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Simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) have been pur-
sued in an effort to integrate complementary noninvasive information on brain activity. The primary goal in-
volves better information discovery of the event-related neural activations at a spatial region of the BOLD
fluctuation with the temporal resolution of the electrical signal. Many techniques and algorithms have been de-
veloped to integrate EEGs and fMRIs; however, the relative reliability of the integrated information is unclear. In
this work, we propose a hierarchical framework to ensure the relative reliability of the integrated results and at-
tempt to understand brain activation using this hierarchical ideal. First, spatial Independent Component Analysis
(ICA) of fMRI and temporal ICA of EEG were performed to extract features at the trial level. Second, the maximal
information coefficient (MIC) was adopted to temporally match them across the modalities for both linear and
non-linear associations. Third, fMRI-constrained EEG source imaging was utilized to spatially match components
acrossmodalities. The simultaneously occurring events in the above twomatch steps provided EEG-fMRI spatial–
temporal reliable integrated information, resulting in themost reliable componentswith high spatial and tempo-
ral resolution information. The other components discovered in the second or third steps provided second-level
complementary information for flexible and cautious explanations. This paper contains two simulations and an
example of real data, and the results indicate that the framework is a feasible approach to reveal cognitive pro-
cessing in the human brain.

© 2014 Elsevier Inc. All rights reserved.
Introduction

As noninvasive recording techniques, simultaneous electroencepha-
lography (EEG) and functional magnetic resonance imaging (fMRI)
have becomewidely adopted tools applied in cognitive and clinical neu-
rosciences (Herrmann andDebener, 2008; Huster et al., 2012). Based on
measuring changes in the blood oxygen level-dependent (BOLD) signal,
fMRI provides high spatial resolution in imaging brain activity but is
limited in its low temporal resolution; however, electroencephalogra-
phy (EEG) has superior temporal resolution but low spatial resolution
due to the volume conduction effect. Therefore, in view of their respec-
tive strengths and weaknesses being complementary, integrating EEG
and fMRI may obtain more comprehensive information regarding
brain activity with both high spatial and temporal resolutions. With
the development of various fusion techniques, the three most influen-
tial approaches for EEG-fMRI integration (He et al., 2011; Huster et al.,
2012; Rosa et al., 2010) are the following: (1) fMRI-informed EEG, in
which spatial information from the fMRI is utilized to assist the inverse
problem of electromagnetic source reconstruction (Dale et al., 2000; Lei
et al., 2011b; Ou et al., 2010); (2) EEG-informed fMRI, in which the fMRI
benefits from extracted EEG feature in specific frequency (Goldman
et al., 2002) or time (Debener et al., 2005; Lei et al., 2010; Luo et al.,
2010; Philiastides and Sajda, 2007); and (3) symmetric EEG-fMRI fu-
sion, in which EEG and fMRI data are analyzed jointly through a com-
mon generative model (Friston et al., 2003; Valdes-Sosa et al., 2009)
or in a common data space (Moosmann et al., 2008).

Regarding the fMRI-informed EEG approach (e.g. the fMRI-
constrained source imaging), various methods have been realized to
guide EEG source estimation (Babiloni et al., 2005; Dale et al., 2000).
The ill-posed problem of EEG source reconstruction is moderated with
fMRI spatial constraints; therefore, the underlying neural processes
may be better revealed, and the spatial resolution of the EEG is en-
hanced (Babiloni et al., 2005). Moreover, the Bayesian framework ap-
proach may relax the direct correspondence between the two
modalities (Henson et al., 2010; Lei et al., 2011b). For EEG-informed
fMRI, the BOLD responses are always parameterized using a specific
and suitable EEG feature such as event-related potential (ERP) ampli-
tudes (Debener et al., 2005), ERP latencies (Benar et al., 2007), synchro-
nization and phase coherence (Jann et al., 2009), power within specific
frequency bands (Scheeringa et al., 2009), or time points of spikes (Luo
et al., 2010). Methods employing these strategies are useful in both
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task-free (resting state) and task experimental conditions. Furthermore,
symmetric EEG-fMRI fusion aims to benefit from both modalities while
avoiding the bias of eithermethod.Model-driven fusion such as dynam-
ic causal models (DCM) (Friston et al., 2003; Kiebel et al., 2007) based
on a generative model that is neurophysiologically grounded is always
confronted with the complexity of the model and tedious calculations.
In data-driven fusion, a common data space (Moosmann et al., 2008)
or feature space (Eichele et al., 2009) is utilized to jointly assess infor-
mation gained from bothmodalitieswith joint independent component
analysis (joint ICA) or parallel independent component analysis (paral-
lel ICA). Another parallel framework involves a contemporary realiza-
tion of the above fMRI-informed EEG imaging and EEG-informed fMRI
for a simultaneous EEG-fMRI dataset (Lei et al., 2010). In brief, the first
and second approaches always emphasize either the spatial or temporal
aspect of the underlying neural processeswith help from the strength of
onemodality to improve the shortcoming of the othermodality, and the
third approach underlines the common points without bias of the indi-
vidual strengths.

The above-mentioned methods are adopted in either temporal or
spatial matching. For temporal matching, the vast majority of current
methodologies are based upon a linear coupling assumption such as
joint ICA or Pearson correlation; however, the nonlinearity in the rela-
tionships between the two modalities should be considered (He and
Liu, 2008; He et al., 2011). Recently, built on entropy and mutual infor-
mation of random variables, a novel measure of association called the
Maximal Information Coefficient (MIC)was proposed to detect the rela-
tionships between variable pairs in large data-sets (Reshef et al., 2011).
Due to the generality of this method, a wide range of relationships,
whether a linear or a nonlinear relationship and whether with a
known or unknown function, should be able to be reasonably captured.
By its equitability, it roughly equals the squared correlation (coefficient
of determination) of the data relative to the noiseless function. With
thesewell properties,MIC perhaps not only has great potential to reveal
the complex relationships between different brain regions in a single
modality but also to detect the complex associations between modali-
ties. Regarding spatialmatching, the Bayesian frameworkmay be a suit-
able technique to represent the spatial relationship between EEG and
fMRI. Based on this framework, we proposed amethod named Network
based EEG SOurce Imaging (NESOI) in which multiple fMRI functional
networks were used as the covariance priors of the EEG source estima-
tion (Lei et al., 2011b). The hyper-parameters in themodel balanced the
effects of the fMRI priors and the data fit of the EEG, which determined
the contribution of each fMRI prior.More importantly, the EEG and fMRI
network information is also matched in the spatial domain with the
hyper-parameters (Lei et al., 2011a).

When we analyze these developed methods, we need to emphasize
the match integration and also the strengths and shortcomings of each
modality. For fMRI-informed EEG source imaging, the intrinsic differ-
ence between vascular and electrophysiological responses may result
in the fMRI specific source (observed with fMRI but not with EEG) and
the EEG specific source (observed with EEG but not with fMRI) (He
and Liu, 2008); therefore, the spatial match alone cannot guarantee
that the matched events in the EEG inverse are truly the same events
in the EEGs and fMRIs. For EEG-informed fMRI, due to the highly differ-
ent temporal scales and complex relationships between EEG and fMRI,
mismatches may also appear in the integration (He et al., 2011). In gen-
eral, for fusions of EEG-fMRI, two objects should be emphasized: (i) the
common substrate of modalities should be identified by the fusion
model, and (ii) uncertainty should be decreased when inferring the
joint subspace (Daunizeau et al., 2010). Physically, the common sub-
strate of EEG and fMRI should reflect the temporal process of event-
related brain activation in the same spatial regions; therefore, a tempo-
ral and spatialmatch is necessary. Certainly, we need to pay attention to
the subspaces of EEG or fMRI specificity that may represent the superi-
ority of one measurement and provide the true complementary infor-
mation of event-related brain activity. Based on these ideas, a hybrid
and hierarchical fusion framework is expected to discriminate among
the different situations, the spatio-temporally matched common infor-
mation space or modality-specific information subspace, ultimately
providing hierarchically reliable and meaningful information to explain
brain function.

In this work, we propose a hierarchical fusion framework using the
recently developed MIC to discover the linear and nonlinear temporal
match at the trial level and applying our previous Bayesian approach
to realize the spatial match. In addition, a multi-level confidence of the
event-related amplitude modulation brain activity is hierarchized
from the spatial or temporal match to the spatial–temporal match.
Two simulations were implemented in which one simulation involved
the potential situations of match or mismatch and the other simulation
displayed the linear or nonlinear situation. Finally, an example of real
data was illustrated to demonstrate the performance and distinctive
features of our hierarchical framework to reveal cognitive processing
in the human brain.

Method

Spatio-temporal fusion framework

As the first step of the approach, we subjected EEG and fMRI data to
modality-specific preprocessing (more details are observed in real data
preprocessing). Temporal ICA (tICA) and spatial ICA (sICA) were per-
formed using EEG and fMRI data, respectively, and subject-specific
spatio-temporal information was reconstructed by back-projecting the
independent components (Calhoun et al., 2001). The number of inde-
pendent components was estimated using the minimum description
length criteria, which attempts to minimize mutual information be-
tween components (Eichele et al., 2011; Li et al., 2007). Second, trial
weights onto the fMRI ICA time courses were calculated using the re-
gress model (Eichele et al., 2008), and EEG trial weights were extracted
by determining the maximum absolute amplitude. Then, the maximal
information coefficient (MIC) between the series of trial weights was
calculated to temporally match them across modalities. The hyper-
parameter was subsequently obtained to spatially match the compo-
nents across modalities using NESOI. Finally, hierarchical information
of different confidence regarding spatio-temporal fusionwas finally ob-
tained. The details of these procedures are summarized in Fig. 1, and the
important steps are presented below.

The above steps for simulation were implemented in a customized
manner using the code for data generation and visualization. For real
data, MATLAB (www.mathworks.com) with the academic freeware
toolboxes EEGLAB (http://sccn.ucsd.edu/eeglab), GIFT (http://icatb.
sourceforge.org), MINE (http://www.exploredata.net/) and SPM8
(http://www.fil.ion.ucl.ac.uk/spm) was utilized.

Trial weights information
The trial level informationwas the starting point of the following hi-

erarchical framework. Using temporal and spatial ICA, EEG and fMRI
data were decomposed as

Ye ¼ Bn1�p
e Tp�m1

e þ εe ð1Þ

Y f ¼ Bn2�q
f Tq�m2

f þ ε f ð2Þ

where Ye∈Rn1�m1 is epoched EEG data with n1 channels and m1 time
points, and Y f∈Rn2�m2 is fMRI data with n2 voxels and m2 time points
(volumes). Be are EEG topographies corresponding to p temporal ICA
components (Te), and Bf are the spatial ICA components corresponding
to the q fMRI time courses (Tf). εe and εf are residual errors. In EEG, the
amplitudes were obtained as shown in

Ze ¼ Te tf gð Þ⊤∈Rk�p ð3Þ
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Fig. 1. The trial level spatio-temporal fusion framework for hierarchically reliable information discovery. Three levels were obtained using spatio-temporal match: first level is associated
with the spatio-temporal domain, the second level associatedwith either the spatial or temporal domains represented a complement information and singlemodality superiority, and the
third level included no matched components and was omitted from this work.
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where k is the number of trials, and t is peak time from the absolute
maximum of averaged ERPs. In fMRI, two main steps were utilized to
obtain the single trial weights of the fMRI data (Eichele et al., 2008).
First, the hemodynamic response functions (HRFs) of the fMRI time
courses were estimated using the following formula:

chrf ¼ Mþ T f

� �⊤ ð4Þ

whereM+ is the pseudoinverse of the convolution matrix of the stimu-
lus onsets (assumed kernel length of 24 s) and Tf is the fMRI IC time
course. Then, the fMRI single trial response amplitudes of IC time
courses were estimated by the regression model:

T f

� �⊤ ¼ D⊗hrfð ÞZ f þ ε ð5Þ

cZ f ¼ D⊗chrf� �þ
T f

� �⊤ ð6Þ

whereD∈Rm2�k is a designmatrix containing separate predictors for the
onset times of trial, ⊗ is the convolution operation, k is the number of
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trials, and Zf ∈ Rk × q are the amplitudes of fMRI time courses. In these
approaches, the amplitude modulations series of EEG (Ze) and fMRI
(Zf) trial weights were obtained by the trial-by-trial dynamics.

Temporal MIC approach
Weused a new exploratory data analysis tool, themaximal informa-

tion coefficient (MIC) (Reshef et al., 2011), which satisfied the general-
ity and equitability to reveal the temporal relationship of the weight
series (Ze and Zf) between ICs across modalities. The MIC between the
two variables z1 ∈ {Ze} and z2 ∈ {Zf} is defined as

MIC z1; z2ð Þ ¼ max
ℤ1j j ℤ2j jbG

I� ℤ1;ℤ2ð Þ
log2 min ℤ1j j; ℤ2j jf gf g

� �
ð7Þ

where ℤ1 and ℤ2 are the bins of the rectangular grid on the z1− z2 scat-
ter plot, and I*(.;.) is themaximummutual information achieved by any
grid on the data. |ℤ1||ℤ2| b G denotes that the total number of bins is less
than some number G. Using real data, the series of trial amplitudeswere
standardized to z-scores and concatenated across subjects to increase
the statistical power before calculating theMIC score.MIC only depends
on the rank-order of the data; therefore, the significance of a given MIC
score was established by comparing the MIC of the real data with the
MIC scores of the surrogate datasets (Steuer et al., 2002). Therefore, by
choosing 5000-fold random permutations, null distributions (the vari-
ables z1 and z2 were statistically independent) for a given sample size
were generated, and the p-value of the MIC scores were subsequently
obtained. Tests were corrected for multiple comparisons using false dis-
covery rate correction (FDR). In addition, the Pearson correlation coeffi-
cientwas also calculated, Fisher z-shifted and tested (one sample t-test)
as a comparison to assess the performance of the MIC score.

Spatial match
For the i-th topography (B ið Þ

e ∈Rn1�1; i ¼ 1;…; p) of the EEG temporal
ICA components, the sources were determined by NESOI (Lei et al.,
2011b) using a Parametric Empirical Bayesian (PEB) model (Friston
et al., 2006):

B ið Þ
e ¼ LeΦ

ið Þ
e þ E1e E1e � N 0;C1eð Þ ð8Þ

Φ ið Þ
e ¼ 0þ E2e E2e � N 0;C2eð Þ ð9Þ

where Le∈Rn1�d is the known lead-fieldmatrix calculated for the select-
ed headmodel, andΦe

(i)∈ Rd × 1 is the unknown distribution of the d di-
poles. N(0, C) denotes a multivariate Gaussian distribution withmean 0
and covariance C, and E1e and E2e represent random fluctuations in
channel and source spaces, respectively. At the source space level,
fMRI ICs (Lei et al., 2011b) and multiple sparse priors (MSPs) (Friston
et al., 2008) were included to create covariance priors (C2e) to recon-
struct the sources of the topography corresponding to an EEG temporal
independent component and was denoted as:

C2e ¼
Xq
i¼1

γiV B ið Þ
f

n o
þ
Xl

j¼1

γ jV MSP jð Þn o
ð10Þ

where γ is non-negative hyper-parameter and V is the covariance basis
matrix of the spatial ICA components (q components) of the fMRI or
MSPs. The hyper-parameters (γ) that controlled the relative contribu-
tion of each prior identified whether an EEG component (Be(i)) was
able to be considered as an fMRI supported or unsupported component.
Model solution can be calculated by the RestrictedMaximumLikelihood
(ReML) algorithm (Friston et al., 2007), and further details about NESOI
can be found in a corresponding paper (Lei et al., 2011b).
Spatio-temporal fusion and hierarchical information discovery
All EEG and fMRI ICs were classified in parallel by temporally

matching and spatially matching across modalities. MIC approach was
used for temporal matching; and, for spatial matching (using hyper-
parameters), ERP source analysis was conducted on all EEG components
by NESOI, which employed all fMRI components regardless of event-
related or event-independent and corresponding MSPs as the covari-
ance priors. Based on the above spatio-temporal matching, three rela-
tive reliable information sets were defined as (1) the spatio-temporal
matched set that provided the most reliable information regarding
common neural processes in both measurements, which was denoted
as the first level; (2) either matched set that contained conservative in-
formation for onemodality, whichwas denoted as the second level; and
(3) the no-matched components set thatwas notwell-explained,which
was termed ‘noise’ and not included in this work. Additionally, to assess
the performance of spatio-temporal matching and superiority of the hi-
erarchical framework, the EEG temporal accuracy and fMRI spatial accu-
racy were evaluated. EEG temporal accuracy was defined as the
coefficient of determination (squared correlation) between the time se-
ries of the EEG component and the true component. fMRI spatial accura-
cywas defined as the coefficient of determination (squared correlation)
between the spatial distribution of the fMRI component and the true
component.

Simulation

Basic setups
To illustrate the previous mentioned framework, a disc with

2452 voxels (dipoles) was employed to generate the simulation data
in the trial-by-trial modulation. Areas of ‘white matter’were represent-
ed by two holes in the disc. For the EEG setup, a concentric three-sphere
headmodel (analytic solution sphere radii: [0.87 0.89 1])with 128 elec-
trodes placed on the upper hemisphere was set to wrap the disc. The
orientations of the EEG sources were fixed, and the lead-field matrix
was calculated analytically (Yao et al., 2004). The temporal sampling
rate of the EEG was typically 1 kHz, and the epoch of the ERPs was
400 ms, which consisted of 40 time points after being down-sampled
to 100 Hz. For the fMRI setup, 2D fMRI spatial maps of 70 × 70 voxels
(one slice) with a field of view (FOV) of 200 × 200 mm2 and a Z-axis
of 18 mm were hypothesized. In each run, 40 stimuli (trials) were
contained in 60 epochs, and a total of 120 stimuli (trials) were present-
ed in 3 runs. Six sources were implemented and drawn with different
colors on the disc: ‘vision area’, ‘default mode networks’, ‘auditory cor-
tex’, ‘sensory networks’, ‘left cognition area’ and ‘right cognition area’
(abbreviated as S1–S6). More details regarding the setups were ob-
served in Fig. 2 and Table 1.

Further setups
Through the aforementioned assumedmodel, two simulations were

designed to yield the EEG data and fMRI data. In simulation 1, to consid-
er the different situations of mismatch andmatch between the vascular
and electrophysiological responses, the conventional linear relation-
ships were hypothesized as the trial-by-trial dynamics (represented as
amplitude modulation) and further settings were designed below
(Fig. 3). For neural sources, S2–S6 were event-related sources, and S1
was a random neuron activity that was simultaneously recorded by
EEG and fMRI. For EEG, the S2 signal was blind to detection, and S3
only generated a random electrophysiological activation, meaning that
the ERP did not occur. ERPs corresponding to S4–S6 were generated.
For fMRI, event-related BOLD responses were generated in S2–S4, and
the S5 signalwas blind to recording. A randomBOLD activation replaced
event-related activation as the fMRI signal in S6. In short, for EEG and
fMRI, S5 and S2 possessed modality spatial specificity, and S6 and S3
possessed modality temporal specificity.

In simulation 2, with a view to the complex relationship of ampli-
tude modulation in single modality or across modalities, another type



Fig. 2. The primary system of the head model and sources. At left are the source spatial distributions and their names; at right is the simplified concentric three-sphere head model.
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of settingwas designed to consider nonlinearity. In this situation, S2–S6
were set as event-related sources; however, S1 was a random event-
independent, and trial-by-trial dynamic linear or nonlinear functional
relationships between the vascular and electrophysiological responses
were assumed (Fig. 4). Linear or nonlinear relationships between EEG
and fMRI were occasionally assumed for both signals in the same re-
gions or different regions. These functional relationships were linear,
quadratic, cosinusoidal and in the form of a parametric equation
(Reshef et al., 2011) (Table 2). In view of the occasional signal detection
failure, the S2 and S5 signals were blind for EEG and fMRI recording, re-
spectively. In brief, when induced by stimulation, S3–S4 and S6 were
spatio-temporal-related sources, and S2 and S5 were modality-specific
sources.

Different Gaussian noise with independent and identical distribu-
tions (IID) was added to each dataset in both of the above-mentioned
two simulations, and a conservative signal-to-noise ratio (SNR) of 0.1
for fMRI and 1.0 for EEG was assumed, and these settings were consis-
tent with typical experimental data. In addition, the whole simulation
process was repeated 500 times to obtain mean results.

Real data test

Subjects
After written informed consent, 14 healthy right-handed volunteers

with no history of psychiatric or neurological disorders participated in
the experiment (7 women, mean age ± SD: 26.0 ± 3.9 years, age
range: 21–37 years). The study was also approved by the local ethics
committee of the University of Maastricht.

Task
The task comprised four runs of 280 auditory stimuli that consisted

of rare sine tones (probability 9%), unique environmental sounds (9%,
serving as novel sounds) (Schneider et al., 2008), and frequent standard
sine tones (82%, 10 ms rise and fall time, 350 or 650 Hz). Sounds were
Table 1
Parameters of simulation setup.

EEG

Sampling frequency 100 Hz
Number of time samples 40 points × 60 epochs × 3 ru
Noise Gaussian IID
Signal-to-noise ratio 1
Number of channels 128
HRF
Number of stimuli (trials) 120
Number of dipoles/voxels per source S1–S6: [48 100 90 64 32 30]
auto-played through MR-compatible earphones (Siemens Medical Sys-
tems, Erlangen, Germany) using Presentation 9.0 (Neurobehavioral Sys-
tems, Albany, CA, USA), and the instructions were shown visually via a
mirror mounted on the head coil. Stimulus onset asynchrony varied be-
tween 1896 ms and 2104 ms after the onset of the MR pulse, and all
stimuli lasted 400 ms. Each run lasted 9 min, and the subjects reported
the target count during a 1-min break in between runs. Further details
regarding the task were observed in a previous article (Strobel et al.,
2008).
EEG and fMRI recording
EEG datawere recorded using a 64-channel MR compatible EEG sys-

tem (Brainproducts, Munich, Germany). The EEG cap consisted of 62
scalp electrodes (Ag/AgCl ring electrodes with built-in 5 kΩ resistors)
distributed according to the equidistant scalp sites mounted in a cap
system (Easycap, Falk Minow Services, Herrsching, Germany) and two
additional electrodes, one placed below the left eye to monitor eye
blinks and the other attached at the lower back for electrocardiogram
(ECG) recording. The data were referenced to the vertex, recorded
with a pass-band of 0.016–250 Hz, and resampled at 5000 Hz.

The fMRI data were recorded using a 3-T Siemens Allegra Scanner
(Siemens Medical Systems, Erlangen, Germany). Anatomical T1-
weighted images were acquired using the magnetization-prepared
rapid acquisition gradient echo (MPRAGE). Generating 192 axial slices,
the imaging parameters were as follows: TR/TE = 2300 ms/4.57 ms,
field of view = 256 × 256 mm2, flip angle = 12°, and voxel size = 1 ×
1 × 1 mm3. Functional images were collected using a gradient-echo
echo-planar imaging (EPI) sequence, and the imaging parameters
were as follows: TR/TE = 2000 ms/30 ms, flip angle = 90°, field of
view = 224 × 224 mm2, matrix size = 64 × 64. 24 sagittal slices were
acquired (in-plane resolution = 3.5 × 3.5 mm2, thickness/interval =
4 mm/1 mm) in an interleaved order, and 285 volumes were obtained
during each run.
fMRI

0.5 Hz (TR = 2 s)
ns 240 points × 3 runs

Gaussian IID
0.1

Gamma function with different onset time, and size = 17
120

image of Fig.�2


Fig. 3.Mismatches and matches between the vascular and electrophysiological responses in simulation 1. Columns from left to right are the names of the features and the source infor-
mation (S1–S6). For the EEG (upper blue-dashed box), the features include the scalp potential distribution (1st row), single trial images (2nd row) and ERP transient responses (3rd row).
For neural activity (middle black-dashed box), the features include the spatial distributionmaps (4th row) and the single trial amplitude (5th row). For fMRI (bottom red-dashed box), the
features are region-specific HRFs (6th row), time courses of BOLD signals (7th row) and the spatial distribution (8th row). The shaded areaswith the green border depict the event-related
(also represented as amplitude modulation) sources or recordings.
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Real data processing
EEG data were first analyzed using the EEGLAB (http://sccn.ucsd.

edu/eeglab), which was run under MATLAB 7. Briefly, gradient artifacts
were removed using a local average artifact template procedure (Allen
et al., 2000) while a moving average width of 30 MR volumes was
used. In addition, the EEG data were 0.3–40 Hz pass-band filtered and
down-sampled to 250 Hz. Next, most of the ballistocardiogram artifacts
were removed using the OBS-based BCG correction (Niazy et al., 2005),
and the residual BCG artifacts were further removed by the ICA
procedure (Srivastava et al., 2005). Using a low pass filter of 15 Hz,
epochs from −200 ms to 800 ms were created and re-referenced to
the approximate zero reference by free software (Qin et al., 2010; Yao,
2001). To prepare the next calculation, the group tICA was used to de-
compose the EEG data (64 channels × 24500 points), and the number
of independent components was estimated to be 11 using MDL criteria
(explaining more than 98% of the variance).

For fMRI data, the first five volumes of each run were first discarded
to remove the T1 saturation effects. Next, the standardized preprocess

http://sccn.ucsd.edu/eeglab
http://sccn.ucsd.edu/eeglab
image of Fig.�3


Fig. 4. The linear or nonlinear relationship system in simulation 2. Six different sources (S1–S6) were similarly assumed, and functional relationships of trial-by-trial dynamics (linear or
nonlinear) existed (event-related: S2–S6). For EEG (blue-dashed box), the features include the scalp potential distribution (1st row), single trial images (2nd row) and single trial ampli-
tude of caused electrophysiological responses (3rd row). For fMRI (red-dashed box), the features are the spatial distribution (1st column), time-courses of BOLD signals (2nd column) and
single trial amplitude of caused BOLD responses (3rd column). The S2 and S5 signals were blind for the EEG and fMRI recording, respectively. The relationships between EEGs and fMRIs in
the same region (on the diagonal, shadowed) or different regions (not on the diagonal) are shown in the bottom-right areas to represent the trial-by-trial dynamics. Ind.: Independent.
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(slice time correction, 3D motion detection and correction, spatial nor-
malization, and spatial smoothing) was analyzed with SPM8, and the
images were sampled to 3 mm × 3 mm × 3 mm and smoothed with a
Table 2
Definitions of the functional relationships.

Relationship name Description (domain is [0 2])

Linear y = x or y = 0.5x
Parabolic y = − (x − 1)2 + 1.5
Cosinusoidal y = c ⋅ cos(2πx) + 1; c = 1 or 0.5
Parametric equation y ¼ − t−1ð Þ2 þ 1:5

x ¼ c � cos 2πtð Þ þ 1
; c ¼ 1or0:5

�

8-mm full-width at half-maximum of an isotropic Gaussian filter.
Using group sICA, the preprocessed fMRI data were decomposed into
14 components (estimated by MDL criterion). Three discarded compo-
nents visually inspected to be associated with the possible artifacts
(such as head motion, cerebrospinal fluid, large vessels and dispersion
of clusters) were rejected from further investigation.

After the above-mentioned preprocessing, EEG and fMRI ICs were
further analyzed according to the procedure in Fig. 1 to search for the hi-
erarchical reliable information. The amplitude series of EEG and fMRI
trial weights (related with target-specific processing) were first obtain-
ed, and spatio-temporal match was further investigated using our ap-
proach. In addition, EEG-informed fMRI analysis of ERP components
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identified in the first level was also conducted to provide possible com-
plementary information for the real data.

Results

Simulation

The mean results were obtained from 500 repeated synthetic
datasets, and the results of two simulations are listed below in detail.

Simulation 1: mismatch or match situations
For temporal matching, the temporal integration of the EEG and the

fMRI was realized using the MIC approach (p b 0.05, FDR corrected),
and the results are shown in Fig. 5A. The assumed linear relationships
between the sources in the trial were captured by the MIC score. The
amplitude modulation components (EEG S4–S6 and fMRI S2–S4) were
Fig. 5.Results of the threehierarchicalmatching approaches in simulation 1. Estimatedmean EE
Temporallymatched components are shown in themiddle, and non-temporallymatched comp
and the spatial specificities of the single modalities are depicted on each side. C: Hierarchical con
most credible amplitude modulation components (EEG-S4 and fMRI-S4), which consist of ERP
spatial resolution), are shown in the green bordered region. In the secondary level, temporal
matched components.
successfully extracted and temporally matched between themodalities.
Meanwhile, non-temporally matched components (e.g., S1, EEG-S3 and
fMRI-S6) were shown on the side. However, the spatial relationships of
these temporally matched components were not very clear.

For spatial matching, the EEG ICs and fMRI ICs were spatially
matched byNESOIwithout regard to the temporal relationship between
the vascular and electrophysiological responses (Fig. 5B). The truly
spatio-temporally consistent component (green bordered area) was
contained within the middle matched area, and the spatial specificity
of eachmodality (fMRI-S2 and EEG-S5) is depicted on the sides. Howev-
er, S3 and S6 (yellow bordered area) were matched; however, the time
courses of the EEG and fMRI recordings were mutually independent. In
contrast, the S1 (red bordered area) that was not amplitude modulated
and recorded by both modalities also appeared in the matched area.

The results of spatial–temporal matching, which is defined as the
cross area of the above spatial and temporal matching, are shown in
G sources,mean topographies or ERPs, andmean fMRI spatial components are displayed.A:
onents are shown on each side. B: Spatiallymatched components are shown in themiddle,
fidence of the spatial–temporal matching is depicted to reconstruct the brain process. The
(high temporal resolution), EEG reconstructed source and fMRI spatial distribution (high
ly matched components are displayed in the blue bordered box, and others are spatially
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Fig. 5C. Linear trial-by-trial dynamics were effectively detected using
the MIC approach to extract amplitude modulation components. The
spatio-temporal matched components (event-related; EEG-S4 and
fMRI-S4) are shown in the green bordered region that contains corre-
sponding ERP (high temporal resolution), EEG reconstructed source
and fMRI spatial distribution (high spatial resolution). The specificity
of the single modality that temporally (blue bordered area e.g., EEG-
S5/S6 and fMRI-S2/S3) or spatially matched (e.g., EEG-S1/S3 and fMRI-
S1/S6) was superior (represented as secondary level). Using this meth-
od, we obtained hierarchically reliable match results demonstrating
that the spatio-temporal matched EEG-fMRI ICs during the trial level
were themost reliable and reasonable representations of the underlying
brain activity. In addition, the modality-specific ICs that were either
matched in the temporal or spatial domain were represented as
second-level reliable information that provided complementary infor-
mation regarding the brain function. No matched components that
were observed as the third level were omitted from this work.

In addition, Fig. 6 illustrates that the performance of the spatio-
temporal matching and superiority of the hierarchical framework in
Fig. 5C was stable and reliable because the standard deviation was
very small. The spatio-temporal matched component (event-related,
S4) had high EEG temporal accuracy and fMRI spatial accuracy; howev-
er, the second levels (concerning event-related fMRI S2/S3 or EEG S5/
S6) had single modality accuracy (high temporal or spatial).

Simulation 2: linear or nonlinear situation
Fig. 7 depicts the results of the linear or nonlinear relationships as-

sumed in simulation 2. Using the one-sample t-test, significant Z-scores
of the correlation coefficients were obtained (p b 0.05, FDR corrected),
and are shown as T-values (see Fig. 7A). For linearity, the correlation co-
efficient captured the relationship. However, in the case of nonlinearity,
the correlation coefficient did not represent the temporal relationship
and may capture a plausible relationship if it was independent. For the
MIC score, the nonparametric test (p b 0.05, FDR corrected) accurately
captured the temporal relationship between modalities (Fig. 7B). The
MIC score detected the linear or nonlinear relationship but also had
ideal ability to distinguish between a relationship and stochastic distur-
bance. These results clearly demonstrated that the MIC procedure per-
formance was better than the correlation method. Similar to simulation
1, Figs. 7A/B shows the temporal matching, and after similar spatial
Fig. 6.Mean value and standard deviation of the evaluation metrics (coefficient of determi
nents (S2–S6) are considered.
matching by NESOI (results omitted here), the final hierarchical spa-
tial–temporal matching result was obtained and is shown in Fig. 7C.
The most credible three sources (S3, S4 and S6) are depicted in the
green bordered region, and high temporal resolution ERPs are shown
to reflect the time process. At the secondary level, temporally matched
components (e.g. EEG-S5 and fMRI-S2) are displayed in the blue bor-
dered box, and the other components are spatially matched (S1).

Real data

For the real data, the intermediate results of each modality (such as
mean topographies, ERPs, single trial images, and mean fMRI spatial
maps) are shown in Figs. S1–S2 in the Supplementary materials. As de-
scribed in the Method section, hierarchical representation was con-
structed to discover the brain target processing (Fig. 8). A component
of the first level was obtained through temporal (p b 0.01) and spatial
matching across modalities (Table 3). Corresponding to the EEG-IC10,
ERP (absolute amplitude peaking at 336 ms, P300) was shown in the
uppermiddle region, and the regional sourceswere located in the supe-
rior frontal gyrus, superior temporal gyrus, cingulate gyrus, precuneus
and inferior frontal gyrus by NESOI. Corresponding to the spatial map
of fMRI-IC8, significant regions such as the middle frontal gyrus,
cingulate gyrus, superior frontal gyrus, lingual gyrus, middle temporal
gyrus and cerebellar tonsil were obtained using one sample t-test (p
b 0.0005, FDR corrected). The either matched components are shown
as the secondary level on each side to explain the target processing.
For EEG, the ERPs were peaking at 776 ms, 320 ms, 648 ms, 516 ms,
480 ms and 748 ms in EEG-IC4, IC5, IC6, IC7, IC8 and IC9, respectively
(absolute amplitude). For fMRI, spatial distributions located in the
insula, parahippocampal gyrus and superior temporal gyrus (fMRI
IC2), the anterior part of the default model network (fMRI IC3), the sup-
plementarymotor area and postcentral gyrus (fMRI IC5), and the poste-
rior part of the default model network (fMRI IC14) are shown. Further
details are shown in Table S1. In addition, the activated regions (p
b 0.01, FDR corrected) revealed by EEG-informed fMRI analysis mainly
consisted of the bilateral superior temporal gyrus (BA22/BA41), culmen,
thalamus, medial frontal gyrus (BA6), cingulate gyrus (BA32),
precentral gyrus (BA6), inferior frontal gyrus (BA9) and lingual gyrus
(BA17/BA18). More details of the results are shown in Fig. S3 and
Table S2.
nation, R2) for the hierarchically reliable information in Fig. 5C. Event-related compo-
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Fig. 7. Results of linear or nonlinear situation in simulation 2. Significant T-values of correlation coefficient (A) and MIC scores (B) are shown to reflect the temporal relationships. The
significance was set at p b 0.05 and FDR corrected. Corresponding mean fMRI spatial maps and mean EEG sources are also shown. C: Results of the hierarchical spatio-temporal matching
are shown with clear hierarchical reliability. The mean event-related EEG sources (in the middle), mean fMRI spatial maps (in the bottom) and corresponding ERP (in the upper) are
shownas thefirst level of the reliability in the greenbordered region. In the secondary level, temporallymatched components (e.g., ERP-S5 and fMRI-S2) are displayed in the bluebordered
box, and others are spatially matched components (S1).
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Discussion

Matching and mismatching in integration

In a recent review, the majority of the observed mismatches be-
tween EEG and fMRI were interpreted in two ways: (1) a signal detec-
tion failure (e.g., activity in deep brain structures cannot be detected
by EEG), and (2) a decoupling between the electrophysiological and he-
modynamic activity (Rosa et al., 2010). The first aspect was alleviated
through spatial NESOImatching (Fig. 5B, EEG S5 and fMRI S2). However,
any multimodal EEG/fMRI integration may be confounded by a number
of potential decouplingmechanisms. Several sources (Fig. 5B, S3 and S6
in yellow box) may have been spatially matched even though temporal
decoupling existed between the EEG and fMRI. In fact, in a specific brain
region, fast neuronal oscillations that caused electrophysiological activ-
ity and that could be recorded by EEG may not induce any significant
BOLD changes (Nunez and Silberstein, 2000), and several ERPs derived
frompartial phase-resetting of EEG activitymay not causemajor chang-
es in local brain metabolism to correlate with the BOLD signal (Debener
et al., 2006). In contrast, several hemodynamic BOLD changes may be
caused by different types of phenomena (e.g., arterial pumping mecha-
nism) that do not correlatewith EEGs (Sirotin andDas, 2009). These po-
tential risks should be considered in the integration process to some
degree. In addition, several non-neural physiological processes reflected
in bothmodalities (such asmuscle contractions that lead to headmove-
ment) may be matched using NESOI (Fig. 5B S1 in red box). In the tem-
poral matching approach on the trial level, several temporal decoupling
and non-neural activities were able to be discriminated (Fig. 5A). How-
ever, due to the lack of spatial matching information, thematching pro-
gram may have been confused because the temporal relationships
between modalities were widely captured regardless of whether these
matched components were co-localized. Potentially, the EEG signal
sources generated from the electrical activity of the neuronal population
did not necessarily co-localize with the corresponding regions of BOLD
signal that was derived from the vascular tree that provided the blood
supply to these neurons (Beisteiner et al., 1997). Further analysis and
identification should be implemented to revealmore reasonable associ-
ations between EEGs and fMRIs.

Hierarchically reliable information discovery

In this work, a spatio-temporal fusion framework was utilized to re-
construct the hierarchical information: the spatial–temporal association
between modalities was assumed as the first level in providing reliable
information, and the secondary level involved a set of components iden-
tified by temporal or spatial matching, which provided complementary
information and presented modality superiority (Fig. 5C). The last level
included a set of nomatched components that were not well explained
or were ‘noise’, and this level was omitted in this work. For the first
level, according to its high EEG temporal accuracy and fMRI spatial accu-
racy (S4 in Figs. 6 and 5C), brain activation was sufficiently explained
through this corresponding ERP and fMRI spatial map information as
the most reliable information. For components in the secondary level,
the temporal information of the EEG (ERPs) components was the
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Fig. 8. Results of real data. Hierarchical confidence is depicted to discover the brain target processing. Themost credible amplitudemodulation components (sources of EEG-IC10 and spa-
tial t-mapof fMRI-IC8) and correspondingERP (Z-score) are shown in themiddle region, and the other complementary ERPwaveforms (and topographies) or fMRI spatial distributions are
displayed as the secondary level on each side. In the secondary level, temporally matched components are displayed in the blue bordered box, and the others are spatially matched com-
ponents. For the fMRI, the left side of the image corresponds to the left side of the brain.
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preferential concerns according to its high temporal resolution. Al-
though EEG sources were reconstructed to some extent using NESOI
(Lei et al., 2011b), and considering the potential risk of EEG source im-
aging such as deep brain structure (Biessmann et al., 2011; He and Liu,
2008; Xu et al., 2007, 2010), the ERPs were previously focused on
crude brain regions (temporally matched components S5 and S6 in
Figs. 6 and 5C), and the utilization of the source imaging was conserva-
tive (i.e., the source imaging of the EEG components was not the first
Table 3
Spatio-temporal-matched components of the EEGs and fMRIs as first creditability: EEG regiona

MNI coordinates L/R Sources Brodmann area

x y z

EEG-IC10 8 17 64 R Superior frontal gyrus BA 6 fMRI-IC8
−55 10 −11 L Superior temporal gyrus BA 22

52 14 −14 R Superior temporal gyrus BA 38
25 58 12 R Superior frontal gyrus BA 10
−9 17 37 L Cingulate gyrus BA 32

6 21 38 R Cingulate gyrus BA 32
3 −54 71 R Precuneus BA 7

44 22 −14 R Inferior frontal gyrus BA 47
−46 21 −5 L Inferior frontal gyrus BA 47
concern). Regarding the fMRI components in the secondary level, neural
activity was measured slowly and indirectly by BOLD response record-
ings (Buxton et al., 2004); therefore, the spatial distribution (temporally
matched components S2 and S3 in Figs. 6 and 5C)was regarded as a cer-
tain slow response to neural activity while explaining the type of brain
activation. In addition, several components (EEG-S1/S3 and fMRI-S1/S6
in Fig. 5C) that were only spatially matched need to be more conserva-
tively explained. Components in the last level, though omitted from this
l sources and fMRI spatial distributions.

MNI coordinates L/R Lobe Brodmann area t Voxels

x y z

36 47 31 R Middle frontal gyrus BA 9 23.4 12092
−9 20 37 L Cingulate gyrus BA 32 20.8
12 17 61 R Superior frontal gyrus BA 6 20.4
6 −82 −20 R Declive BA18 11.4 668

−6 −79 4 L Lingual gyrus BA 18 10.7
−6 −73 −5 L Culmen BA17/18 8.1

−57 −58 4 L Middle temporal gyrus BA 37 10 70
42 −58 −35 R Cerebellar tonsil 8.9 107
33 −58 −35 R Cerebellar tonsil 7.4
−6 −52 −23 L Fastigium 7.6 39

3 −58 −38 R Cerebellar tonsil 6.1
−36 −52 −38 L Cerebellar tonsil 7.3 73
−30 −61 −32 L Anterior lobe 7.1
−48 −55 −35 L Cerebellar tonsil 6.8

image of Fig.�8


39L. Dong et al. / NeuroImage 99 (2014) 28–41
work, were not simply useless noise. These components, so called
‘noise’ that is not directly reflected as amplitude modulation (trial-by-
trial dynamics) or are not related to the stimulus, may play a construc-
tive or potential role in neural activity (Ermentrout et al., 2008). Briefly,
considering the spatial association and temporal trial-by-trial dynamics,
this framework more reasonably identifies the common substrate of
EEG and fMRI and decreases the potential uncertainty between these
two modalities (Daunizeau et al., 2010).

Linear or nonlinear in integration

In previous studies, an assumption that the neuronal electrophysio-
logical response is linearly correlated with the BOLD fMRI signal has
been conventionally shared in various types of fusion techniques, such
as EEG-informed fMRI analysis, fMRI-informed EEG analysis or integrat-
ing EEG and fMRI; however, to a certain extent, the nonlinearity is ac-
knowledged in the relationships (He and Liu, 2008; He et al., 2011).
The source of BOLD nonlinearity has been found in a number of studies,
and this nonlinearity may be derived from neural and/or vascular
sources (Birn and Bandettini, 2005; Zhang et al., 2008). Moreover, the
coupling between neuronal activity and the hemodynamic response
may incorporate nonlinear effects and has been discussed in several
studies (Liu et al., 2010; Sheth et al., 2004). In addition, the variety of
methods to quantify the multimodal signals and the largely different
temporal/spatial scales of the hemodynamic and electrophysiological
responses may also have partially caused the nonlinearity (He et al.,
2011). Considering the potential nonlinearity in trial-by-trial dynamics,
using a linearmethod such as the Pearson linear correlationmay lead to
false relationships caused by random disturbance and spurious positive
or negative linear relationships that were actually nonlinear (Fig. 7A).
Hence, a novel measure that has the performance capability to capture
a wide range of interesting relationships is expected, especially when
we do not know for sure whether the relationship is linear, nonlinear,
or evenmixed. TheMIC score, which possessed good generality and eq-
uitability, was utilized to detect the potential relationships between
modalities andwas demonstrated to capture the assumed functional re-
lationships and suppresses the random disturbance in our simulation
(Fig. 7B). Although the nonlinear function relationships we set in the
simulation were common and limited, Reshef et al. proved that this
measure was appropriate for a wide range of relationship types and
showed superiority over other methods (e.g., Spearman correlation co-
efficient, mutual information) (Reshef et al., 2011). As demonstrated in
the results of simulation two (Fig. 7C), this spatio-temporal matching
framework based on the MIC approach may be a potential and hopeful
technique to reveal complex neurovascular coupling. In the first level of
real data, relation between amplitude series of EEG-IC10 and fMRI-IC8
perhaps was nonlinear (Fig. S4), and was further demonstrated that
nonlinearity perhaps existed in the physiological signals to be
integrated.

Application in real data

In the real data test, hierarchical results using our approach unveiled
the spatio-temporal characterization of target processing in the trial-by-
trial modulation during an auditory novelty oddball (Fig. 8) and provid-
ed both EEG and fMRI evidence that amplitude modulation may widely
exists in brain function. Multiple networks involved in the attention
process have been proposed in previous studies, such as dorsal net-
works consisting of the intraparietal and superior frontal regions, the
ventral network including the temporoparietal and the inferior frontal
cortex (Corbetta and Shulman, 2002), and the frontomedial areas com-
prised of the anterior cingulate aswell as the premotor and supplemen-
tary motor regions (Bledowski et al., 2004; Strobel et al., 2008). In the
first level, the brain activation response to the target-related task was
represented in the fMRI spatial map with high spatial accuracy and
ERP with high temporal accuracy. These fMRI patterns were similar to
the aforementioned previous studies and may provide further evi-
dences to uncover the brain function related to top-down-driven
target-processingwith high spatial resolution. In addition, some regions
revealed by EEG-informed fMRI analysis were in accordance with the
regions identified by fMRI-IC8 to some extent, such as cingulate gyrus
and lingual gyrus etc. Results of activation related to amplitudes of
P300 in first level further provided the characterization of target-
processing, and these results were complementary to uncover the
brain function related to target-processing. Furthermore, the ERP
(P300) corresponding to these co-localized networks provided another
information of the brain attention process in a high temporal resolution.
This information reaches the emphasized high spatial and high tempo-
ral resolutions of a cognitive process by EEG-fMRI fusion.

In the secondary level, complementary informationwas observed as
superiority of the single modality. For the EEG, various ERPs with differ-
ent peaks were identified. These ERPs provided electrophysiological ev-
idences that the attention process may be a dynamic process with
synergistic activation of awide range of neurons in various brain regions
and electrophysiologically reflected various subcomponent processes
involved in the attention process. Regarding the fMRI, two temporally
matched components (fMRI IC5 and IC14) and two spatially matched
components (fMRI IC2 and IC3) were found. Sensorimotor regions
(fMRI IC5) may be explained in terms of a response preparation process
(Bledowski et al., 2004; Linden et al., 1999; Strobel et al., 2008), and
fMRI IC14 represented the reallocation of processing resources from
areas in which task-induced deactivation (TID) occurred to areas iden-
tified in task performance (McKiernan et al., 2003, 2006). These four
fMRI components also provided hemodynamic evidences that the at-
tention process may be a synergetic process in various brain regions.
In addition, although several components in the last level were neither
temporally nor spatially matched in this work, they were not useless
noise. In fact, these components can be interpreted in terms of event-
related electrophysiological (e.g., EEG IC2, seen in Fig. S1) or hemody-
namic responses (e.g., fMRI IC9 located in auditory areas, seen in
Fig. S2). The above-mentioned information provided complementary
evidence to reveal the characterization of target-processing and to
help to elucidate the brain attention process.

In addition, in a real situation, it perhaps is hard to perfectly decom-
pose cognitive processing of rapidly changing synchronization of sever-
al parallel but interacting brain circuits (e.g. sensory and selective
attention etc.) in ERP and fMRI. In our framework, the temporal ICA
was used to decompose parallel ERP components in temporal domain.
However, for the fMRI with low temporal resolution, spatial ICA was
used to obtain information with spatial independence. The complex
interacting brain circuits may be decomposed in spatial domain. And
these fMRI spatial components provided priors in parametric empirical
Bayesian model for ERP source imaging (NESOI), and did not bring any
temporal information. Therefore, our framework could also provide im-
portant information furthering our understanding of various cognitive
processes. For basic voluntary movements or simple sensory stimula-
tions, brain circuits may be easier to decompose in ERP and fMRI than
that in complex cognitive process, and our framework can be similarly
applied.

Limitation

Several limitations are involvedwhen using this approach. Although
the quality of simultaneous EEG and fMRI recordings has improved, a
lower signal-to-noise ratio (SNR) than a separate recording is a poten-
tial risk to fusion, and effective data preprocessing techniques (e.g., ro-
bust artifact removal technique) are suggested to decrease this risk in
our framework. In addition, Kinney and Atwal have argued that “equita-
bility” property of MIC is not proven, and the simulation evidence of-
fered by Reshef et al. may be artifactual (Kinney and Atwal, 2013). It is
necessary to pay attention to this problem while using MIC to identify
the relationships between variables. However, more evidence and
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applications are needed to assess this newmeasurement, MIC, in the fu-
ture. Furthermore, due to requiring temporal synchronization between
modalities in the trial level, we do not suggest utilizing our approach
when obtaining separate recording data. In spite of these limitations,
further efforts will be considered in future research.
Conclusion

The novelty of our work is hierarchically reliable information discov-
ery realized by a step-by-step spatio-temporal matching fusion between
EEG and fMRI signals. The most reliable level includes the components
matched in both the spatial and temporal domains, which provides the
long-term desired high spatial and temporal resolution information of
a cognitive process. High spatial and temporal resolution information is
the focus in EEG-fMRI fusion; therefore, these components determine
the explanation with more confidence. Second-level information in-
cludes either temporally or spatially matched components. Although
these components cannot be explained simultaneously in the spatial
and temporal domains, each one may provide distinct information of
the cognitive process in either the temporal or spatial aspect. Therefore,
they reflect the complementary features of the two modalities and may
provide information involving an important cognitive neuroscience
problem that needs to be further examined.

In detailed realization, temporalmatching is implemented byMIC at
the trial level for both linear and non-linear relationships. To our knowl-
edge, this is the first effort inmining the non-linear association between
EEGs and fMRIs. The spatial matching is conducted by a method named
NESOI, which we developed two years ago. The spatial–temporal
matching is the cross integration of the above two matching processes
and provides the most reliable information, which was confirmed by
the two modalities. Synthetic data studies demonstrated the potential
of the approach to reveal the correct spatio-temporal relationships,
and the real data results showed that the spatial–temporalmatching in-
formation was in accordance with the current knowledge of attention
processing in the human brain; the second-levelmodality specific infor-
mation provides further knowledge for the explanation. We assume
that this approachwill provide further insights intomultimodal integra-
tion andwill likely provide important information furthering our under-
standing of various cognitive processes. The proposed hierarchical
framework is certainly open for any other temporal or spatial matching
approach; therefore, a long-term effort is expected to continue this
framework in the future.
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