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Abstract
This study aims to characterize the connective profiles and the coupling relationship between dynamic and static functional 
connectivity (dFC and sFC) in large-scale brain networks in patients with generalized epilepsy (GE). Functional, structural 
and diffuse MRI data were collected from 83 patients with GE and 106 matched healthy controls (HC). Resting-state BOLD 
time course was deconvolved to neural time course using a blind hemodynamic deconvolution method. Then, five connec-
tive profiles, including the structural connectivity (SC) and BOLD/neural time course-derived sFC/dFC networks, were 
constructed based on the proposed whole brain atlas. Network-level weighted correlation probability (NWCP) were proposed 
to evaluate the association between dFC and sFC. Both the BOLD signal and neural time course showed highly concordant 
findings and the present study emphasized the consistent findings between two functional approaches. The patients with GE 
showed hypervariability and enhancement of FC, and notably decreased SC in the subcortical network. Besides, increased 
dFC, weaker anatomic links, and complex alterations of sFC were observed in the default mode network of GE. Moreo-
ver, significantly increased SC and predominantly increased sFC were found in the frontoparietal network. Remarkably, 
antagonism between dFC and sFC was observed in large-scale networks in HC, while patients with GE showed significantly 
decreased antagonism in core epileptic networks. In sum, our study revealed distinct connective profiles in different epileptic 
networks and provided new clues to the brain network mechanism of epilepsy from the perspective of antagonism between 
dynamic and static functional connectivity.

Keywords  Structural connectivity · Functional connectivity · Static · Dynamic · Epilepsy

Introduction

Epilepsy is a neurological disorder characterized by abnor-
mally synchronous activity of a large number of neurons in 
the brain. The generalized epilepsy (GE) has been recog-
nized as a network disorder involving distributed regions in 
a large-scale brain network. Specifically, the thalamocorti-
cal network has been identified to be a crucial circuit for 
epileptic activities in GE (Gotman et al. 2005; Jiang et al. 
2018). Large-scale functional network analysis in epilepsy 
has provided valuable information on seizure generation, 
propagation and termination (Ponten et al. 2007; Kramer 
et al. 2008; Schindler et al. 2008). Disrupted complex struc-
tural connectivity (SC) network was suggested to serve as 
anatomical evidence to support the functional abnormalities 
in patients with GE (Xue et al. 2014). Notably, deceased 
function–structure coupling of large-scale brain networks 
has been viewed to reflect the long-term impairment of brain 
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in GE (Zhang et al. 2011). In recent years, accumulated stud-
ies have suggested a possibility that dynamics of functional 
connectivity (FC) could be a hot candidate for a biomarker 
in neuropsychiatric disorders, such as schizophrenia (Sako-
glu et  al. 2010) and Alzheimer’s disease (Rubinov and 
Sporns 2011). Moreover, accumulated dynamic FC (dFC) 
researches in epilepsy have also been conducted. Liao et al. 
revealed abnormally changed dFC between resting-state net-
works in patients with idiopathic generalized epilepsy and 
suggested that the features derived from dynamic functional 
network connectivity (dFNC) analysis could be potential 
biomarkers to distinguish patients from controls with a high 
accuracy (Liu et al. 2017). In all, disrupted static FC (sFC), 
SC and dFC have been demonstrated in epilepsy provided 
important evidences to understand the pathomechanism of 
epilepsy.

The synchronization of spontaneous neuronal activity of 
different brain regions is known as functional connectivity 
(FC) (Biswal et al. 1995; Lowe et al. 2000), which captures 
the temporal correlations or statistical dependences between 
brain regions (Sporns et al. 2004). Structural connectivity 
(SC) is sustained by a set of white matter pathway linking 
neuronal units of our brain (Sporns et al. 2004) and can be 
macroscopically estimated using diffusion tensor imaging 
(DTI) (Mori and van Zijl 2002). It has been recognized that 
the SC shapes the diverse patterns of FC and the FC reflects 
the SC architecture of cerebrum (Wang et al. 2015). The 
main divergences and discrepancies between SC and FC 
come from the high flexibility of FC and relative fixation 
of SC (Allen et al. 2014; Chang and Glover 2010). Brain 
regions dynamically integrate, segregate and coordinate 
in different brain states to respond to internal and external 
stimuli. Dynamic FC (dFC) quantifies changes of sFC over 
time and reflects flexibility and variability of information 
interaction between brain regions. Emerging evidence has 
suggested that dFC reveals neural activity patterns associ-
ated with changes in cognition and behavior (Hutchison 
et al. 2013a). However, up to now, it is less studied about 
the association between dFC and sFC in a large-scale brain 
network level. The question of how dFC and sFC associate 
with each other is of considerable theoretical importance. 
And we further propose that investigation of the underlying 
relationship between dFC and sFC in epilepsy might provide 
distinctive clues from a novel aspect to reveal pathological 
features of epileptic brain network.

This study first aims to investigate the SC, dFC and 
sFC alterations in large-scale networks in GE. Second, the 
present work seeks to study the association between dFC 
and sFC and its potential in investigating epileptic brain. 
Notably, a recent study indicated that HRF variability sig-
nificantly affects resting-state FC calculation and suggested 
a neural FC to reduce false positive/negative connectivity 
(Rangaprakash et al. 2018b). The present study will perform 

dFC and sFC using both BOLD and neural time course, try-
ing to provide more reliable results.

Materials and methods

Participants

Eight-three patients (mean age: 22.59 ± 11.18 years; mean 
years of duration: 7.75 ± 8.36; mean age of seizure onset: 
14.84 ± 10.86; all right-handed, 39 males) with GE were 
recruited in the present study. All the patients underwent a 
comprehensive clinical evaluation for the diagnosis of GE 
according to the epilepsy classification of the International 
League Against Epilepsy (Engel and International League 
Against 2001). Detailed demographic and clinical informa-
tion are shown in Table 1. No patients had brain lesions, 
developmental disabilities, or other accompanying neu-
rological disorders. One hundred and six healthy controls 
(mean age: 23.57 ± 10.42 years, all right-handed, 60 males) 
were recruited as a sex- and age-matched control group, and 
all the controls were free from neurological and psychiatric 
disorders. This study was approved by the ethical commit-
tee of the University of Electronic Science and Technology 
of China according to the standards of the Declaration of 
Helsinki, and written informed consent was obtained from 
each subject and their parents.

Data acquisition

All subjects underwent MRI scanning in a 3T GE scanner 
with an eight-channel-phased array head coil (EXCITE, 
GE, Milwaukee, WI) in the Affiliated Hospital of the North 
Sichuan Medical College. Resting-state functional data 
were collected using an echo-planar imaging sequence with 
the following parameters: repetition time (TR) = 2000 ms, 
echo time (TE) = 30  ms, flip angle (FA) = 90°, slice 

Table 1   Clinical characteristics in GE and HC

AED: antiepileptic drug; mFD: mean frame-wise displacement
a The p value was obtained by a two-sample two-tail t test
b The p value was obtained by a χ2 test

Characteristic GE HC p value

Number 83 106 –
Age (year) 22.6 ± 11.2 23.6 ± 10.4 0.54a

Gender (F:M) 39:44 46:60 0.62b

AED (with:without) 66:15 – –
Therapy (single:multiple) 26:40 – –
Age at onset (year) 14.8 ± 10.9 – –
Duration (year) 7.7 ± 8.4 – –
mFD 0.12 ± 0.06 0.08 ± 0.03  < 0.001a
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thickness = 4 mm (no gap), data matrix = 64 × 64, field of 
view = 24 cm × 24 cm, voxel size = 3.75 × 3.75 × 4 mm3, 
and 32 axial slices in each volume. Two hundred and fifty-
five volumes were acquired in each scan. All subjects 
were instructed to close their eyes and relax without fall-
ing asleep during the scan. Axial anatomical T1-weighted 
images were acquired using a three-dimensional fast spoiled 
gradient echo sequence. The parameters were as follows: 
thickness = 1  mm (no gap), TR = 8.2  ms, TE = 3.2  ms, 
field of view = 25.6 cm × 25.6 cm, flip angle = 12°, data 
matrix = 256 × 256. There were 136 axial slices for each sub-
ject. The diffusion tensor image (DTI) data were acquired 
using a single-shot, spin-echo, echo-planar sequence (75 
slices, voxel size 2 × 2 × 2 mm3, 128 × 128 base resolution, 
diffusion weighting isotopically distributed along 64 direc-
tions, b value 1000 s/mm2).

Network construction

The nodes of the brain connectivity network were deter-
mined using a brain atlas proposed by Jiang’s Group (Fan 
et  al. 2016), which segments whole cerebrum into 246 
anatomical regions of interest (ROI, 123 regions for each 
hemisphere). Both the functional and structural connectivity 

networks were constructed based on the atlas, generating a 
246*246 connectivity matrix for each participant. Figure 1 
illustrates the construction of anatomical, static and dynamic 
functional connectivity networks and the further coupling 
analysis.

Structural connectivity network construction

In the present study, Diffusion Toolkit (www.​track​vis.​org/​
dtk/) was used to preprocess DTI data. First, non-brain tis-
sues were eliminated from DTI data using the brain extrac-
tion tool (BET) of the FSL. For each subject, 64 diffusion-
weighted images were registered to a non-diffusion-weighted 
average B0 image (b = 0 s/mm2) using affine transformations 
to correct head movements. To estimate the susceptibility-
induced distortions, two types of images were acquired 
using R/L and A/P frequency directions without any dif-
fusion weighting, which was introduced to the FSL topup 
tool. Then, the effects of distortion induced by eddy currents, 
inter-volume movements and the susceptibility of the diffu-
sion data were corrected using eddy. Linear least-squares 
fitting method was used to estimate diffusion tensor models 
in every voxel using the Diffusion Toolkit.

Fig. 1   Illustration of anatomical, static, and dynamic functional con-
nectivity networks construction and coupling analyses. (1) The 246 
nodes of network are based on a propose atlas. The BOLD time 
course of each sub-regions was extracted and further deconvolved 
into neural activity. (2) The SC connections are defined by the total 
number of streamlines between the two nodes, the sFC weights was 

measured by Pearson’s r coefficients and the dFC index was com-
puted using sliding-window approach (window length = 50 TR and 
step = 1 TR). (3) Coupling analysis was performed using partial cor-
relation and multiple linear regression methods. An indicator named 
NWCP was computed to investigate the coupling relationship at the 
network level

http://www.trackvis.org/dtk/
http://www.trackvis.org/dtk/
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Before constructing structural connectivity network, 
246 nodes of network were defined in native diffusion 
space based on a human brainnetome atlas (Fan et  al. 
2016). Specifically, a warp image was generated by first 
co-registering individual T1-weighted image to diffu-
sion B0 image and then mapped to the ICBM-152 MNI 
T1-template. The ROI template in MNI space was warped 
to individual DTI native space using the inverted warp 
image. Then, for each subject, deterministic tractography 
was performed in the native diffusion space to construct 
whole-brain SC network using the Fiber Assignment by 
Continuous Tracking (FACT) algorithm embedded in 
the Diffusion Toolkit. When reaching a voxel with frac-
tional anisotropy < 0.15 or/and contiguous path segment 
exceeded 35°, the path tracing would stop. The connec-
tivity strength between two nodes was measured by the 
total number of streamlines connecting them. To reduce 
false connectivity, any two nodes with less than three 
streamlines between them were considered to have no con-
nection. Finally, a symmetric and weighted 246*246 SC 
matrix was generated for each subject.

Besides, a structure-restricted connection mask was gen-
erated. Specifically, in each individual, any edges less than 
three connections were set to zero. Then, only the edges 
existed in more than 80% subjects were preserved in the 
group-level SC mask. The SC mask was used to restrict fol-
lowing sFC and dFC matrix.

Functional connectivity network construction

Resting-state fMRI data were preprocessed using the NIT 
software package (http://​www.​neuro.​uestc.​edu.​cn/​NIT.​
html). The first five volumes were discarded to ensure mag-
netic field stabilization. The remaining 250 volumes were 
slice-timing corrected and spatially realigned. Then, the 
functional data were spatially normalized to the standard 
Montreal Neurological Institute space and were resampled 
to 3 mm × 3 mm × 3 mm and smoothed with a Gaussian ker-
nel (8 mm full width at half maximum, FWHM). Finally, 
the linear trend signals, the whole brain mean signal, and 
white matter and cerebrospinal fluid signals were regressed 
out from the smoothed resting-state fMRI data. Any subject 
whose head motion exceeded 2 mm or/or 2° was excluded. 
Given the potential influence of head-motion on connectiv-
ity analysis, 24 head-motion parameters were regressed out 
from the preprocessing images. We performed a band pass 
filter of 0.01–0.1 Hz for the time series in the present study. 
Additional, mean frame displacement (mFD) was calculated 
for every subject and considered as a nuisance in the statis-
tical general linear model. The mFD has been recognized 
as a robust index to measure head-motion, which can be 
calculated by the following equation (Power et al. 2012):

 where M is the length of the time course; x1
i
/x2
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 , y1

i
/y2

i
 and z1

i

/z2
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 are translations/rotations at the ith time point in the x, y, 

and z directions, respectively; and Δdx1
i
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i
− x1
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 , and a 

similar pattern held for the others. Notably, by calculating 
displacement on the surface of a sphere with a radius of 
50  mm, the rotations were converted from degrees to 
millimeters.

Representative BOLD time course in each ROI was 
extracted by averaging the functional time series across 
all voxels in this region. The neural time course was esti-
mated using a blind deconvolution approach (Wu et al. 
2013), which modeled the resting-state BOLD time course 
as event-related response with randomly occurring events 
(Tagliazucchi et al. 2012). More detailed description about 
the blind deconvolution is presented in the supplementary 
materials. This approach is widely accepted and has been 
applied in many published works (Rangaprakash et  al. 
2017a, b, 2018a). Then, both the BOLD and neural time 
course were used for constructing functional connectivity 
network with same process as following. Pairwise corre-
lations in 246 brain regions was calculated using Pearson 
correlation coefficients, generating a 246*246 static connec-
tivity matrix (no duplicate 30,135 edges) for each subject. 
A Fisher-Z transformation was applied to all Pearson cor-
relation coefficient matrix to improve the normality of the 
correlation distribution.

The construction of dFC network was computed using a 
sliding-window correlation method. A 100 s window length 
(L = 50 TR) and a step of 2 s (S = 1 TR) were used, con-
sidering that the window length should be in line with the 
commonly identified slowest frequency of the BOLD signal 
(Leonardi and Van De Ville 2015; Zalesky and Breakspear 
2015). Briefly, for a given voxel, the time series, consist-
ing of 250 time points (F = 250 TR), was segmented at each 
time point by obtaining 201 (W = F−L + 1) sequential time 
windows. The functional connectivity matrix was calculated 
within each segmented window, thus generating 201 func-
tional connectivity matrices. Then, the standard deviation 
(SD) across 201 continuous connectivity matrices was calcu-
lated to represent the temporal variability of functional con-
nectivity. Finally, the SD matrix was z-standardized across 
all the 30,135 edges for the following statistical analysis.

Notably, to validate the dynamics of FC captured in the 
present approach, as suggested previously (Hutchison et al. 
2013a; Hindriks et al. 2016), an additional phase randomi-
zation analysis was conducted in the HC group. To test 
whether the observed dFC exhibits significantly greater tem-
poral variability than simple variability around static FC, we 

mFD =

(
1

M − 1
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http://www.neuro.uestc.edu.cn/NIT.html
http://www.neuro.uestc.edu.cn/NIT.html
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calculated the dFC using phase shuffled surrogate fMRI time 
series in HC group and compared to the observed variabil-
ity. Detailed calculation procedure are as follows. (1) For a 
given region, let x1, x1,…, xn be the time series of n sliding 
windows. Discrete Fourier transformations X1, X2,…, Xn 
are calculated. (2) Multiply the signal’s Fourier transform 
with a random phase X ̃n = X_n e^(iφ_n) where φ_1, …, φ_n 
is a vector of independent stochastic variables that are uni-
formly distributed in the interval [0, 2π]. (3) Perform inverse 
discrete Fourier transformation to X ̃n to yield randomized 
X ̃ of X. Notably, to preserve the static correlation structure, 
the same phase randomization process was performed for all 
regions. (4) Calculate dFC using the phase-random surrogate 
time series. Further comparisons between the variability in 
the observed and phase-random datasets was performed 
using rank-sum tests.

Before following coupling and statistical analyses, all the 
sFC and dFC matrixes were masked using above SC mask, 
that is, only the edges in the SC mask defined before were 
analyzed.

Coupling analysis between dynamic and static FC

Partial correlation calculation was performed between sFC 
and dFC with age and gender as covariates in HC and GE, 
respectively. According to the network definition of Yeo 
et al. and template parcellation of Jiang et al. (Yeo et al. 
2011; Fan et al. 2016), 246 nodes were divided into 8 brain 
networks. Notably, Jiang divided 246 nodes to 7 networks 
of Yeo and 1 unnamed network, which was named subcorti-
cal network (SCN) in the present study. The seven networks 
include visual network (VN), sensorimotor network (SMN), 
dorsal attention network (DAN), ventral attention network 
(VAN), Limbic network (Limbic), frontoparietal network 
(FPN), and default mode network (DMN). Then, network-
level weighted correlation probability (NWCP) was calcu-
lated, which was defined by the following formula:

where Ni, Nj correspond to ith and node jth network accord-
ing to Yeo, and m, n is the node in certain network. The Cm,n 
represents the partial coefficients between the sFC and dFC 
between node m and node n, and Csig is the partial coef-
ficients which is significant (p < 0.05). If i = j, the NWCP 
measures the within-network probability, else, is between-
network probability. Higher the NWCP implies a higher 
probability of association between sFC and dFC within or 
between networks.

Furthermore, the present study wonders to demonstrate 
the potential effects of anatomic link on the association 

NWCPij =

∑
m∈Ni

n∈Nj

Csigm,n

∑
m∈Ni

n∈Nj

Cm,n

between sFC and dFC. Thus, we constructed a general lin-
ear model (GLM) with the dFC as the dependent variable, 
the sFC as the independent variable, and the SC and the 
interaction of SC and sFC as nuisances. The interaction is 
simply expressed by product of sFC and SC. Notably, both 
the SC and interaction variables were z-scored. The regres-
sion coefficient of sFC reflects the association between static 
and dynamic FC under a condition ruling out the anatomic 
support.

Statistical analysis

Structural connectivity statistics

The between-group difference of SC was investigated using 
the FSL software randomise, which is a non-parametric per-
mutation test based on the modeling and inference using 
standard GLM design (Winkler et al. 2014). The patients 
with epilepsy tend to show different levels of abnormalities 
in multimodal neuroimaging analyses. Specifically, epilepsy 
is a neurological disease characterized by significant func-
tional damage with relatively slight structural disturbance. 
The differences of SC were detected using a relatively leni-
ent p-threshold (p < 0.005). Considering the relative loose 
statistic threshold of the SC, to test the reliability of the 
alteration of SC in GE, we employed another classical brain 
atlas (AAL) with 90 cerebral sub-regions.

Functional connectivity statistics

The between-group comparisons of the sFC and dFC were 
performed using the two-sample t test. The p < 0.001 was 
viewed to be significant for the in between-group com-
parisons with a network-level correction by a family wise 
error (FWE p < 0.05) using 1000 times of permutation. The 
detailed process of the network-level correction is presented 
in the supplementary materials. Additionally, significantly 
altered SC, sFC, and dFC measures in patients were cor-
related with their clinical characteristics (disease duration 
and onset of age) with the gender as a nuisance covariate.

The between-group comparison of NWCP was investi-
gated using a permutation test. Specifically, each subject 
was randomly assigned to one of two random groups in per 
permutation and kept same number of subjects as the origi-
nal GE or HC group. Then, difference of NWCP between 
two random groups was calculated with 1000 permutations, 
generating a null distribution of between-group difference. 
Finally, p values were calculated as the proportion of the 
NWCP values from 1000 permutations that are no less than 
the original NWCP values. The significant level for the 
NWCP was set to p < 0.001 with FDR correction.

In the coupling analysis using GLM, a rigorous procedure 
was adopted to identify the significant coupling effect using 
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the following three criteria: (1) the significant estimation 
of the GLM with an F test p < 0.005, (2) the goodness of fit 
depicted by a coefficient of determination R2 > 0.4, and (3) 
the p value of regression coefficient of sFC less than 0.05.

Results

Alterations of streamlines‑defined SC

In the present study, altered anatomic connections were 
observed in the patients with GE compared with HC 
(p < 0.005, uncorrected) (Fig. 2). Predominantly increased 
SC was found in SCN-related connections in patients with 
GE, including the SC within SCN and the connections 
between SCN and DAN, Limbic, FPN and DMN. Decreased 
within-network SC mainly occurred within VN and SMN, 
and between-network connections were found in DMN–VN, 
DMN–SMN, and SCN–Limbic.

Alterations of sFC and dFC

In general, the sFC and dFC derived from BOLD and neu-
ral time course demonstrated highly concordant between-
group differences (p < 0.05 FWE corrected). Thus, following 
results illustration mainly focused on commonly revealed 
alterations, ignoring certain edges only occurred in BOLD 
or neural calculation. Specifically, for the sFC, decreased 
sFC between SCN and DAN was remarkably observed in 
GE (Fig. 3). Decreased sFC within VAN, DAN and SMN, 
and increased sFC within VN were also found. Besides, 
increased sFC between networks were observed in SMN-
DMN, SMN-DNA and SMN-VN. The DMN demonstrate 
both decreased and increased sFC (Fig. 3).

In the validation analysis using phase random approach, 
the observed variability was found to be significantly 
higher than the variability in the phase-random dataset 

(p < 0.05, FDR corrected). These findings demonstrates 
that the observed variability is reliable (Fig. S1). For the 
between-group comparisons of dFC, an uncorrected thresh-
old p < 0.001 was adopted in the present study (Fig. 4). 
Decreased dFC was found within FPN, within VN and 
between FPN and DAN. Increased dFC was also observed 
within DMN and SMN in patients. Besides, increased dFC 
of between-network connections were observed in Limbic-
SCN, DMN-VN and VAN-SMN.

The correlation analysis revealed significant association 
between the connective profiles and clinical features (as 
illustrated in the Supplementary material, Fig. S2, S3).

Coupling relationship between sFC and dFC

Both the BOLD and neural correlation analyses revealed 
predominately negative correlation between dFC and sFC in 
most of the SC-restricted connections in HC and GE group, 
which implied that the antagonistic relationship might be 
a generalized phenomenon between dFC and sFC. And, 
few connections showed positive correlation (Supplemen-
tary material, Fig. S4), thus following NMCP analysis only 
focused on connections with negative correlation values.

Fig. 2   Disturbed SC in patients with GE. Significant alterations were 
observed in SCN- and DMN-related connections. The lines with light 
orange color represent increased connections (a) and the blue lines 
represent decreased connections (b)

Fig. 3   Altered sFC in patients with GE. The sFC alterations were 
detected using BOLD (a and b) and neural time course (c and d)-
derived approaches. The lines with light orange color represent 
increased connections and the blue lines represent decreased connec-
tions. To better convey the main results to a clear extent and keep the 
core findings unchanged, a stricter statistical threshold p < 0.05 cor-
rected with family wise error (FWE) for the sFC was adopted to show 
the results
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As shown in Fig. 5, all within-network NWCP values 
reached very high probability (high than 80%). The NWCP 
in VN-SMN and VN-VAN was zero, which means that the 

dFC of connections between VN and SMN, VAN is totally 
not negative with sFC. Besides, the SCN showed weak 
NMCP with SMN, DAN, FPN, and DMN. The remaining 
between-group NWCP values were remarkably high in both 
groups.

Further permutation tests for investigating between-group 
differences showed decreased NWCP between SCN and 
FPN and DMN, which was accordant in BOLD and neural 
calculation. Besides, BOLD and neural also revealed specific 
alterations between networks (Fig. 6).

Taking the anatomic connections into consideration in 
studying the association between static and dynamic FC, the 
results of multi-regression analysis were illustrated in Sup-
plementary material Fig. S5. Both the HC and GE showed 
negative regression coefficients of sFC in short-range 
connections (most intrahemispheric and a few interhemi-
spheric). This negative association was consistent with the 
findings of partial correlation revealed above.

Discussion

The present study investigated the profiles of SC, sFC and 
dFC in patients with GE. Specifically, the sFC and dFC were 
calculated using both BOLD and neural time course. Besides, 
the association relationship between sFC and dFC was studied 
using partial correlation and GLM approaches. The present 
study revealed disrupted anatomical and functional profiles of 
DMN and primary networks, which was inferred to be respon-
sible for epileptogenesis. Besides, predominantly disturbed 

Fig. 4   Altered dFC in patients with GE. The dFC alterations were 
detected using BOLD (a and b) and neural time course (c and d)-
derived approaches. The lines with light orange color represent 
increased connections and the blue lines represent decreased connec-
tions

Fig. 5   Network-level of NWCP 
pattern in HC and GE. Except 
for relative low NWCP in VN- 
and SCN-related between-net-
work connections, both groups 
showed concordant high NWCP 
values within and between 
networks
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connectivity between SCN and high-level networks provided 
evidence to help understand the modulation effects on epileptic 
activities and cognitive dysfunctions of patients. Moreover, 
negative correlation between dFC and sFC was demonstrated 
to be a common phenomenon in large-scale brain networks, 
reflecting the antagonistic relationship between stability and 
variability of brain. Decreased dFC-sFC association in SCN-
DMN, and SCN-FPN implied an imbalance between stability 
and variability in GE, indicating a specific interaction pattern 
among core epileptic networks. The present finding provided 
a novel view to understand the pathological mechanism of 
epilepsy.

Notably, both the BOLD and neural analyses showed 
highly concordant results, even though preserving certain 
distinctions, respectively, which added powerful authentic-
ity to the findings revealed in the present study. A summary 
integrating the concordant findings in core epileptic network 
in two approaches is illustrated in Fig. 7.

Epileptogenic brain characterized by connective 
profiles of DMN and primary networks

As known, the action of DMN is suspended during epi-
leptic discharge period and is recognized to participate the 

Fig. 6   Between-group differences of NWCP. Consistent alterations of 
NWCP were observed in the connections between SCN and FPN and 
DMN in BOLD (a and b) and neural time course-derived approaches 

(d and e). Besides, the distribution of the NWCP in HC and patients 
in permutations was presented using the violin plot (c and f)

Fig. 7   Conclusion for the disturbed connective profiles and antago-
nism between dynamic and static connectivity in core networks in 
GE. The percentage in the figure represents the ratio of the number of 
increased or decreased connections to the total number of altered con-
nections in patients with GE. The blue downward arrow represents 
decreased antagonism between networks
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generation of generalized epileptic activities (Gotman et al. 
2005; Richardson 2012). Accumulated studies have revealed 
disrupted internal functional integration and external func-
tional interaction of DMN in patients with GE (Luo et al. 
2011; Wei et al. 2015). In a word, the DMN has been identi-
fied to have a central role in epileptogenesis. For the connec-
tive profiles within the DMN, the present findings reveled 
disturbed functional integration and hypervariability in GE, 
providing clues to view the epileptogenic role of DMN. Cor-
tical hyperexcitability is a significant signature for epilep-
togenesis and has been supposed to be related with dynam-
ics features (Badawy et al. 2007; Hutchison et al. 2013a; 
Toth et al. 2018; Pawley et al. 2017). Hypervariability of 
FC within DMN potentially keeps in line with the hyperex-
citability view and might contribute to the metastability of 
epileptic brain.

Primary brain dysfunction is a common phenomenon in 
GE, such as motor abnormality, visual aura, photosensitivity, 
and so on (Groppa et al. 2008; Bartolini et al. 2014). Actu-
ally, accumulated neuroimaging evidences have suggested 
abnormal connectivity of primary networks in common epi-
lepsies (Wang et al. 2011; Cao et al. 2014). Decreased ana-
tomical and functional connectivity within SMN observed 
in the present study implied insufficient information integra-
tion in patients with GE. Besides, internal hypervariability 
of SMN further implied a vulnerable state potentially cor-
responding to the motor abnormality. The photosensitivity 
and visual aura indicated potential disturbance of visual 
information processing in GE (Strigaro et al. 2012). Cau-
tiously noted here, internal over-integration of VN might 
be associated with the visual symptoms of patients with GE 
(Brigo et al. 2013).

The DMN is responsible for internal spontaneous activi-
ties and primary networks take charge of the most basic 
information process from external stimulus, which plays 
the most important role for maintaining the fundamental 
state of brain. In the present study, abnormal connective 
profiles between DMN and primary networks were revealed 
in patients with GE. For the DMN, missing anatomic links 
with primary networks, stronger functional interactions with 
SMN, and weaker connectivity with VN were observed, 
which suggested disturbed information communication 
between DMN and primary networks. The decreased SC 
between DMN and SMN implied a possible anatomic path-
way involved in the propagation of epileptic activities and 
deteriorated with the recurrent seizures. Moreover, on one 
hand, the over-interaction between DMN and SMN might be 
related with motor abnormality during seizures, on the other 
hand, it might create a condition more conducive to epilep-
togenesis in turn. Besides, attenuated static interaction and 
hypervariability of connectivity between DMN and VN were 
also observed in the present study. As demonstrated in the 
present findings, the SMN and VN demonstrated different 

connective profiles with DMN, suggesting specific involve-
ment in GE.

Modulation role of SCN in the epileptic brain

In recent years, the SCN was widely recognized to be an 
effective modulator on epileptic activities (Luo et al. 2012; 
Vuong and Devergnas 2018; Miyamoto et al. 2019). The 
modulation effect of SCN is mainly realized by regulating 
the information interaction pattern between the cerebral 
networks directly or indirectly (Szaflarski et al. 2010). The 
thalamus and basal ganglia are the two most important sub-
cortical regions. There is no doubt that the thalamus is a 
core region in the thalamocortical circuit in GE and widely 
and complexly connects with cerebral cortex during distinct 
epileptic actions (Gotman et al. 2005; Mishra et al. 2011; 
Jiang et al. 2018). Physiological and biochemical studies 
have indicated that the basal ganglia regulates the excitation 
and inhibition level of the cerebral cortex through the GABA 
system, which may be an important way to regulate the epi-
leptic activities (Deransart et al. 1998; Chen et al. 2015). 
It has been suggested that striatum-modulated thalamocor-
tical communication was associated with the susceptibil-
ity to secondary seizure generalization across multi brain 
networks (He et al. 2020). Besides, previous large-scale 
structural network analysis revealed disrupted topological 
organization of SCN in childhood absence epilepsy, sug-
gesting an imperative focus on connective profiles of SCN 
in epilepsy (Xue et al. 2014). Consistently, the present work 
also revealed disturbed anatomic and functional connectiv-
ity between SCN and wide cerebral cortex, which further 
supported its high involvement in the long course of the 
disease. Specifically, stronger anatomical links and weaken 
functional interaction were observed in patients, implying 
that the SCN demonstrated a possible counter balance when 
communicating with epileptic networks. Moreover, the cur-
rent work further provided evidence to suggest a state of 
hypervariability of SCN, which accords with its status as an 
engaged modulator in GE.

With long-term and recurrent seizures, the connective 
characteristics of SCN are proposed to be adaptively altered 
and contribute to corresponding individual behavior. In fact, 
except for responsible for epileptic activities, abnormal 
interaction between SCN and specific cortical regions was 
inferred to contribute to abnormal cognitive processing (Cer-
liani et al. 2015; Li et al. 2012). In GE, the SCN-modulated 
networks and the high-level networks overlapped signifi-
cantly, thus the modulation of SCN on epileptic activities 
might disturb the activity of high-level networks and fur-
ther affect the cognitive functions of patients. In the present 
study, it was found that the abnormal connectivity of the 
SCN was mainly connected to high-level networks. Weaker 
functional connectivity and hypervariability of interaction 



1432	 Brain Structure and Function (2021) 226:1423–1435

1 3

between SCN and cognitive networks suggested an insuf-
ficient and unstable communication pattern in patients with 
GE, reflecting the potential effects of SCN on cognitive 
functions. Besides, reinforced anatomic connectivity in epi-
lepsy is usually considered a compensation for decreased 
functional interaction (DeSalvo et al. 2014; Dong et al. 
2016), which could partially interpret the stronger anatomic 
links observed in current study. In all, our findings provided 
a possible view to reveal the potential network mechanism 
of the modulation of SCN on epileptic activities and cogni-
tive functions.

Even though there is no cognitive assessment in this work, 
previous studies have provided accumulated evidence sug-
gesting cognitive impairment in GE (Chowdhury et al. 2014; 
Abarrategui et al. 2018). A previous study revealed that the 
altered connectivity between motor cortex and prefrontal 
cognitive cortex might be the underlying mechanism of cog-
nition-induced motor abnormalities (Vollmar et al. 2012). In 
the present study, abnormal interaction between high-level 
and primary networks suggested abnormal integration and 
separation of information flow in patients with GE. Besides, 
hypovariability of functional interaction between high-level 
networks indicated inflexible communication, which might 
also be responsible for the cognitive dysfunction.

Disturbed antagonism between dynamic and static 
FC in core epileptic networks

In the present study, the antagonism effect between dynamic 
and static FC was significantly revealed in the HC group. It 
was found that the dFC is negatively correlated to sFC, that is, 
the stronger sFC is, the less dynamic it is. The stronger the sFC 
between two regions, the greater the probability that they will 
be the same functional module. Previous studies have found 
that the sFC within the same module is high, while the dynam-
ics of connections within the same module is very low (Hutch-
ison et al. 2013b). Besides, the functional connections within 
the rich club exhibit great stability and the variability of con-
nections between nodes in rich club and other non-rich clubs 
is usually high (Shen et al. 2015). The low variability within 
modules is mainly to maintain the internal information integra-
tion of a cohesive functional system, while the high variability 
between modules corresponds to the flexible communication 
between multiple functional brain networks (Zalesky et al. 
2014). These collective findings implied that the dFC shows 
a weakening trend with the increase of sFC strength, which is 
consistent with our current findings. The essence of dFC is the 
spontaneous alternation appearance of multi-stable patterns in 
accordance with certain rules, while sFC is the average per-
formance of multiple states across complex spatio-temporal 
phenomena (Hutchison et al. 2013c; Allen et al. 2014; Preti 
et al. 2017). The preservation of antagonistic effects only in 
intrahemishereic short-range connections after regressing 

out the SC indicated the support role of the anatomic links in 
long-range connections. A previous study also revealed that 
longer range functional connections of the brain tend to be 
more dependent on structural connections (Shen et al. 2015). 
Stability and variability are two distinct aspects of functional 
interaction, reflected by the sFC and dFC, and mutual sup-
port and restraint each other. The balance of the level of dFC 
and sFC should be important for maintaining the stability and 
variability of brain.

In patients with GE, as discussed above, the DMN is rec-
ognized as a network involved in epileptic generation and 
propagation (Dong et al. 2016; Gotman 2008b). During the 
generalization, the thalamus played a crucial role in ampli-
fying epileptic activities and spreading it to broader cerebral 
cortex (Gotman et al. 2005; Jiang et al. 2018), forming the 
well-known thalamocortical circuit responsible for underlying 
pathomechanism of GE. Using a 1 year of follow-up study, 
Wang et al. have revealed that the connective profiles in the 
thalamocortical loop is distinct in drug-resistant and seizure-
free patients (Wang et al. 2019). Another structure of SCN, the 
basal ganglia has been recognized to present a potential modu-
lation effect on epileptic actions (Loddenkemper et al. 2001; 
Miyamoto et al. 2019; Vuong and Devergnas 2018). It is worth 
noting that the FPN is one of the most frequently involved 
networks in epilepsy (Gotman 2008a; Laufs 2012; Carney 
et al. 2012). In the study of Wang et al., it also suggested that 
frontocentral networks might play a relay role in propagating 
abnormal activities to extended territories. Besides, marked 
thalamocortical imbalances was implied to contribute to the 
development of the disease. Specifically, the angular gyrus 
(an important node of the DMN) was involved in the imbal-
ance. In the present study, the decreased dFC-sFC association 
in SCN-DMN and SCN-FPN implied imbalance of stability 
and variability, which might be the potential cause or result of 
the intrinsic epileptic state characterized by the imbalance of 
excitation and inhibition. We further speculated this alteration 
might be a crucial brain functional feature to reflect the spe-
cific interaction pattern among epileptogenesis, propagation, 
and modulation networks. An epileptic brain system composed 
of DMN, SCN and FPN was prudently proposed here trying 
to illustrate the network mechanism underlying generation, 
propagation and modulation of epileptic activities. In a word, 
our findings provide new clues to understand the pathomecha-
nism of epilepsy from the abnormal association between dFC 
and sFC, which might be a useful indicator to investigate the 
pathomechanism underlying epilepsy.

Limitations

Using the BOLD and neural connectivity approaches to 
investigate the functional connective profiles in patients 
with GE, our work mainly focused on the consistent 
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findings revealed by two of them. Although the two meth-
ods reveal similar results to a large extent, there are some 
differences between BOLD and neural time course-derived 
connectivity, which could be partially explained by the 
variability of HRF from a notion in a previous study (Ran-
gaprakash et al. 2018b). Because of the methodological 
limitations of blind deconvolution, to avoid excessive 
inference, the present study did not discuss the distinct 
findings of two approaches. The difference between BOLD 
and neural connectivity might imply some specific and 
meaningful information in epilepsy, which needs to be 
elucidated in future studies.

Conclusion

In summary, using BOLD and neural time course-derived 
methods, the patients with GE showed disturbed functional 
and structural connectivity predominately in DMN- and 
SCN-related connections, involving primary and high-
level networks. Besides, antagonism (negative correla-
tion) between dFC and sFC was identified as a common 
phenomenon in the large-scale network. Decreased antago-
nism between dFC and sFC in the connections between 
DMN and SCN, FPN implied imbalanced stability and 
variability in epileptogenesis, propagation, and modulation 
networks. The present study suggested that the coupling 
relationship between dFC and sFC might be a potential 
indicator to characterize functional abnormality related 
with epileptic actions.
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