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1. What can you do by NIT 

1. Batch processing of the fMRI data analysis; 
2. Data preprocessing based on SPM8; 
3. Removing nuisance signals from fMRI data such as linear trend, head motion, 

white, CSF and global signals, and band-pass filtering;  
4. Calculating functional connectivity density (FCD); 
5. Calculating FOur dimensional (spatio-temporal) Consistency of local neural 

Activities, (FOCA); 
6. EEG-fMRI fusion: 1) fMRI-informed EEG analysis (NEtwork-based SOurce 

Imaging, NESOI); 2) EEG-informed fMRI analysis. 
7. Identify and classify original DICOM data; 
8. Viewing threshold of T-map. 

2. Installation 

1. MATLAB 2013a (or later) for 64 bit Win 7 system was recommended (other 
Windows system and MATLAB are not tested). 

2. Start MATLAB, and add the SPM8 path to MATLAB: Click ‘set path’ -> Click 
‘add folder’ -> select the ‘SPM8 folder’ -> Click ‘ok’ -> Click ‘save’. NOTE: The 
SPM8 is used to preprocess the fMRI data. If you do not add SPM8 path in 
MATALB, you can also use the other functions except preprocessing.  

3. Unzip NIT package, and add the NIT folder (*\NIT_toolbox) to MATLAB: Click 
‘set path’ -> Click ‘add folder’ -> Select the ‘NIT folder’ -> Click ‘ok’ -> Click 
‘save’ (Fig. 2.1).  

 
Fig. 2.1: Adding SPM8 and NIT paths to MATLAB. 
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4. Enter ‘nit’ in the command line in MATLAB, the NIT GUI interface will popup 

(Fig. 2.2). 

 

Fig. 2.2: NIT main interface. 

3. Introduction 

3.1 fMRI analysis 
3.1.1 Preprocess 

It is inconvenient that manually setting the SPM8 batch for preprocessing fMRI 
data of each subject, and the leaving the intermediate images in one folder during 
preprocessing. Here, NIT can automatically generate the SPM preprocess batch file 
and preprocess the fMRI data based on SPM8. Meanwhile, images generated from 
each preprocessing step are classified and saved. 

As an example, the original fMRI images (*.img files) of two healthy adult 
subjects are provided (TR = 2). 
3.1.2 Regress & Filter 

Before analyzing fMRI data such as functional connectivity calculating, network 
analysis and measument calculating etc., nuisance signals, such as head motion, linear 
trend, global, white and CSF signals, should be removed from fMRI data. Here, in 
NIT, linear regress model is utilized to remove these nuisance signals, and band-pass 
filter is also realized in the NIT to reduce the noise.  

The fMRI data during 510 s resting state (two healthy adults, TR = 2 s) are 
provided as an example to show the NIT function. Slice time correction, realignment, 
spatial normalization (3 mm × 3 mm × 3 mm) were analyzed using SPM8. 
3.1.3 FCD 

The high cognitive performance of humans may be supported by brain networks 
with energy-efficient hubs. Then, Tomasi et al. (Tomasi and Volkow, 2010; Tomasi 

4 
 



and Volkow, 2011) have been proposed an novel measure, named local functional 
connectivity density (lFCD) to characterize the distributions of hubs in the brain. Here, 
the NIT can calculate the FCD measure in MATLAB using parallel computing. 

The fMRI data during 510 s resting state (two healthy adults, TR = 2 s) are 
provided as an example to show the NIT function. Slice time correction, realignment, 
spatial normalization (3 mm × 3 mm × 3 mm) were analyzed using SPM8. 
3.1.4 FOCA 

As yet, the local coherence of a region in the temporal domain has also been 
examined by numerous studies in recent years. Zang et al. proposed a regional 
homogeneity (ReHo) measure of a time series per voxel with those of its nearest 26 
neighbors (Zang et al., 2004). Similarly, with Pearson’s correlation, a measure of 
integrated local correlation (ILC) was introduced to assess the local coherence in 
fMRI data (Deshpande et al., 2009). More recently, a novel measurement, named 
local functional connectivity density (local FCD), was proposed to characterize the 
functional homogeneity in fMRI data (Tomasi and Volkow, 2010). All 
above-mentioned measures emphasize the temporal consistency in the local region; 
however, they may ignore the effect of spatial correlation in the local region in 
neighboring time. We may understand the brain functions spatio-temporally as we 
understand the time and space. It may be useful for functional brain imaging and may 
increase our understanding of brain function. 

Here, we hypothesized that the local functional brain consistency could contain 
two aspects: a temporal correlation between voxels and a local spatial correlation 
between neighboring time points. And, we proposed a new measure, named 
Four-dimensional (spatio-temporal) Consistency of local neural Activities (FOCA), to 
characterize the local consistency by integrating temporal and spatial information in 
the local region (Dong et al., 2014b).  

The fMRI data during 510 s resting state (two healthy adults, TR = 2 s) are 
provided as an example to show the NIT function. Slice time correction, realignment, 
spatial normalization (3 mm × 3 mm × 3 mm) have been analyzed using SPM8. 
3.2 EEG analysis 

To be continued…… 
3.3 Fusion analysis 

Decoding the brain functions and dysfunctions continues to be grand challenge 
of the 21st century, and functional neuroimaging has shown tremendous promise in 
better understanding the brain (Friston, 2009). As yet, noninvasive imaging 
technologies such as Magnetic Resonance Image (MRI), electroencephalogram (EEG) 
and magnetoencephalogram (MEG) have been widely used in neuroimaging research. 
Considering their respective strengths and weaknesses in temporal and spatial 
resolution (see Fig. 3.1), integrating multimodal information (especially EEG-fMRI) 
may provide high-resolution spatiotemporal neuroimaging that further our 
understanding of the brain functions and dysfunctions (Biessmann et al., 2011; Huster 
et al., 2012; Laufs, 2012). For the EEG-fMRI fusion, there are the three most 

5 
 



influential approaches for EEG-fMRI integration (He et al., 2011; Huster et al., 2012; 
Rosa et al., 2010) are the following (see Fig. 3.2): (1) fMRI-informed EEG, in which 
spatial information from the fMRI is utilized to assist the inverse problem of 
electromagnetic source reconstruction; (2) EEG-informed fMRI, in which the fMRI 
benefits from extracted EEG feature in specific frequency or time; and (3) symmetric 
EEG-fMRI fusion, in which EEG and fMRI data are analyzed jointly through a 
common generative model or in a common data space. The NIT realizes the functions 
of 1) fMRI-informed EEG analysis and 2) EEG-informed fMRI analysis. 

 
Fig. 3.1: The emotion of fusion: complementary advantages of spatial and temporal 
resolution. 
 

 
Fig. 3.2: Three most influential approaches for EEG-fMRI integration: (i) 
fMRI-informed EEG analysis; (ii) EEG-informed fMRI analysis; (iii) symmetric 
EEG-fMRI fusion. 

 

(ii) temporal fusion (i) spatial constrain  (iii) symmetric fusion 
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3.3.1 fMRI-informed EEG analysis 
Spatial integration of EEG-fMRI typically utilizes the fMRI maps as a priori 

information to inform the locations of the EEG sources, such as fMRI-constrained 
dipole fitting and the fMRI-constrained/weighted source imaging. With the spatial 
constrains, the ill-posedness of the original inverse problem can be moderated. 
Considering brain networks represent the interactions between different brain areas, 
and understanding such networks may facilitate electroencephalography (EEG) source 
estimation. We proposed a new method, termed NEtwork-based SOurce Imaging 
(NESOI) (Lei et al., 2010; Lei et al., 2011), to reconstruct the EEG source using 
Parametric Empirical Bayesian (PEB). NESOI produces a good solution by 
combining the high temporal resolution of EEG and the high spatial resolution of 
fMRI. The NIT realizes the functions of NESOI. 

Simultaneous EEG-fMRI recording data during an auditory novelty oddball 
(target processing) are provided as an example. Here, P300 was first extracted from 
preprocessed EEG data using temporal independent component analysis (ICA), and 
then NESOI was used to reconstruct the EEG source while using networks (fMRI 
spatial ICA components) as the covariance priors. Further details regarding the task 
were observed in a previous article (Dong et al., 2014a; Strobel et al., 2008). 
3.3.2 EEG-informed fMRI analysis 

Temporal integration of EEG-fMRI typically utilizes the EEG dynamic features 
in the time or frequency domain, such as onset times of epileptic discharges, event 
related potentials, powers in the specific band etc., to inform the statistical mapping of 
fMRI. These quantities obtained from EEG are typically convolved with a canonical 
hemodynamic response function (HRF) and then regressed with BOLD signals on the 
voxel-level to identify the statistical fMRI activation/deactivation maps corresponding 
to the electromagnetic temporal signatures. A classic example is using onset times of 
epileptic discharges obtained from EEG to study the Blood Oxygenation Level 
Dependent (BOLD) changes related to the scalp EEG discharges, and providing 
useful information for epileptic mechanism research and clinical diagnosis (Gotman 
and Pittau, 2011; Murta et al., 2014). 

However, there are also some problems for the analysis of simultaneous 
EEG-fMRI data in epilepsy: one is the variation of HRFs, and another is low 
signal-to-noise ratio in the data. Therefore, we proposed a new multimodal 
unsupervised method, termed local multimodal serial analysis (LMSA), which may 
compensate for these deficiencies in multimodal integration (Dong et al., 2015). The 
NIT realizes the functions of LMSA and GLM. 

Simultaneous EEG and fMRI (TR = 2s) recording data during resting state in 
familial cortical myoclonic tremor and epilepsy (FCMTE) patients are provided as an 
example. The onset times of epileptic discharges which were independently identified 
by two experienced neurologists with the best agreement are provided instead of 
original EEG data. More details can be seen in the paper (Dong et al., 2015). 
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4. Walkthrough and Description 

4.1 fMRI analysis 
4.1.1 Preprocess 
A. Step by step: 
1. After clicking the ‘fMRI’ button at the NIT main interface (Fig. 2.2), clicking 

‘Preprocess’ button , then the preprocess GUI will popup (Fig. 4.1.1).  

 
Fig. 4.1.1: Preprocessing interface。 

2. Two preprocess types are provided：Preprocess 1 which contains slice time 
correction, realignment, spatial normalization (using EPI template to normalize) 
and spatial smoothing; Preprocess 2 which contains slice time correction, 
realignment, spatial normalization (using parameters from individual T1 
segmentation) and spatial smoothing.  
Input fMRI Data Directory: Directory of input data. The data can be images files 

such as *.img and *.nii (NIFTI format), and original DICOM 
data. Support subfolders (multiple subjects) of a directory and 
subfolders (multiple sessions or runs) of a subject folder. 

Input T1 Data Directory: Directory of T1 data. This dialog will appear, if choose 
the Preprocess 2. Support subfolders (multiple subjects) of a 
directory and subfolders. 

Output Directory: Directory of output. 

Preprocess:    The pull-down menu  can select: 

Preprocess 1: slice time correction, realignment, spatial 
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normalization (using EPI template to normalize) and spatial 
smoothing. 
Preprocess 2: slice time correction, realignment, spatial 
normalization (using parameters from individual T1 
segmentation) and spatial smoothing. 
Smooth：This is for smoothing image volumes with a Gaussian 
kernel of a specified width. 
Notes: Parameters such as TR, slice number can be 
automatically identified by reading the image file. If you want to 
set the parameters of Slice timing and normalize, click the 
Parameter menu in the Advance (Top left). 

NIFTI files? :   If your data are *.img or *.nii files (NIFTI format), please check 
this option. If your data are DICOM files, uncheck it. 

Multiple runs? : If there are multiple sessions or runs subfolders in each subject 
folder, please select this option. Otherwise, uncheck it. 

Delete first ? images:  The first ? volumes of each run were first discarded 
before preprocessing fMRI data. It does not delete your 
original data! Default is discarding the first 5 volumes. 

Smooth FWHM: Full-width at half-maximum of an isotropic Gaussian filter. 
Default is [8 8 8]. 

Bounding box:  Bounding box. Default is selecting bounding box of DPARSF. 
The parameter of SPM bounding box used in NIT is [-78 -112 
-50; 78 76 85] which will generate normalized images with 53
×63×46 dimensions (voxel size is 3×3×3 mm3). The 
parameter of DPARSF bounding box is [-90 -126 -72;90 90 
108] which will generate normalized images with 61×73×61 
dimensions (voxel size is 3×3×3 mm3). The user can select 
the button  to fill user-defined bounding box. 

Here, as an example, images files (NIFTI format) were used to illustrate the fMRI 
data preprocessing (Fig. 4.1.2): 

Input Directory: Select directory of data: *\ fMRI_example_data\original_data. 
Output Directory: Select output directory : *\preprocess_results. 
Preprocess 1: Select this option. 
NIFTI files?: Select this option. 
Multiple runs?: Uncheck this option. 
Delete first ? images：Uncheck this option. 
Smooth FWHM: Set as [8 8 8]. 
Bounding box: Select DPARSF default. 
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Fig. 4.1.2: Preprocessing interface. 

3. Press button  . The calculating interface can be seen in Fig. 4.1.3. 

 
Fig. 4.1.3: The calculating interface of preprocessing. 

4. The results are listed below (Fig. 4.1.4): 
Preprocess_log.txt: The log file. 
FunNIFTI: The images files (NIFTI format). If your original data is DICOM format, 

the files will be transformed to *.nii image files in this folder. 
Slicetiming: Correct differences in image acquisition time between slices. Slice-time 

corrected files are prepended with an 'a'. 
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Realign:   This routine realigns a time-series of images acquired from the same 
subject using a least squares approach and a 6 parameter (rigid body) 
spatial transformation. The folder contains the files: the resliced images 
which are named the same as the originals, except that they are prefixed 
by 'r', a mean of the resliced image, realignment parameter file named 
‘rp_*.txt’ and the normalisation parameter file named ‘* sn.mat’. 

Normalise:  Normalised files prefixed with a 'w'. 
Smooth:   The smoothed images prefixed with a ‘s’.  
realignParameters: Realignment parameter file named ‘rp_*.txt’ generated from a 6 

parameter (rigid body) spatial transformation.  
RealignPictureCheck: Plot the estimated time series of translations and rotations. 
NormalisePictureCheck: Plot the normalised images. 
Subjects*.txt: The information of head motion. 
*.mat:      The detailed parameters of each preprocessing step. 

 

Fig. 4.1.4: The list of preprocessing output. 
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Fig. 4.1.5: The simple illustration of normalised images. 

 
Fig. 4.1.6: The estimated time series of translations and rotations. 

 
B. Note： 
1. The SPM8 is required to preprocess the fMRI data. However, even you do not add 

SPM8 path in MATALB, you can also use the other functions except 
preprocessing.  

2. NIT is designed to automatically generate the SPM preprocess batch file using 
general parameters and preprocess the fMRI data based on SPM8. If you want to 
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preprocess the fMRI data more particularly, SPM or other softwares are 
recommended.  

3. In slice timing step, the reference slice is the temporally middle slice during 
scanning. Slice order is set as interleaved (bottom -> up): [1:2:nslices 2:2:nslices]. 

4. More details of two preprocessing procedures can be seen in SPM8 manual. 
 

4.1.2 Regress & Filter 
A. Step by step: 
1. After clicking the ‘fMRI’ button at the NIT main interface (Fig. 2.2), clicking 

‘Regress & Filter’ button  , then the interface of Regress & Filter will 
popup (Fig. 4.1.7). 

 
Fig. 4.1.7: Regress & Filter main interface. 

2. Setting parameters as below (Fig. 4.1.8):  
fMRI Input Directory: Directory of input data. The data can be images files such 

as *.img and *.nii (NIFTI format). Support subfolders (multiple 
subjects) of a directory. The example directory is ‘*\ 
fMRI_example_data\ wra_data’. 

Head Parameter Directory: Selecting directory of head motion parameter files 
(The example directory is *\ fMRI_example_data\headmotion). 

Output Directory: Selecting the output directory, for example,  
*\Regress_out_results. 

Brain Mask:    Select brain mask. The default is standard brain mask generated 
from a probabilistic template. Here we use an user-defined brain 
mask. Select ‘define mask’, and press button  to select the 
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brain mask (*\ fMRI_example_data\brainmask.img). 
Regress out Head Para: Regressing out head motion parameters. 

                 0: 6 head motion parameters generated from alignment in SPM8 
(R = [x, y, z, pitch, yaw, roll]). 

1: 12 head motion parameters which contain R and its derivative 
([R, diff(R)]) (Power et al., 2014). 

2: 24 head motion parameters which contain R, square of R, 
delay of R and its square ([R, R2, Rt-1, R2

t-1]) (Friston et al., 
1996). 

3: 36 head motion parameters ([R, R2, Rt-1, R2
t-1, Rt-2, R2

t-2]) 
(Power et al., 2014). 

Regress Out White, CSF Signals: Regressing out white matter and CSF signals. 
Regress Out Linear Drift Signals: Regressing out linear drift signals. 
Regress Out Global Signals: Regressing out global signals.  
Filtering:     Ideal band-pass filter. Default pass band is 0.01-0.08 Hz, TR = 2 s. 

The nuisance signals defined by user can be regressed out using GLM. Here, as an 
example, we select all options as below (Fig. 4.1.8): 

 
Fig. 4.1.8: Regress & Filter parameter settings. 

3. Press RUN button . 
4. The results (*.nii image files) will be saved in output folder (Fig. 4.1.9). 
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Fig. 4.1.9: The first image after removing the nuisance signals (sub_01). 

B. Note: 
1. It is very important to check the order of head motion parameter files are 

corresponding to the fMRI data, e.g. ‘*\sub_01\*.img’  
‘*\headmotion\sub_01\*.txt’, or ‘*\headmotion\rp_*_sub_01.txt’ etc.  

2. The nuisance signals such as white, CSF, linear trend and global signals are 
extracted from fixed template mask (ROIs). MNI coordinates are listed: White 
matter ROIs：[-21,-9,36]，[21,-6,36]；CSF ROIs: [-6,0,21]，[6,0,21]；Linear drift: 
[66,-99,-36]，[-72,-99,-36]，[66,63,66]，[9,69,72]，[-69,60,81]. Two types of masks 
(53×63×46 and 61×73×61 dimensions, voxel size is 3×3×3 mm3) are 
provided corresponding to the general bounding box (SPM bounding box [-78 
-112 -50; 78 76 85] and DPARSF bounding box [-90 -126 -72;90 90 108]). If the 
image size is not matched to the above two masks, NIT will use MNI coordinates 
to extract signals from fMRI data. 

3. User should select whole brain mask, if the image size is neither 53×63×46 nor 
61×73×61 dimensions while voxel size is 3×3×3 mm3. 

4. Support the number of time points of each subject are different. 
5. The parameter settings of results (RegressFilter_Para.mat) and log 

(RegressOut_Filter_log.txt) files will be generated after calculating. 
 
4.1.3 FCD 
A. Step by step: 
1. After clicking the ‘fMRI’ button at the NIT main interface (Fig. 2.2), clicking 

‘FCD’ button  (Fig. 4.1.10). 
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Fig. 4.1.10: FCD interface. 

2. Setting parameters as below (Fig. 4.1.11): 
fMRI Input Directory：Directory of input data. The data can be images files 

such as *.img and *.nii (NIFTI format). Support subfolders 
(multiple subjects) of a directory. The example directory is ‘*\ 
fMRI_example_data\ wra_data’. 

Head Parameter Directory：Selecting directory of head motion parameter files 
(The example directory is *\ fMRI_example_data\headmotion). 
Support subfolders (multiple subjects) of a directory. 

Output Directory：Select the output directory, for example, *\FCD_results. 
Brain Mask：  Select brain mask. The default is standard brain mask generated 

from a probabilistic template. Here we use an user-defined brain 
mask. Select ‘User defined mask’, and press button  to 
select the brain mask (*\ fMRI_example_data\brainmask.img). 

Regress out Head Parameters: Regressing out 6 head motion parameters. 
Regress out White, CSF, Linear Drift Signals: Regressing out the white matter, 
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CSF and linear drift signals. 
Regress out Global Signals: Regressing out global signals. 
Filtering:     Ideal band-pass filter. Default pass band is 0.01-0.08 Hz, and TR 

= 2 s. 
Connect criterion: The connect criterion is the definition of spatial voxel 

connection. ‘Point’: 26-connected neighborhood; ‘line’: 
18-connected neighborhood and ‘surface’: 6-connected 
neighborhood. Default is ‘line’ criterion (SPM definition). 

CPU core numbers: The CPU core numbers of computer. E.g. the test computer 
is 4 cores, then fill in 4. 

Threshold of correlation coefficient: The threshold of correlation, default is 0.6. 
Calculate module number: The number of calculating module for parallel 

computing. Default is 200.  
As an example, we select ‘Regress out Head Parameter’, ‘Regress out White, CSF, 
Linear Drift Signals’ and ‘Filtering’options. Pass band is 0.01-0.08Hz and TR = 2 s. 
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Fig. 4.1.11: FCD parameter settings. 
3. Press RUN button . 
4. The output files are listed below (Fig. 4.1.12): 

FCD_log.txt:   Log file. 
FCD_Para.mat: The parameter settings. 
globalFCD:    The global functional connectivity density maps (*.nii). 
localFCD:     The local functional connectivity density maps (*.nii). 
longRangeFCD：The long range functional connectivity density maps (*.nii). They 

are defined as global connectivity density subtracts local 
connectivity density. 

   
Fig. 4.1.12: The results of FCD maps (sub_01). 

B. Note:  
1. The correlation threshold of FCD is set at 0.6, according to the paper of Tomasi et 

al. However, if you want to calculate FCD under the different threshold, you can 
fill the threshold vector in the input box, e.g. [0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9]. 

2. The CPU core numbers should be less than (or equal to) the true core numbers. 
3. The default of calculate module number is 200. In general, there is no need to be 

changed. 
4. The nuisance signals such as white, CSF, linear trend and global signals are 

extracted from fixed template mask (ROIs). MNI coordinates are listed: White 
matter ROIs：[-21,-9,36]，[21,-6,36]；CSF ROIs: [-6,0,21]，[6,0,21]；Linear drift: 
[66,-99,-36]，[-72,-99,-36]，[66,63,66]，[9,69,72]，[-69,60,81]. Two types of masks 
(53×63×46 and 61×73×61 dimensions, voxel size is 3×3×3 mm3) are 
provided corresponding to the general bounding box (SPM bounding box [-78 
-112 -50; 78 76 85] and DPARSF bounding box [-90 -126 -72;90 90 108]). If the 
image size is not matched to the above two masks, NIT will use MNI coordinates 
to extract signals from fMRI data. 

5. Two types of whole brain masks (53×63×46 and 61×73×61 dimensions, voxel 
size is 3×3×3 mm3) are also provided corresponding to the general bounding 
box (SPM bounding box [-78 -112 -50; 78 76 85] and DPARSF bounding box [-90 
-126 -72;90 90 108]). If the data image size is not matched to the above two 
masks, customer should select user defined brain mask of fMRI data. 

6. Different number of time points of each subject is allowed. 

global FCD local FCD longRange FCD 
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7. It is very important to check the order of head motion parameter files are 
corresponding to the fMRI data, e.g. ‘*\sub_01\*.img’  
‘*\headmotion\sub_01\*.txt’, or ‘*\headmotion\rp_*_sub_01.txt’ etc. 

4.1.4 FOCA 
A. Step by step: 
1. After clicking the ‘fMRI’ button at the NIT main interface (Fig. 2.2), clicking 

‘FOCA’ button  (Fig. 4.1.13). 
2. Setting the parameters as below: 

fMRI Input Directory: Directory of input data. The data can be images files such 
as *.img and *.nii (NIFTI format). Support subfolders (multiple 
subjects) of a directory. The example directory is ‘*\ 
fMRI_example_data\ wra_data’. 

Head Parameter Directory: Selecting directory of head motion parameter files 
(The example directory is *\ fMRI_example_data\headmotion). 

Output Directory: Select the output directory, for example, *\FOCA_results. 
Brain Mask:    Select brain mask. The default is standard brain mask generated 

from a probabilistic template. Here we use an user-defined brain 
mask. Select ‘define mask’, and press the button  to select 
the brain mask (*\ fMRI_example_data\brainmask.img). 

Regress Out Head Parameters: Regressing out 6 head motion parameters. 
Regress Out White, CSF, Linear Drift Signals: Regressing out the white matter, 

CSF and linear drift signals. 
Connect criterion: The connect criterion is the definition of spatial voxel 

connection. ‘Point’: 26-connected neighborhood; ‘line’: 
18-connected neighborhood and ‘surface’: 6-connected 
neighborhood. Default is ‘point’ criterion. 

As an example, we select the ‘Regress Out Head Parameters’ and ‘Regress Out White, 
CSF, Linear Drift Signal’ options. Select ‘point’ option in connection criterion box. 
TR is set at 2 ( default TR = 2 s). 
3. Press ‘RUN’ button . 
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Fig. 4.1.13: FOCA interface and parameter settings. 

 
 

4. The results are listed below (Fig. 4.1.14): 
FOCA_log.txt:   Log file. 
FOCA_Para.mat:  Parameter settings. 
FOCA_*.nii:     FOCA value maps. 
mFOCA_*.nii：  Normalized FOCA maps by dividing FOCA value by the mean 

FOCA of the whole brain for each subject. 
mFOCA-1_*.nii：The normalized FOCA maps which are subtracted by 1.  

   
Fig. 4.1.14: The results of FOCA maps (sub_01). 

 
B. Note: 

1. DO NOT smooth the fMRI date before calculating FOCA. Spatial smooth is 
suggested to conduct after calculating FOCA. 

2. DO NOT filter the fMRI data before calculating FOCA. 

FOCA FOCAnorm FOCAnorm-1 
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3. Nuisance signals such as headmotion, linear drift, white and CSF signals are 
suggested to be removed from data before calculating FOCA. It is also very 
important to check the order of head motion parameter files are corresponding 
to the fMRI data, e.g. ‘*\sub_01\*.img’  ‘*\headmotion\sub_01\*.txt’, or 
‘*\headmotion\rp_*_sub_01.txt’ etc.  

4. The nuisance signals such as white, CSF, linear trend and global signals are 
extracted from fixed template mask (ROIs). MNI coordinates are listed: White 
matter ROIs：[-21,-9,36]，[21,-6,36]；CSF ROIs: [-6,0,21]，[6,0,21]；Linear 
drift: [66,-99,-36]，[-72,-99,-36]，[66,63,66]，[9,69,72]，[-69,60,81]. Two types 
of masks (53×63×46 and 61×73×61 dimensions, voxel size is 3×3×3 
mm3) are provided corresponding to the general bounding box (SPM bounding 
box [-78 -112 -50; 78 76 85] and DPARSF bounding box [-90 -126 -72;90 90 
108]). If the image size is not matched to the above two masks, NIT will use 
MNI coordinates to extract signals from fMRI data. 

5. Two types of whole brain masks (53×63×46 and 61×73×61 dimensions, 
voxel size is 3×3×3 mm3) are also provided corresponding to the general 
bounding box (SPM bounding box [-78 -112 -50; 78 76 85] and DPARSF 
bounding box [-90 -126 -72;90 90 108]). If the data image size is not matched 
to the above two masks, customer should select user defined brain mask of 
fMRI data. 

6. Different number of time points of each subject is allowed. 
7. FOCAnorm (mFOCA_*.nii) or FOCAnorm-1 (mFOCA-1_*.nii) maps are 

suggested to do statistical analysis. For example, use mFOCA-1_*.nii files to 
do one sample t-test or two sample t-test. Spatial smoothing is suggested to 
conduct before statistical analysis (e.g. FWHM is 6 mm or 8 mm). 

8. The spatial correlation between distributions in the neighboring time point is 
defined as Pearson’s correlation, and the neighboring time is equal to TR time. 

4.2 EEG analysis 
To be continued…… 

4.3 Fusion analysis 
4.3.1 fMRI informed EEG analysis (NESOI) 
A． Step by step:  
1. After clicking the ‘Fusion’ button at the NIT main interface, clicking ‘NESOI’ 

button , then the NESOI GUI will popup (Fig. 4.3.1). 
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Fig. 4.3.1: NESOI interface. 

2. Setting parameters as below (Fig. 4.3.2):  
EEG Topo: Select EEG topograph file (e.g. EEG_topo.xlsx). Support *.txt or 

Office *.xls and *.xlsx files. The data dimension is the number of 
EEG channels × the number of EEG topographies (e.g. 62 channels 
× 11 topographies). 

Leadfield:  Select leadfield file (e.g. leadfield.xls). Support *.txt or Office *.xls 
and *.xlsx files. The data dimension is the number of EEG sources 
(dipoles) × the number of EEG channels (e.g. 6144 dipoles × 62 
channels). 

fMRI Map Direction: Select images which are spatial priors in NESOI (e.g. 
*\Example_data\NESOI\fmri_ica_maps). The directory only contains 
3D *.img or *.nii files (NIFTI format). 

Brain Mask: Select brain mask (e.g. brainmask.img). Support 3D *.img or *.nii 
files (NIFTI format). 

Output Direction: Select output directory (e.g. *\Example_results\NESOI). 
 
3. Press RUN button  (Fig. 4.3.2).  
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Fig. 4.3.2: NESOI is calculating. 

4. The output results are MATALB *.mat files: 
gridICA.mat: The spatial distributions of fMRI priors. The dimension is the 

number of sources (dipoles) × the number of fMRI prioris (e.g. 
6144 dipoles × 11 fMRI components). 

NESOI_results.mat: Source imaging results. The variable ‘Phie’ is the source 
result (e.g. 6144 dipoles × the number of EEG topographies), 
and the variable ‘he’ is hyper-parameter (e.g. 11 fMRI priors + 24 
sparse priors = 35 priors × the number of EEG topographies). 

NESOI_Para.mat: Parameter settings of NESOI. 
5. After completing the calculation, press the corresponding plot button in Display 

box (Fig. 4.3.3-4.3.5). 
Plot EEG Topo: Plot all EEG topographies. Press button  , then select 

channel location file (e.g. layout62.loc). 
Plot fMRI Maps: Press button  to show the fMRI spatial distributions. 
Plot EEG sources: Press button  to show the EEG sources. 
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Fig. 4.3.3: EEG topographies. 

 

Fig. 4.3.4: The spatial distributions of fMRI functional networks. 
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Fig. 4.3.5：The EEG source imaging result of an EEG topography (EEG-10). The 

upper is the EEG source, and below is hyper-parameters. 
B． Note: 
1. Advance option: 

In general, it is not suggested to change these settings, if user do not know how to 
change these parameters. 
Threshold: The spatial priors are locations in which the T-values or Z-values are 

above the threshold. Default is 3. 
Number of sparse priors：The number of sparse priors which contains right, left 

and bilateral hemispheres. Sparse priors are locations where are fMRI 
priors not included. Default is 8. 

 After clicking the ‘Advance’ button on NESOI main interface (Fig. 4.3.1), 
the advance interface will popup (Fig. 4.3.6). 
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Fig. 4.3.6: NESOI advance interface. 

 Fill the value in ‘Threshold’ input box such as 4 (using the same threshold 
for all fMRI components), or vector [4 4 4 4 4 4 4 4 4 4.5 4.5] (using the 
specific threshold for each fMRI component). 

 Fill the number of sparse priors. 
 Press ‘OK’. 

2. Source： 
In NIT, the assumed sources (6144 dipoles) are defined over a geometrically 
triangular grid based on the standard brain (Fig. 4.3.8). 
 If you want to use these sources (6144 dipoles), you should utilize grid file to 

estimate lead field matrix. The grid file is provided in NIT: *\data\ 
soure_file.sor. The *.sor file contains the coordinates of nodes (first 3 
columns  xyz) and corresponding normal vector directions (the last 3 
columns  x’y’z’). The triangular grid file is *\functions\NESOI\bnd.mat 
which contains bnd.face, bnd.vert and bnd.discribe information. 

 If you want to show or calculate the coordinates of dipoles, after clicking the 
‘Dipoles’ in the ‘File’ and inputting the bnd.mat file and output direction; 
then, you can click the ‘SHOW’ button to show the dipoles and the ‘SAVE’ 
button to save the coordinates (Fig. 4.3.7). ‘Scale’ is the scale relative to unit 
triangular grid. 
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Fig. 4.3.7: interface of dipoles. 
 

 
Fig. 4.3.8: The default geometrically triangular grid in NIT which is based on the 

standard brain and contains 6144 dipoles. Nodes and their normal vector directions 
are showed. 

 
 If want to use user-defined EEG sources, you should recalculate the grid and 

Green function, and replace them in advance options. Meanwhile, recalculate 
the coordinates of nodes and normal vector directions to generate lead field  
matrix. 

3. Other info 
 Some dipole coordinates (based on geometrically triangular grid showed in 

Fig. 4.3.8), electrode distribution and leadfield (based on three-shell spherical 
model) files are also provided in ‘~\NIT\data\’:  
source_file.sor：The *.sor file contains the coordinates of nodes (first 3 

columns: xyz) and corresponding normal vector directions 
(the last 3 columns: x’y’z’). 

Layout_61Channels_10-20_BP.loc: Electrode distribution of BP company 
based on 10-20 system (only contains EEG channels, 61 
channels).  

Leadfield_61Channels_10-20_BP.xlsx: Leadfield (6144 dipoles ×  61 
channels) based on three-shell spherical model.  

Layout_62Channels_Curry7.loc: Electrode distribution of NeuroScan 
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company (Curry 7) based on 10-20 system (only contains 
EEG channels). 

Leadfield_62Channels_Curry7.xlsx: Leadfield (6144 dipoles ×  62 
channels) based on three-shell spherical model. 

 
4.3.2 EEG-informed fMRI Analysis based on GLM 
A. Step by step： 

1. Click ‘GLM’ button, then the GLM GUI will popup (Fig. 4.3.9). 

 

Fig. 4.3.9: GLM interface. 
fMRI Input Directory:  Directory of input data. The data can be images files such 

as *.img and *.nii (NIFTI format). Support subfolders 
(multiple subjects) of a directory. The example directory 
is ‘*\ EEG_informed_fMRI_example_data\fMRI_data’. 

Nuisance Signals:     Covariables in the linear regression model. For example, 
6 head motion parameters obtained from Alignment step 
(E.g.‘*\EEG_informed_fMRI_example_data\HeadMotio
nPara’). 

EEG Feature Series (Xs): The EEG feature series, such as epileptic discharge 
onset times, ERP amplitudes and power in specific band 
etc., in the regression model (*.txt; or Office *.xls and 
*.xlsx file). Row is time points, and column is number of 
EEG features. As an example, information of EEG 
discharge time are provided (‘*\ 
EEG_informed_fMRI_example_data\discharge’). 
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Output Directory:     Output directory. E.g. ‘*\ EEG_informed_fMRI_example 
_results’. 

Brain Mask: Select brain mask. The default is standard brain mask generated from 
a probabilistic template. Here we use an user-defined 
brain mask. Select ‘define mask’, and press the button 

 to select the brain mask 
(*\EEG_informed_fMRI_example_data \brainmask.img). 

Adding Nuisance Signals: Adding the covariables such as head motion parameters 
in regression model? 

Adding Linear Drift Signal: Adding the linear drift signals in regression model? 
Multiple Runs?:       Multiple runs for each subject? 
TR:                 Repeating time of fMRI (second). 
Method:             Select the method. 
                    GLM1: General linear regression model. All of 

regressors are estimated in a regression model at the 
same time. This type is suitable for event or block design 
fMRI analysis. 

                    GLM2: Design for investigating EEG discharge related 
BOLD response in epilepsy (Bagshaw et al., 2004). For 
each voxel, the fMRI data is being analyzed several times 
(once for each of the different HRFs), and the maximal T 
value is chosen to account for the activation of this voxel. 

HRF settings:         Default is the standard HRF generated by SPM (used in 
GLM1). If you want to change the shape of HRF or 
select method GLM2, uncheck the default option, and 
click the ‘User defined HRFs’. Then, set the parameters 
you wanted, and show the HRF curve in the HRF 
interface (Fig. 4.3.10). Finally, press the ‘SAVE’ button 
to save the HRFs. Default HRFs in the HRF interface is 
Glover HRFs peak at 3, 5, 7, 9 s. 

Xs checking:        Checking whether your Xs is matched to fMRI time 
courses. If the time points of Xs is equal to fMRI data, 
check the ‘Xs is matched to fMRI?’; if not, please input 
the number of fMRI time points and the unit of Xs (scans 
or seconds). 

As an example, simultaneous EEG-fMRI data of 2 FCMTE patients are provided. 
The discharges onset times from EEG and preprocessed fMRI data are directly 
provided. For each subject, 1 type of discharge onset times is included in 1 run. Here, 
select method ‘GLM2’, and HRFs are set as Glover HRFs peak at 3, 5, 7, 9 s (Fig. 
4.3.10-11). 
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Fig. 4.3.10: HRF interface. 

 
Fig. 4.3.11: GLM parameter settings. 
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2. Press ‘RUN’ button. 
3. The outputs are listed: 
   GLM_log.txt: Log file. 
   GLM1:  
          beta_*.nii: regression coefficients. 
          GLM_results.mat: results file. 
          ResMS*.nii: error variance. 

GLM2:  
          Con_*.nii: contrast map for each EEG features. 
          ConTval*.nii: T map for each contrast. 
          GLM_results.mat: results file. 
          ResMS*.nii: error variance. 
The activation map of sub_01 is showed in Fig. 4.3.12. 

 
Fig. 4.3.12: The result of patient 1 in FCMTE data (GLM2). The threshold of T 

value is 3. 
B. Note:  

1. The fMRI time points of each subject can be unequal, only while the Xs is 
matched to fMRI, i.e. checking ‘Xs is matched to fMRI?’.  

2. The definition of design matrix in the GLM is showed in Fig. 4.3.13. The 
order of EEG features in each run must be consistent. If one feature is not 
included in one run, please input zeros instead of them. After calculating, you 
can click ‘DesignMatrix’ in Advance, select GLM_results.mat file to show 
the design matrix (Fig. 4.3.14).  

3. If you select GLM1, you can click ‘SHOW’ button to show the contrast, and 
click ‘DONE’ to save the T map corresponding to the contrast. If you select 
GLM2, you can only show the design matrix. 

4. For each subject, time points of EEG features (Xs), nuisance signals and 
fMRI data must be consistent. If the Xs is the same for each subject, you can 
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select only one subject Xs file (e.g. event or block design task). 
5. If you want to use different HRFs, please click ‘SAVE’ button in HRF 

interface before calculating. 

 
Fig. 4.3.13: Design matrix in GLM for one subject (2 runs, n EEG features and m 
HRFs). The design matrix of GLM1 is defined in the upper, and design matrix of 
GLM2 for each HRF is defined in the lower. Row in the design matrix is time points. 
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Fig. 4.3.14: Design matrix interface. 
4.3.3 EEG-informed fMRI analysis based on LMSA 
A. Step by step:  

1. Press ‘LMSA’, then the LMSA GUI will popup(Fig. 4.3.15). 

 

Fig. 4.3.15: LMSA interface. 
fMRI Input Directory:  Directory of input data. The data can be images files such 

as *.img and *.nii (NIFTI format). Support subfolders 
(multiple subjects) of a directory. The example directory 
is ‘*\ EEG_informed_fMRI_example_data\fMRI_data’. 

Nuisance Signals:     Covariables in the linear regression model. For example, 
6 head motion parameters obtained from Alignment step 
(E.g.‘*\EEG_informed_fMRI_example_data\HeadMotio
nPara’). 

EEG Feature Series (Xs): The EEG feature series, such as epileptic discharge 
onset times, ERP amplitudes and power in specific band 
etc., in the regression model (*.txt; or Office *.xls and 
*.xlsx file). Row is time points, and column is number of 
EEG features. As an example, information of EEG 
discharge time are provided (‘*\ 
EEG_informed_fMRI_example_data\discharge’). 

Output Directory:     Output directory. E.g. ‘*\ EEG_informed_fMRI_example 
_results’. 

Brain Mask: Select brain mask. The default is standard brain mask generated from 
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a probabilistic template. Here we use an user-defined 
brain mask. Select ‘define mask’, and press the button 

 to select the brain mask 
(*\EEG_informed_fMRI_example_data \brainmask.img). 

Adding Nuisance Signals: Adding the covariables such as head motion parameters 
in regression model? 

Adding Linear Drift Signal: Adding the linear drift signals in regression model? 
Multiple Runs?:       Multiple runs for each subject? 
TR:                 Repeating time of fMRI (second). 
HRF duration:        The duration of HRF, default is 20 s.  
Connect criterion:     The connect criterion is the definition of spatial voxel 

connection. ‘Point’: 26-connected neighborhood; ‘line’: 
18-connected neighborhood and ‘surface’: 6-connected 
neighborhood. Default is ‘point’ criterion. 

Xs checking:        Checking whether your Xs is matched to fMRI time 
courses. If the time points of Xs is equal to fMRI data, 
check the ‘Xs is matched to fMRI?’; if not, please input 
the number of fMRI time points and the unit of Xs (scans 
or seconds). 

As an example, simultaneous EEG-fMRI data of 2 FCMTE patients are provided. 
The discharges onset times from EEG and preprocessed fMRI data are directly 
provided. For each subject, 1 type of discharge onset times is included in 1 run. Here, 
we set TR = 2 s, HRF duration is 20 s and connection criterion is ‘Point’ (Fig. 
4.3.16). 
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Fig. 4.3.16: LMSA parameter settings. 
2. Press ‘RUN’. 
3. The results are listed as: 

GLM_log.txt:     Log file. 
LMSA_results.mat: Results file. 
beta*.nii:         Regression coefficients of each EEG feature. You 

can use these files for second-level statistical 
analysis. 

CanonicalCorr*.nii: Canonical correlation coefficients estimated by 
LMSA for each EEG feature. 

F*.nii:           F values corresponding to each canonical correlation 
coefficients. 

Pval_F*.nii:       P values of F values. 
T*.nii：         T values of regression coefficients estimated by 

LMSAfor each EEG feature. 
The activation map of sub_01 is showed in Fig. 4.3.17. 

 
Fig. 4.3.17: The result of patient 1 in FCMTE data (LMSA). The threshold of T 

value is 3. 
 
B. Note： 

1. The fMRI time points of each subject can be unequal, only while the Xs is 
matched to fMRI, i.e. checking ‘Xs is matched to fMRI?’.  

2. For each subject, time points of EEG features (Xs), nuisance signals and 
fMRI data must be consistent. If the Xs is the same for each subject, you can 
select only one subject Xs file (e.g. event or block design task). One subject 
should contain only one run! 

3. If you want to show the HRF of one voxel, you can click ‘Plot HRF’ button 
in ‘Advance’ option. Then, input MNI XYZ coordinates, LMSA_results.mat 
file, label of EEG feature and one image file (*.nii or *.img file used to read 
rigid transform matrix in header info). Finally, press ‘PLOT’ to show the 
HRF. The HRF of sub_01 in one voxel (MNI: [15,30,30]) is showed in Fig. 
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4.3.18. 

 
Fig. 4.3.18: The HRF of sub_01 in one voxel (MNI: [15,30,30]) estimated by LMSA. 
4.4 Utilities 

Click the pull-down menu ‘Utilities’ in NIT main interface, the utilities will 
popup (Fig. 4.4.1). 

 
Fig. 4.4.1: Utilities interface. 

4.4.1 DICOM data Classification 
This toolkit will identify and classify the original DICOM files. NIT DO NOT 

make any change or move the original data, all operations (such as copy, move etc.) 
are only performed on copy data. 
1. Press ‘data classify’, the interface will popup (Fig. 4.4.2-4.4.3). 
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Fig. 4.4.2: Classification interface. 
Input directory: Select directory of original DICOM files. 
Output directory: Select output directory. 
Option button: Select ‘single file’ if one folder contains different types of DICOM 

files (e.g. DTI and fMRI data are in one folder). Select ‘folder’ if one 
folder only contains one type of DICOM files (e.g. All are fMRI data in 
one folder). 

 
Fig. 4.4.3: The classification settings. 

2. Press RUN button (Fig. 4.4.4). 

 

Fig. 4.4.4: Running interface. 
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4.4.2 Threshold calculation 
Show the threshold of T maps corresponding to a P-value. 

1. Press the ‘threshold calculate’ (Fig. 4.4.5). 

 
Fig. 4.4.5: The threshold calculation interface. 

2. Select the T-map image in ‘Input Image’ box and press RUN button. 
3. The one tail and two tails thresholds of T values (uncorrected and false discovery 

rate corrected) are showed. Click ‘FDR curve’ button will show the P-value curve 
(Fig. 4.4.6). 

 
Fig. 4.4.6: The illustration of FDR curve. The horizontal axis is the number of 
P-values, and the vertical axis is P-values. 
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5. Appendix 

5.1 Theories of main methods 
5.1.1 NESOI 

For the topography of each EEG IC, Y, we employ an Empirical Bayesian (EB) 
model (Lei et al., 2011; Phillips et al., 2005) for its underlying source distribution, 

1εθ += LY    ),,0(~ 11 CTNε                        

20 εθ +=     ),,0(~ 22 CTNε                   (5-1) 

where n sY R ×∈  is the EEG topographies with n electrodes and s sampling points. 
dnRL ×∈  is the known lead-field matrix calculated for the selected head model, and 
sdR ×∈θ  is the unknown distribution of d dipoles. ,(µN T, C) denotes a multivariate 

Gaussian distribution with mean μ and covariance C. The terms 1ε  and 2ε  

represent random fluctuations in channel and source spaces, respectively. These 
spatial covariances C1 and C2 are mixtures of covariance components at the 

corresponding levels. At the electrode space level, we assume nIC 1
1

−= α  to encode 

the covariance of electrode noise, where nI  is an n×n identity matrix. At the source 

space level, we express C2 as the covariance components, 

∑
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i
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1
2 γ                           (5-2) 

where T
k ],,,[ 21 γγγγ ≡  is a vector of k non-negative hyperparameters that control 

the relative contribution of each covariance basis matrix, Vi. The Green function G, 
encodes the neighboring relationships among nodes of the cortical mesh defining the 
solution space. The jth column of the Green function matrix G is Gj, encoding 
neighboring patches weighted by their surface proximity (Friston et al., 2008). 

NESOI employs two different kinds of covariance matrices: Vi
f and Vi

e. Vi
f 

encodes the prior coherence pattern information derived from fMRI (Lei et al., 2011) 
and Vi

e encodes multiple sparse priors (Friston et al., 2008) that are sparsely sampled 
from a subspace of EEG source space that does not contribute to fMRI measurements. 
To derive Vi

f, the intensity values in each fMRI IC are scaled to z scores. Voxels with 
absolute z scores >3 are considered to be activated. Negative z scores indicate that the 
BOLD signals are modulated oppositely to the IC waveform. A node in the EEG 
source space is assigned according to the z score of its nearest-neighbor fMRI voxel 
after spatial registration. All the activated nodes (absolute z scores >3) in each IC 
show similar temporal dynamics of the BOLD signal, thus we assume they have 
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similar properties for EEG signal generation. The simplest way to construct a 
covariance component from an IC is to set diagonal terms corresponding to activated 
nodes to 1, and set the rest to 0. NESOI takes into account the local coherence in 
source space and introduces the covariance component Vi

f as, 

( )

1 T
j jj W i

i

f
i G G

n ∈
= ∑V                       (5-3) 

where W(i) is a set of activated nodes for ith IC, ni is the cardinality of W(i), and Gj is 
the jth column of the Green function matrix G. 
For the remaining source space outside the subspace generated by fMRI IC, multiple 
sparse priors (Friston et al., 2008) are employed: 

Vi
e = T

jjGG                          (5-4) 

where jG  is evenly sampled from the remaining subspace. In light of its location, 

this approach can denote right hemisphere components as right
jG , and left ones as 

left
jG . Furthermore, homologues are added to form a bilateral component, both

jG =

right
jG + left

jG , which models correlated sources in the two hemispheres. 

In summary, the spatial priors for NESOI consist of two parts: fMRI IC and 
multiple sparse priors (Friston et al., 2008). The effective number of fMRI ICs is 
automatically selected using an EB model optimization procedure. After the 
optimization convergence, the conditional source estimate θ． is the Maximum a 
Posteriori (MAP) estimate, or equivalently, the weighted minimum norm, the 
Tikhonov solution, and is given by:  

( ) 1

2 2
T T

n Yθ α α
−

= +C L LC L I                   (5-5) 

Finally, above problem is solved by ReML (restricted maximum likelihood) 

method, and the obtained hyperparameter iγ  encodes the link between W(i) (the ith 

fMRI IC) and Y (the topography of an EEG IC). The flowchart can be seen in Fig. 
5.1.1: 
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Fig. 5.1.1: Schematic representation of NESOI. The raw EEG data is processed for 
artifact-rejection and the amplitude and/or other features of interest are extracted. The 
corresponding fMRI data are pre-processed and separated into spatially independent 
components. The structural MRI is segmented to provide a forward model for EEG 
imaging. The intensity of the neural electric sources and the hyperparameters are 
iteratively estimated by NESOI. 
 
5.1.2 FOCA 

For image data, a time series of a given voxel with those of its nearest neighbors 
(26 voxels) can be obtained (Fig. 5.1.2a), and a FOCA value assigned to the given 
voxel can be calculated by the following procedure (Fig. 5.1.2b). In the temporal 
correlation aspect, Ct is defined as the mean of the cross-correlation coefficients of the 
local voxels and is given in the equation below 

( 1);
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∑

                    (5-6) 

where t
ijr  is Pearson’s correlation coefficient between voxel i and voxel j, and k is 

the number of voxels in the local region (27 voxels). On the other hand, for the local 
spatial distribution in the m-th time point, a spatial correlation between distributions 
in the neighboring time point is defined as following equation 
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where r is Pearson’s correlation coefficient and m is the m-th time point. The mean 
spatial correlation (Cs) across all time points is given in the equation below 
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where Nt is the number of time points. Then (Fig. 5.1.2c), the FOCA value is defined 
as  

  t sFOCA C C∗=                         (5-9) 

Finally, the FOCA value for every voxel can be calculated by equation (5-9) to 
form FOCA maps. In order to reduce the effect of individual variability, we also 
normalized the FOCA value of each voxel by dividing it by the mean FOCA of the 
whole brain for each subject, that is 

( )
 norm

FOCAFOCA
mean FOCA

=                    (5-10) 
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Fig. 5.1.2: Framework of FOCA. a: spatial and temporal series of a given voxel with 
those of its nearest neighbors (26 voxels in general) were obtained from fMRI data. b: 
temporal correlation (Ct) and spatial correlation (Cs) are calculated in parallel. For Cs 
(though here we just show window with ± 1 TR (m - 1, m, m + 1)), various durations 
of neighboring time could be considered (for example, from ± 1 TR to ± 8 TR in the 

following test). c: FOCA is defined as Cs tC ⋅  and normalized. 

 
5.1.3 LMSA 

Here, we demonstrate a new method that is serially fusing EEG and fMRI in the 
local region to efficiently capture the potential brain functional activities. This method 
is called the local multimodal serial analysis. 

As an example, we are formally considering the two following multimodal data, 
EEG and fMRI data (Fig. 5.1.3). For fMRI data, M NR ×∈Y  where M is the number 

of time points and N is the number of voxels, time courses of i-th voxel 1M
iy R ×∈  

and its neighboring voxels (26 voxels) can be defined as matrix iY . For EEG data, 

the lagged discharge function matrix, X  (also named lagged matrix which contains 
the onset times related to the epileptic discharges and downsampled to fMRI time 
scale), can be given as: 
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where M is the number of time points which is matched to fMRI data, and k is the 
number of the lagged time points. First, the maximal correlations between these two 

data sets, iY  and X , can be solved by canonical correlation analysis, which finds 

the matrices of weights a  and b  such that the linear combinations i ∗Y a  and 

∗X b  maximize the pair-wise correaltions across the two data sets, that is: 

( ) ( )
,,

  Corr

var var
i

i

maximize

subject to

∗ ∗

= ∗ =∗

Y a X ba b

Y a X b 1
              (5-12) 

where var (.) is the variance and Corr(.,.) is Pearson correlation. Then, the significant 

canonical variate, 1iv = ∗±X b  ( iv  and 1b  is column vector, and the sign, ±, is 

determined by sign of maximal absolute value in 1b ) which is corresponding to the 
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maximal canonical correlation coefficient, is obtained. The HRF in the local region is 

also estimated by weight 1±b . Next, a multiple linear regress model is utilized to 

estimate the activity of the voxel i, that is, 

cov cov[ ] [ ]i i iy v β β ε= ∗ +v                   (5-13) 

where iβ  (i-th element) and covβ  (column vector) are the regression coefficients, 

iv  is canonical variate related to the maximal correlation between EEG and fMRI 

data sets, covv  is nuisance covariate matrix contained headmotion and linear trend 

signals during fMRI recording, and ε  is residual error. And, the regression 

coefficient iβ  which represents the activity intensity of voxel i can be estimated by 

the following formula,  

cov cov
ˆ ˆ[ ] [ ]i i iv yβ β += ∗v                    (5-14) 

where [.]+ is the pseudoinverse operator. Finally, above-mentioned procedure is 
performed for all voxels, and the T-map of all estimated regression coefficients, 

1ˆ NRβ ×∈ , can be calculated by following formula, 

ˆ
ˆ( )

T
SE
β
β

=                          (5-15) 

where ( )SE ⋅  is standard error corresponding to β̂ . 
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Fig. 5.1.3: The framework of local multimodal serial analysis. A: Time courses of i-th 
voxel and its neighboring 26 voxels, Yi, are obtained from fMRI data, and the lagged 
function matrix of discharge onsets, X, is also obtained from EEG data. B: Canonical 
correlation analysis is utilized to obtain the canonical variate (vi) which is 
corresponding to the maximal correlation between EEG and fMRI data sets. C: the 

activity intensity ( iβ ) is estimated by the multiple linear regress model where vcov are 

nuisance covariates such as headmotion and linear trend signals during fMRI 
recording. D: The above-mentioned procedure is performed for the whole brain, and 

the T-map of estimated iβ  can be finally obtained. 

 
5.2 Copyright: 
All copyright of the NIT software reserved by the Key Laboratory for 
NeuroInformation of Ministry of Education, School of Life Science and Technology, 
University of Electronic Science and Technology of China. This software is for non 
commercial use only. It is freeware but not in the public domain. 
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5.3 Websites: 
 
NIT download: 
http://www.neuro.uestc.edu.cn/NIT.html 
 
The Key Laboratory for NeuroInformation of Ministry of Education:  
http://www.neuro.uestc.edu.cn/index.html 
 
The download page in the Key Laboratory for NeuroInformation of Ministry of 
Education: 
http://www.neuro.uestc.edu.cn/neuro/html/achievements/achievements.html 
 
SPM main page: 
http://www.fil.ion.ucl.ac.uk/spm/ 
 
SPM8 download page: 
http://www.fil.ion.ucl.ac.uk/spm/software/spm8/ 
 
MRIcromain page: 
http://www.mccauslandcenter.sc.edu/mricro/ 
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