponent cells in the R-G,
G-R and B-Y channels. (p, g) belongs to the point set in the
excitatory RF center. Similar to Eq. (6), here the MAX operator
is used to guarantee the neuronal responses to be non-negative.

In Eqgs (6)~(8), oy, 05, and o, are the standard deviations of
the 2D Gaussian functions describing the subunit, RF surround
and RF center, respectively. We experimentally set o, = 0.5,
os = 1.5, and o, = 0.5 in this work. Considering the fact
that the Gaussian values would be reduced quite close to zero
when its radius is larger than three times of the standard
deviation, we roughly set the standard deviation dependant
radius of subunit, surround and center as 1, 3, 1 pixel(s),
respectively. Partial evidence in support of such setting is

RGsur(x,y; 05) = Asg X RGsup(p, q; ou)

GRsur(x,y; 05) = Asg X

BYs,r(x, y; 05) = Agy X

Ir(p, q)
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the neurophysiological finding that the size of RF surround
is normally 2 to 5 times larger (in diameter) than that of
RF center [35]-[39]. Note that such parameter setting will
be further experimentally analyzed in Section III.

D. Adaptation of Ganglion Cells

As mentioned above, sufficient studies have indicated that
color adaptation starts in the retina [43]-[45]. In particular,
RGCs have the capability of adjusting their sensitivities over
a few seconds to the chromatic statistics of different visual
environments [55]. It has been generally accepted that this
adaptation to the statistical properties of visual scenes plays
a critical role in emphasizing more relevant visual inputs or
increasing the efficiency of color signal transmission from the
retina to the brain [55], [56]. It was speculated that this type
of retinal adaptation may require inhibitory transmission in
the inner retina, e.g., the wide-field transient inhibition from
the plentiful plastic synapses of the amacrine cells received
by nearly all ganglion cell types [53], [57]. This plasticity,
together with other unknown mechanisms, helps adaptively
change the spatial (as well as temporal) properties of the
ganglion-cell receptive fields in a way that reduces sensitivity
to the dominant correlation structure of the visual scenes,
e.g., the globally distributed illuminant color, until visual
sensitivity is roughly constant.

We formalize the above dynamic adaptation as a simple
process in each of the R-G, G-R and B-Y opponent channels.
For simplicity, all the three opponent channels share the same
surround sensitivity and also share the same subunit sensitivity.
This adaptation is described by

Asp = Asg = Asy =K
Ayr = Ay = Ayy = aAsg

©)
(10)

where a is a constant controlling the relative sensitivities of
subunits compared to the surround, and we experimentally
set a = 1/3 in this work, since such setting has been used
to successfully explain the psychophysical observations like
Mach bands [40]. K is a parameter defined as the inhibitory
weight, which is automatically determined as follows.
K starts from 0.0 and is increased in a step of 0.2 during
the adaptation procedure. K = 0 corresponds to the state of
default receptive fields of RGCs, which are shaped mainly
by the fixed excitatory synapses from bipolar cells [53]. The
increasing of K, and hence the increasing of the subunit
sensitivities (i.e., Ayr, Ayg, Ayy) and surround sensitivities
(i.e., Asg,Asg,Asy), corresponds to the increasing of
inhibitory amacrine synapses.

We define the spatial average of the recovered surface
reflectivity (SPARSUR) in a channel as a measure of the
status of this channel. At the end of each iteration, the current
status of each channel is separately evaluated by computing
SPARSUR. In two successive iterations, if the change of
SPARSUR in a channel is small enough, this channel is
considered to reach stability, which means a state such that the
decreasing of surround inhibition strength due to the increas-
ing disinhibition sensitivity is balanced by the increasing of
surround inhibition strength due to the increasing surround
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Fig. 2. Response curves as a function of stimulus size (in radius) for

different parameter settings. The sizes (in radius) of RF center, RF surround
and subunits (i.e., 3o, 305, and 30,) are 3, 10, 3 pixels, respectively. The
sensitivity of RF surround (i.e., Asg, Asg, Asy) is 3.0, and the subunit
sensitivity Aygr = Ayg = Auy £ Ay is set to be 3.0, 1.5, 1.0, 0.8 and 0.0,
corresponding to the five curves (from top to bottom).

inhibition sensitivity. For example, if the SPARSUR of the red
component suppressed by surrounding green component in the
R-G opponent channel changes negligibly, the R-G channel
reaches its stable state and the adaptation process of this
channel will be finished. The inhibition adaptation continues
in other unstable channels until all the three opponent channels
reach their stable states. To summarize, without the need of
an explicit learning phase, our model processes the individual
images with adaptive fine-tuning of the surround and subunit
sensitivity values.

With the automatically selected surround and subunit
sensitivities mentioned above, RG(x, y;o.), GR(x,y; o.)
and BY (x,y; o.) computed by Eq. (8) are respectively the
final outputs in R, G, and B channels, which are combined to
form the final output image. Note that in general, the range of
pixel intensity of the output image does not cover the interval
[0, 255]. For better visualization, we linearly normalize the
final output image to the interval [0, 255] for display in this
work.

II1. EXPERIMENTS

In this section we first show examples analyzing the
properties of the proposed model, and then demonstrate
validation tests on three single-illuminant datasets and one
multi-illuminant dataset. Note that in the following, we will
denote the R-G, G-R, and B-Y opponent channels by R, G,
and B channels for short, e.g., here the “R” is the output of
the original R component inhibited by the G component in
the surround of an R-G ganglion cell.

A. Disinhibitory Effect of the Model Ganglion Cell

1) Area-Response Properties: As disinhibition in the RF
surround of ganglion cell is caused by the inhibitory
interactions among surround subunits, subunit sensitivities
(i.e., Ayr, Ayg and Ayy) are the main factors determining
the strength of surround disinhibition. With a stimulus pattern
of uniform luminance that is large enough to cover both the
RF center and its surround of a model ganglion cell, we
measured a group of area-response curves by computing the
response of the model cell with varying subunit sensitivities
while keeping the other parameters fixed (Fig. 2). It is clear
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Fig. 3. The effect of various foreground patterns on the responses of a
R-G ganglion cell. (a) A group of stimulus patches with a full size of
5x5 pixels (which is enlarged for better visualization). Each patch contains a
red block of 3x3 pixels only covering the full RF center and a patterned green
foreground across both the RF center and its surround. The green foreground
in different patches have the same total light flux but different dispersive
angles, from 0° to 180°, as indicated on the top of the panels. (b) Response vs.
dispersion curves of a R-G opponent ganglion cell. The red line is for the cell
with surround inhibition but without subunit disinhibition. The blue line is for
the case that both the subunit disinhibition and surround inhibition work. Here
the term “dispersive angle” is defined as the angle within which the green
component is distributed between the two opposite sectors of the circle. The
minimum dispersive angle is 0°, which means a straight line. The maximum
angle is 180°, which means a fully dispersed distribution.

that the neuronal response is gradually increased when the
stimulus size is extended within the excitatory RF center
(with a radius of 3 pixels in this test). When the stimulus
is further extended larger than the RF center, the neuronal
response is decreased due to the surround inhibition, and then
gradually increased due to the increasing disinhibition effect
deduced by the inhibitory interaction among more surround
subunits. These area-response curves shown in Fig. 2 are quite
consistent with those obtained from our previous physiological
studies in the cat ganglion cells [35], [37], [58].

Figure 2 indicates that with appropriate subunit sensitiv-
ity A, (which is adaptively determined by the model), the
reproduced disinhibition among subunits has the potential to
reduce the inhibition from the extensive surround when being
covered by dispersively distributed light source color, and
hence, obtain a relatively stronger response to the true color of
the center, which helps to weaken the color bias of the center.

2) Dispersion-Dependent Effect: Here we demonstrate what
would happen when the single-opponent mechanism is intro-
duced into the surround subunit model of ganglion cell,
i.e., subunit interaction in RF surround occurs in one color
channel (e.g., G) and then the surround inhibits the RF
center that receive stimulus in another color channel (e.g., R).
We designed a series of stimulus patches (Fig. 3a), each of
which contains a red block covering the full RF center and a
patterned green foreground across both the RF center and its
surround. When the green foreground was spatially distributed
with systematically increasing dispersion (quantified by a
“dispersive angle” [35], [37], [58]) while keeping the total
light flux identical for the green pattern, the responses of
a R-G opponent ganglion cell to the patterned stimuli were
consistently increased with the increasing dispersive angle of
the green foreground (Fig. 3b). This is because more subunits
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in the surround were activated and hence stronger disinhibition
(and then weaker surround inhibition) was introduced.

We can find that when the green foreground of the stimulus
patch is more dispersive, the foreground color seems more
likely from external illuminant (e.g., the last patch of Fig. 3a).
In this situation, the yellowish appearance of the red block
was reduced by the increasing of the R-G neuronal response
to the red block covering the RF center, i.e., the yellowish
appearance of the red block is removed and the true red color
is recovered.

From the point of view of filtering, as mentioned earlier,
interaction among subunits shows high pass property, which
helps to clean or attenuate the uniform stimulus in the surround
(e.g., the last panel of Fig. 3a), which results in the reduced
surround inhibition, and hence, the relatively increased the
neuronal response to the stimulus in the RF center. In other
words, the local patch color in the center (most likely the
object surface) that has been attenuated by a large patch
of another color (large enough to cover both the center
and surround) may be recovered by reducing the surround
inhibition due to the high pass property of the subunits.

This example provides a biological explanation how the
disinhibition among subunits in the surround contributes to
the color constancy at the retinal ganglion level. Note that the
yellowish appearance of the red block cannot be reduced when
no disinhibition was involved (i.e., Ayr = Ayg = Ayy = 0),
because the surround inhibition always keeps constant due to
the identical total light flux (with any degree of dispersion) in
the surround. That is, the opponent RF without disinhibition
has difficulty in responding selectively to the true surface color
and the light source color.

3) Disinhibitory Effect on Color Constancy: Figure 4 shows
how the subunit disinhibition plays a role in color constancy in
each opponent channel. For a scene under a bluish light source
(the first panel in the first row of Fig. 4a), it is obvious that the
blue component of the color-biased image is more dominant
than the other two channels. With the increase of inhibitory
weight K (Fig. 4b), the three channels approach the stable state
after different periods of variation. In general, the channels
of scenes with stronger color bias require longer adaptation
time to reach steady states, e.g., the blue curve in Fig. 4b
for the blue channel. This indicates that for a color-biased
scene, different opponent ganglion cells with various subunit
and surround sensitivities are employed to reduce the different
bias of color opponents. To summarize, Figure 4 demonstrates
that for a color-biased image with the different degree of color
distortion across different color channels, early or late, all the
three channels can reach stable after a period of iteration that
is automatically terminated by the proposed model.

Given the true illuminant of a scene, we can employ the
commonly used recovery angular error as the metric for
performance evaluation [59], which is defined as the angle
between the RGB of the actual measured illuminant color and
that estimated one as the recovery error

e =cos! [(Et 'Ee)/(”EI” : ||5e||)] Y

where ¢, and &, are respectively the true and the estimated
illuminants containing R, G and B three components.
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Fig. 4. The disinhibitory effect on color constancy in each channel. (a) The
first row: a color-biased image under blue light source, its canonical image
under white light source (i.e., the groundtruth) and the output corrected by our
model. The second to fourth rows list the corresponding image components in
R, G, and B channels, respectively. (b) In each image channel, the inhibitory
weight K is iteratively increased (with a step of 0.2) to find the stable state
of each channel by judging whether or not the summated intensity over the
scene reaches stable in two successive iterations. For the case shown here, the
iterations in the channels of R (red curve), G (green curve) and B (blue curve)
were terminated when K = 0.8, 1.2 and 3.2, respectively.

Note that because the proposed model does not estimate
the illuminant explicitly, we derive the three components of
the illuminant estimate (only for computing ¢ and eggp
for comparison) by computing in each channel the ratio of
summated pixel values of the recovered image to that of the
original color-biased image.

Figure 5 illustrates that on a synthetic scene comprising
red grating (the first panel of Fig. 5a), though the influence
of greenish light source could be weakened more or less
by the horizontal-cell modulation in the first phase of our
model (from the second to third panels of Fig. 5a), the
illuminant influence was more greatly reduced by the color-
opponent ganglion cells with subunit disinhibition (the last
panel of Fig. 5a). Figure 5b indicates that subunit disinhibition
(together with surround inhibition) with appropriate inhibitory
weights helps obtain smaller angular errors (the blue curve).
In contrast, the measure of angular error is difficult to be
reduced when the subunit disinhibition or surround inhibition
is omitted (the red or green curve). These observations were
further validated on a real image shown in Fig. 6, where a
bluish scene was recovered as close as to the canonical image
by the ganglion cells with both the surround inhibition and
subunit disinhibition.

In short, Figure 5 and 6 show that compared to the ganglion
cells without subunit disinhibition and (or) surround inhibition,
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Fig. 5. TIllustration of the role of disinhibition in color constancy on a

synthetic image. (a) From left to right: a synthetic image comprising red
grating under a white light source (i.e., the canonical image), the same
scene under a greenish light source, the image corrected only with HC
modulation given by Eqs (3) and (4), and the image further corrected by
RGCs with disinhibitory RF surround. (b) The relationship between the
inhibitory weight K and the angular error. The dotted green curve is with
Asrp = Asg = Asy = 0 (i.e., the surround inhibition does not work,
and hence, the subunit disinhibition is also omitted). The red curve is with
Ayr = Ayg = Ayy = 0 (i.e., the surround inhibition works while the
subunit disinhibition is non-effective). The blue curve is for the case that
both the subunit disinhibition and surround inhibition work. It is clear that
with a suitable value for the inhibitory weight K, the blue curve can reach
an angular error that is quite lower than other two curves. In other words,
RGCs with both the subunit disinhibition and surround inhibition have chance
to produce better performance.
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Fig. 6. Illustration of the role of disinhibition in color constancy on a real
image. (a) From left to right: the color-biased image in a bluish illuminant
(from SFU Lab Dataset [60]), the canonical image from white light source,
the corrected output of the color-biased image. (b) The relationship between
the inhibitory weight K and the angular error. The meanings of the red, blue
and green curves are the same as those of Figure 5.

the cells with both subunit disinhibition and surround inhibi-
tion have chance to better remove the influence of light source
color (and hence, lower angle error) with appropriate K values.

B. Performance on Three Single-Illuminant Datasets

The proposed model was further evaluated on three com-
monly used datasets: the SFU Laboratory Dataset [60], the
SFU Grey-ball Dataset [61], and the Gehler-Shi Color-checker
Dataset [15], [62]. We considered four groups of representative
models for comparison, including: (1) physics-based: IICS [4];
(2) low-level statistics-based: GW [5], WP [6], GE [7], SG [8],
GG [7]; (3) learning-based: GM (pixel) [11], GM (edge) [12],
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a

Fig. 7. Some example images of a same scene under various illuminants
from the SFU Laboratory Dataset [60]. (a) The canonical scene (from white
light source with equal R, G and B components). (b) Top row: four images
of the same scene with different light source colors, on the top of which the
R, G and B components of the light source are indicated; bottom row: the
corresponding results corrected by the proposed model, the estimated illumi-
nant, the reproduction angular error and the conventional angular error are
shown on the top, the left and right bottom corners of each image.

CART [19], Bayesian [15], NIS [20], SVR [16], SC [17],
Exemplar [22]; (4) color invariant based: RetinexFrankle [25],
Retinex99 [26]. Note that from the point of view of the
underlying motivation, our model is quite close to the color
invariant based models like RetinexFrankle and Retinex99.

The results of the RetinexFrankle and Retinex99 models
were reproduced in this study according to the parameters
provided in [63], and the results of other methods on the
first three single-illuminant datasets are directly cited from the
website http://colorconstancy.com/.

Considering that the angular error defined by Eq. (11) does
not measure how similar the results are to the canonical
images, Finlayson and Zakizadeh [71] recently proposed a new
measure named reproduction angular error, which is defined
as the angle between the image RGB of a white surface when
the actual and estimated illuminations are removed

erep =cos” [@./2) [ (V31e /e )]

It is clear that the two metrics mentioned above empha-
size differently on performance evaluation. The angular error
focuses on the difference between the estimated illuminant
and the real illuminant, while the reproduction angular error
measures the discrepancy between the real reflectivity of the
object surface and the reproduced one [71], [72]. In the
following experiments, we used the both measures defined by
Eqgs (11) and (12) for performance evaluation in this work.

1) SFU Laboratory Dataset: The SFU Laboratory Dataset
consists of 31 different scenes, captured with calibrated camera
from 11 different light sources for each scene, resulting in a
total of 321 images [60]. The images in this dataset can be
classified into two subsets: images with minimal specularities
(22 scenes, 223 images) and images with dielectric specular-
ities (9 scenes, 98 images). Examples of a same scene from
various light sources are shown in Fig.7.

Table I reports the recovery angular error statistics of
different methods on the whole dataset. The result of SVR
comes from [16]. It is clear that in terms of median error,
the proposed model performs as well as the best low-level
statistics-based method (GE 2™), even better than the learning-
based SC method, but worse than the best learning-based GM
and SVR algorithms.

12)
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TABLE I
COMPARISON TO OTHER MODELS ON THE SFU LABORATORY DATASET

Recovery Reproduction
Method Angular Error Angular Error
Median Mean Median Mean
Phsics- 1CS 8.2° 15.5° 9.3° 15.1°
based
GW 7.0° 9.8° 7.5° 10.1°
WP 6.5° 9.1° 7.4° 9.7°
SG (p=7) 3.7° 6.4° 3.9° 6.9°
Low-level gg g$;1(); 7(;—4) 33 5.4 3.9 6.0
statistics- P 3.2° 5.6° 3.6° 6.3°
based o=4)
GE (2™, p=7
— K i 2.7° 5.2° 3.3° 5.8°
o=4)
nd
GP (2%, p=15, 2.8° 5.3° 3.0° 5.8°
o=10)
SC 3.5° 5.6° 4.1° 6.2°
Learning- | GM (pixel, 6=4) 2.3° 3.7° 2.8° 4.2°
based GM (edge, 6=2) 2.3° 3.9° 2.7° 4.5°
SVR 2.2° - - -
Retinex99 (n=4) 13.3° 15.2° 13.7° 15.1°
Color &e:tj;e"mnkle 13.0° | 152° | 1370 | 1500
invariant Proposed - - - -
(p=13) 2.7 6.0 3.0 6.5

Table I also reports the reproduction angular errors. Note
that the listed results of other models are from [71]. We can
find from this table that our model remains its ranking in terms
of median error, and this is almost true for other datasets tested
below (not shown in this paper due to the space limitation).
This is consistent with the finding in [71] and [72] that the
results of reproduction and recovery metrics for the same algo-
rithm are very much correlated when the scenes are diverse.

The bottom row of Fig. 7(b) reports the recovered images
by our model. It is clear that the different illuminants of the
same scene were successfully removed based on the accurate
illuminant estimates, which results in quite low recovery and
reproduction angular errors and close similarities between the
recovered and canonical (ground-truth) images. Note that the
values of the two measure types for a same image vary a
little, since the measure of reproduction angular error espe-
cially emphasizes how well a white surface is reproduced,
as mentioned before. It has been recommended to adopt the
reproduction error when evaluating on specific images of
the same scene captured under different illuminations [72].
However, considering that most of the images of the datasets
tested in this work are from diverse scenes under various
illuminants, both the two types of angular errors are suitable
metrics for evaluating the overall performance of a model on
the whole datasets [72], as indicated by Table L.

Though our model performs clearly better than the
grey-world based methods like GW, WP, SG and GG on
this dataset, the first phase of our model (i.e., horizontal-cell
modulation) seems to work similarly to GG. So, we conducted
further evaluation to investigate the influence of statistical
properties of scenes on the performance of our full model
based on the various scenes in this dataset. First, to quantify
the deviation of the average reflectance in a scene from the
grey-world assumption, we define a measure called reflectance
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Fig. 8. The relation of median angular error to the reflectance chromaticity
of scenes. The blue line shows the average reflectance chromaticity (RC) of
each scene. The red line shows the median angular error by our model over
the 11 images of each scene. Note that among the total 31 scenes, we have
combined the scenes of apples and apples2 into one group, which results in
a total of 30 scenes.

TABLE II
COMPARISON TO OTHER MODELS ON THE SFU GREY-BALL DATASET

Method Median | Mean | Max

Physics-based 1ICS 5.6° 6.6° 76.2°
GW 7.0° 7.9° 48.1°

WP 5.3° 6.8° 38.7°

Low-level SG (p=12) 5.3° 6.1° 41.2°
statistics-based | GG (p=12, 0=0) 5.3° 6.1° 41.2°
GE (2™, p=1, 6=2) 4.9° 6.1° | 41.7°

GE (1%, p=1, 5=1) 4.7° 5.9° 41.2°

GM (pixel, 6=5) 5.8° 7.1° 41.9°

. GM (edge, 6=2) 5.8° 6.8° 40.3°
Learning-based |57 3.9° 52° | 44.5°
Exemplar 3.4° 4.4° 45.6°

RetinexFrankle (n=4) | 5.5° 6.3° 41.2°

Color invariant | Retinex99 (n=4) 5.4° 6.2° 42.1°
Proposed (p=24) 4.6° 6.3° 35.3°

chromaticity (RC), which is computed as the angular error
between a hypothetical light, whose R, G and B components
are the summated intensities of each channel of the true scene
(under white light source), and an achromatic light (with
equal R, G and B components). It is obvious that a higher
RC corresponds to a larger deviation from the grey world
assumption. Figure 8 shows the relation between the RCs and
the median angular errors of all scenes in the dataset. It is clear
that in general, the larger the RC is, the higher the median
angular error is (the linear correlation coefficient between
the two curves is 0.6, and the p-value for this hypothesis
is 0.00045). In other words, our model has a higher chance
to obtain better performance on the scenes that match closer
the grey-world assumption. This is consistent with most of the
grey world assumption based models [2], [3].

2) SFU Grey-Ball Dataset: The SFU Grey-ball Dataset
contains 11346 images, extracted from a video of 2 hours
recorded under a large variety of conditions. The ground
truth illuminant was captured by a grey ball mounted on the
camera [61]. Table II reports the angular error statistics of
different methods over the whole dataset. As done with other
models, we also masked the grey ball of each scene when
running our model.

From Table II, the proposed method obtains the measure of
median angular error that is lower (better) than all the low-
level based models listed here on this dataset (and is equivalent
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TABLE III
COMPARISON TO OTHER MODELS ON THE GEHLER-SHI DATASET

Method Median | Mean | Max
Physics-based 1ICS 13.6° 13.6° | 56.7°
GW 6.3° 6.4° 24.8°

WP 5.7° 7.6° 40.6°

Low-level GE (1%, p=1,6=6) | 4.5° 5.3° 26.4°
statistics-based | GE 2", p=1,0=1) | 4.4° 5.1° 23.9°
SG (p=4) 4.0° 4.9° 22.4°

GG (p=9, 6=9) 3.5° 4.7° 22.0°

SVR 6.7° 8.1° 32.0°

GM (edge, 6=4) 5.0° 6.5° 29.0°

CART 3.9° 4.5° 22.3°

. Bayesian 3.5° 4.8° 24.5°
Learning-based [~ 3.1° 42° | 262°
SC 3.0° 3.6° 21.6°

GM (pixel, 6=4) 23° 42° | 232°

Exemplar 2.3° 2.9° 19.4°

Retinex99 (n=4) 17.2° 16.9° | 40.1°

Color invariant gﬁ;’;‘”‘ﬂankk 16.9° | 16.5° | 40.0°
Proposed (p=10) 2.7° 4.8° 25.4°

to the measure of GE), and also lower than the learning-
based GM(pixel) and GM(edge), but higher (worse) than the
learning-based NIS and Exemplar. Table II also reveals that
with equivalent mean angular error to all other methods, our
model achieves the quite lower measure of max angular error.

3) Gehler-Shi Color Checker Dataset: This dataset contains
568 images of various indoor and outdoor scenes [62]. The
ground truth illuminants were captured by a MacBeth color
checker placed in each scene [15]. Because the images in
the original dataset were generated from RAW data with
automatic settings, they contain clipped pixels and include
the effect of the camera’s white balance. To avoid these
artifacts, Shi reprocessed the raw data and created almost-raw
12-bit Portable Network Graphics images [62]. We use this
reprocessed version to evaluate our proposed model.

Table III reports the angular error statistics of different
methods over all the 568 images of this dataset. Note that as
done with other algorithms, we also masked the color checker
of each scene when executing our model. Table III clearly
shows that on this dataset, the proposed method performs
better than most of the methods compared, only worse than the
best learning-based methods, e.g., GM (pixel) and Exemplar.

4) Performance Dependency on Parameter p: The first step
of the proposed algorithm is to apply a grey world model (with
pth-Minkowski norm) to the original image, where p is a free
parameter in Eq. (4). From the results in Tables I, IT and III,
it seems that there is not a unique value of p that gives
the best results on different datasets. Here we studied the
dependency of the results on different values of p, and Fig. 9
shows such dependency on p on the SFU Lab Dataset and
Gehler-Shi Dataset. In general, the measure of median angular
error decreases clearly when p is increased from 1 to 6, but
changes quite slightly when p is larger than 6. The profile of
the median reproduction angular error shows a similar trend.
To summarize, though no unique value of p can give the best
results on different datasets, the proposed model is not quite
sensitive to the parameter p when its value is not too small.
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Fig. 9.  The dependency of estimation error on the free parameter p
in Eq. (4). (a) On the SFU Laboratory Dataset, (b) on the Gehler-Shi
Dataset. The blue and red curves are respectively for the median angular
error and median reproduction angular error. The vertical dashed lines denote
the p values that give the best (lowest) median angular errors, as listed in
Table I and III.

TABLE IV

THE PERFORMANCE OF THE PROPOSED MODEL WITH DIFFERENT
RF S1ZE SETTINGS ON THE GEHLER-SHI DATASET

Radius _of (_Zen?er/ Surround Median Mean Max
/Subunit (in pixel)

1/3/1 2.7039° 4.8463° 25.3615°
2/6/2 2.7040° 4.8463° 25.3615°
3/9/3 2.7040° 4.8463° 25.3615°
4/12/4 2.7040° 4.8463° 25.3615°
5/15/5 2.7041° 4.8464° 25.3615°
10/30/10 2.7076° 4.8487° 25.3616°

5) On the Parameter Setting for Receptive Field Size: As
mentioned earlier, we fixed the radius of the subunits, the
surround and the center to 1, 3 and 1 pixels, respectively, for
the three datasets tested above. To explain in more detail, we
have mentioned earlier the physiological plausibility of setting
their ratio as 1:3:1. Here we further analyzed the influence of
other radius settings with the same ratio on the performance.
Table IV compares the performance of the proposed model
with different RF size settings on the Gehler-Shi Dataset. It is
clear that the measure of angular error varies almost negligibly
when the absolute radius values increase. That is why we fixed
them to 1, 3 and 1 pixels, with a benefit of computational
efficiency when testing on the above three datasets.

6) Model Performance on Canonical Images: We
also undertook experiments to demonstrate our model’s
performance on canonical images (i.e., the images captured
under white illumination). The canonical pictures were simply
obtained by removing the illuminate ground truth from the
color-biased images of the SFU Laboratory dataset, SFU
Grey-ball dataset and Gehler-Shi dataset. The performance
measures on the three datasets are listed in Table V, which
reports the measures for the HC modulated cone output and
the measures for the final output of the proposed model.
Note that the HC modulated cone output computed Eq. (3)
is equivalent to the output of GG method. Table V indicates
that though the inputs are the canonical images, angular
errors are unexpectedly non-zero. In addition, such non-zero
angular errors are mainly from the GG-like processing by
HC modulation and can not be decreased by the following
ganglion cells. Taken together with Table I-III and V, we can
find that the ganglion cells in our model work to refine the
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TABLE V

THE MODEL PERFORMANCE ON PICTURES UNDER WHITE LIGHT
SOURCES FOR THREE SINGLE-ILLUMINANT DATASETS.
“BEFORE RGC” DENOTES THE HORIZONTAL MODULATED
CONE OUTPUT, AND “FINAL OUTPUT” DENOTES THE
OUTPUT OF THE GANGLION CELL

Dataset Median Median
Recovery Angular Error Reproduction Angular Error
Before RGC| Final Output| Before RGC| Final output
SFU Lab 3.0867° 3.0867° 3.1958° 3.1958°
Grey-ball 3.2531° 3.2401° 3.2768° 3.2589°
Gehler-Shi 3.1167° 3.1169° 3.0421° 3.0421°
TABLE VI

COMPARISON ON A MULTI-ILLUMINANT DATASET [70]

Laboratory (58) Real-world (20)
Method Median | Mean Median | Mean
DN 10.5° 10.6° 8.9° 8.8°
Gijsenij et al. with GE1 4.2° 4.8° 9.2° 9.1°
Gijsenij et al. with WP 4.2° 5.1° 3.8° 4.2°
MIRF with GE2 2.6° 2.6° 4.5° 4.9°
MIRF with WP 2.8° 3.0° 3.3° 4.1°
Proposed (p=0.7) 2.7° 3.2° 4.3° 5.2°

HC modulated cone output only when the HC modulation
decreases, but not increases, the influence of color light source.

C. Performance on a Multi-Illuminant Dataset

Several recent studies focus on the color constancy for the
scenes under multiple illuminants [68]-[70]. Here we also
validated our model under such condition. The dataset used
here contains 78 images under non-uniform illumination [70],
including 58 indoor and 20 real-world scenes, accompanied
with pixel-wise ground-truth illuminants. Considering that the
images in this dataset are partially underexposed and have
some black pixels, the size of the RF center is set as 1 pixel
to minimize the effect of these black pixels.

Table VI reports the angular error statistics over all the
78 images of this dataset. Figure 10 shows several examples
of the proposed method. Note that as mentioned before,
our model directly corrects the color-biased images with-
out requiring the explicit procedure of illuminant estimation.
The estimated two-dimensional (2D) illuminants presented
in Fig. 10 are just for the visualization and the computation of
angular error using Eq. (11). In particular, the estimated 2D
illuminant distribution for a scene was computed by dividing
the original color-biased image by the image corrected by
the proposed model, and the angular error for an image was
then computed by averaging the angular error at each pixel.
Figure 10 demonstrates that our model can correct the color-
biased images quite close to the ground-truth by removing the
non-uniform illumination.

The results of the two recent methods compared in
Table VI are directly from [70]. In particular, the so-called
Multi-Illuminant Random Field (MIRF) proposed in [70]
estimates illuminants locally (using any simple method like
GW or WP) and uses the random field to refine the illumi-
nant color distribution by minimizing an energy function.
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Fig. 10. Example images from the multi-illuminant dataset [70]. The first
row: the original color-biased images; the second row: the illuminant ground
truth, masked by the masks provided by the dataset; the third row: the images
corrected with the illuminant ground truth; the fourth row: the illuminant
distribution (indirectly) obtained by the proposed method (the number at the
lower-right corner indicates the angular error averaged over the all pixels of
the whole scene), also masked by the known masks; the fifth row: the images
(directly) corrected by the proposed method. Note that the brightness of the
images listed here is linearly increased for better visualization.

The method of Gijsenij et al. [68] includes a patch-based
illuminant estimation (using, e.g., GW or WP), followed by a
combination of local estimates using any clustering algorithm
(e.g., k-means) under the assumption that the number of
clusters is known (they assume a cluster number of 2 in [68]).

Table VI indicates that compared to the optimization-based
Gijsenij’s model [68] and MIRF [70], our model can provide
consistently competitive performance for both laboratory and
natural multi-illuminant scenes. In general, the performances
of MIRF and Gijsenij’s models are local estimator dependent.
For example, MIRF obtains the best median measure (2.6°)
on the laboratory subset when it uses GE2 as the local
estimator, but on the real-world subset, the local estimator WP
is required in order to obtain the best median measure (3.4°).
As for the model of Gijsenij et al. [68], a better median
measure (3.8°) than our model (4.3°) is obtained on the real-
world subset when it uses WP as the local estimator, and worse
median measures are obtained on the laboratory subset by
Gijsenij et al. [68] with either WP or GE1 as local estimator.

IV. DISCUSSION AND CONCLUSION

In this work, we were concerned with the role of the retinal
mechanism in computational color constancy, although the
model is incomplete since converging evidence from different
lines suggests a multistage mechanism involving from the
retina to the higher visual cortexes [1], [28]. Even so, the
results indicate that the proposed model arrives at reasonable
accuracy. Our model is better than almost all the low-level
information based algorithms considered here, and also quite
competitive in comparison to the learning-based state-of-the-
art approaches. The acceptable results of our model should
be attributed to the disinhibitory effect in retinal ganglion
cells (RGCs). Because of such effect, the RGC responses
to the stimuli with similar intensity but different distribution
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are disparate. The more dispersive the stimulus distribution
is, the stronger the disinhibition among the subunits is, which
then results in weaker surround inhibition and higher neuronal
responses in turn [35], [37], [58]. Considering that the object
surfaces are in general spatially coherent and the illumination
is usually universal, the response sensitivity of RGCs to the
object surfaces is higher than the sensitivity to the illumination.

As mentioned in the Introduction, there are several related
works that attempt to achieve computational color constancy
motivated by the visual mechanisms. Different from the
existing models, our model makes a first attempt to introduce
the horizontal-cell modulation and subunit-structured
RF surround (i.e., the so-called non-classical receptive
field, nCRF) for retinal color constancy, both of which are
biologically supported. In particular, the subunit-structured
surround is a novel mechanism based on the responsive
properties of ganglion cells, which has the inherent flexibility
in treating the influence of the local reflectances and the
more extensive illumination on neuronal responses. Based
on the spatial resolution of the disinhibition, the global
or extensive low-frequency inputs, which are usually the
illuminant components, are reduced due to the cone-specific
gain control of horizontal cells and the stronger surround
inhibition of ganglion cells. In contrast, the structural inputs,
which are usually the object surfaces or edges, are preserved
due to the relatively weaker surround suppression. In addition,
we designed a novel way to adaptively determine the key
parameter of inhibitory weight by finding the stable state of
color opponent representation of surfaces in each channel.

Our model does not contain any explicit assumption about
the illumination. Ganglion cells in the proposed model process
information locally within their RFs (including the RF center
and its surround). So our model is inherently suitable for the
scenes under multiple illuminants. In addition, our model does
not contain any explicit assumption of object surfaces, though
the analysis of the SFU Laboratory Dataset preliminarily indi-
cates that our current model performs better for certain scenes,
e.g., the scenes that match more closely with the grey-world
hypothesis. This is understandable considering that biologi-
cally the color constancy ability in the retina is incomplete [1],
since there is no feedback modulation from visual cortexes
and explicit learning mechanism at the level of retina. Facing
scenes that include quite few colors or local structures, neither
state-of-the-art computational models [3], [17], [18], [21] nor
human observers [1] could reliably recover the true surface
colors from changing illuminations.

In conclusion, this work proposed a color constancy
model motivated by the retinal mechanisms of the biological
visual system, from the cone-specific modulation by HCs
to the color-opponent ganglion cells equipped with subunit-
structured RF surround. Though the mammalian retina is far
more complicated than we have thought and smarter than sci-
entists have believed [42], [67], the simplified retinal network
model proposed here provides valuable suggestions about the
role of HC modulation and RGC surround disinhibition in
color constancy. Additional retinal mechanisms, e.g., temporal
and nonlinear properties of neuronal responsiveness, could
perhaps be introduced to obtain a more realistic model.
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