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A B S T R A C T   

Background: Brain dynamics abnormalities in the triple-network, which involves the salience network (SN), the 
default mode network (DMN) and the central executive network (CEN), have been reported in schizophrenia. 
However, it remains to be clarified how antipsychotics affect dynamic functional connectivity (DFC) within the 
triple-network and whether differences in clinical outcomes are associated with varying levels of network model 
dysfunction. 
Methods: Resting-state functional magnetic resonance imaging scans were obtained from 64 first-episode 
schizophrenia patients (SZ) and 67 healthy controls (HC). All patients were scanned before and after 12-week 
antipsychotic treatment and the HC were scanned only at baseline. 
Results: At baseline, SZ participants showed significantly reduced dynamic functional interactions across the 
triple-network compared to HC. The SZ group displayed a pattern of reduction in resting-state DFC among the 
triple-network compared with HC. After medication, the mean dynamic network interaction index (dNII) value 
was improved. A significant quadratic relation was observed between longitudinal change of mean dNII and the 
reduction ratio of PANSS total score within the SZ group. The DFC within inter-network (between DMN and SN, 
and between DMN and CEN) and intra-network connections of DMN were significantly higher relative to 
baseline. Intra-SN DFC, intra-DMN DFC and DFC between SN and DMN were found to be predictive of clinical 
features at baseline. Intra-CEN DFC and DFC between DMN and CEN were predictive of treatment response. 
Conclusions: Aberrant brain dynamics in the triple-network could be regulated with medication. DFC organiza-
tion in the triple network was found to predict the clinical outcome.   

1. Introduction 

Schizophrenia is a complex mental illness that manifests in multiple 

symptom dimensions including psychotic symptoms, cognitive impair-
ments and emotional dysregulation with a lifetime prevalence of 
approximately 1% (Dixon, 2017; van der Meer et al., 2010). The disease 
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is characterized by a typical onset in late adolescence or early adult-
hood, poor recovery outcomes and a significantly reduced life expec-
tancy (Charlson et al., 2018; Jaaskelainen et al., 2013; Laursen et al., 
2014). With the rapid development of neuroimaging technology, re-
searchers have turned to the exploration of large-scale brain networks. 
There is growing consensus that the neurobiology of psychosis involves 
aberrations of various cognitive functions and associated brain network 
systems (Dong et al., 2017; Jiang et al., 2018; Menon, 2011). However, 
many studies lack a theoretical framework specifying how functional 
abnormalities in neural networks that underlie human cognition leading 
to the psychotic symptoms. 

Recently, a unifying triple-network model (Bressler and Menon, 
2010; Menon, 2011) has been proposed as a common framework for 
understanding dysfunctional brain dynamics across neuropsychiatric 
disorders. The model involves three core networks: the default mode 
network (DMN), the central executive network (CEN) and the salience 
network (SN). The DMN is thought to play an important part in internal 
self-referential processes and is characterized by being activated in a 
resting (task-free) state and deactivated when cognitive tasks need to be 
performed (Andrewshanna, 2012). The main components of the DMN 
include the posterior cingulate cortex (PCC), the medial prefrontal 
cortex (MPFC), the angular gyrus (AG) and the medial temporal gyrus 
(MTG). The CEN, represented by the dorsolateral prefrontal cortex 
(DLPFC) and the posterior parietal cortex (PPC), is most active in tasks 
that require attention and executive functions (Menon and Uddin, 
2010). In general, cognitive states that activate the CEN usually inacti-
vate the DMN, and vice versa. Finally, the SN is thought to be crucial in 
‘switching’ between the CEN and DMN. A study comparing 193 studies 
in more than 7000 patients across 6 diagnostic groups including 
schizophrenia showed a feature of gray matter reduction in the medial 
frontal regions, insula, thalamus, hippocampus and amygdala and an 
increase in gray matter in the striatum (Goodkind et al., 2015). A 
transdiagnostic pattern of gray matter loss in the anterior insula (AI) and 
dorsal anterior cingulate cortex (dACC) was identified across psychiatric 
patients, which are core parts of the salience network involved in the 
detection and identification of external saliency and internal mental 
events, reallocating brain resources for information processing (Menon, 
2019; Menon and Uddin, 2010; Seeley et al., 2007; Sridharan et al., 
2008; Supekar et al., 2019; Young et al., 2017). Abnormal integration of 
information among these three networks may help us understand the 
relationship between impaired cognition and psychiatric symptoms 
across multiple brain disorders. 

Many imaging studies have shown aberrant functional connectivity 
among the DMN, CEN and SN in patients with psychiatric disorders 
(Jiang et al., 2019; Liu et al., 2017; Wang et al., 2017). However, most 
studies focus on static measurements of functional connectivity (FC), 
while emerging evidence suggests that network connectivity manifests 
time-varying properties (Di and Biswal, 2013; Liu and Duyn, 2013; Luo 
et al., 2019). Dynamic functional connectivity (DFC) analysis may 
capture these time-varying properties of brain network interactions 
(Calhoun et al., 2014), which are ignored in static FC analyses. Zhang 
et al. (2016) proposed that temporal variability reflects the dynamic 
reconfiguration of a brain region into distinct functional modules at 
different times. Their work indicated opposing temporal variability 
patterns in schizophrenia and autism, compared with respective controls 
(Zhang et al., 2016). DFC analysis of functional interactions across the 
DMN, SN and CEN may provide a more comprehensive framework to 
improve our understanding of the neural mechanisms of mental illness 
(Damaraju et al., 2014; Supekar et al., 2019). 

Several studies utilizing DFC approaches have reported abnormal-
ities in brain dynamics among the DMN, CEN and SN and their rela-
tionship to psychosis in schizophrenia patients (Lancaster and Hall, 
2016; Supekar et al., 2019; Wang et al., 2016). A recent study using 
resting state fMRI found that compared to healthy subjects, schizo-
phrenia patients showed significantly reduced, less persistent, and more 
variable dynamic functional interactions across these three networks. In 

both of two independent cohorts, dynamic measures of functional in-
teractions were correlated with positive symptoms, while there was no 
correlation with negative symptoms (Supekar et al., 2019). These find-
ings suggest a role for dysregulated triple-network brain dynamics in 
schizophrenia. All the same, researchers have yet to determine whether 
levels of triple-network dysfunction relate to differences in outcome and 
if so, how triple-network dynamics change after antipsychotic 
treatment. 

To clarify abnormalities in triple-network brain dynamics and their 
relation to psychosis and clinical outcomes in schizophrenia, we 
employed a DFC analysis of task-free fMRI data of 64 schizophrenia 
patients at baseline and after 12-week follow-up. We hypothesised that 
triple-network DFC organization at baseline may be predictive of clinical 
outcome and that impairments in the dynamic balance among the DMN, 
CEN, and SN may be restored to a certain extent following antipsychotic 
treatment. 

2. Materials and methods 

2.1. Participants 

This study included 64 drug-naive, first-episode schizophrenia pa-
tients (SZ), aged 16 to 40 years and 67 healthy controls (HC). The pa-
tients were recruited from the inpatient ward and outpatient department 
at the Shanghai Mental Health Center (SMHC). Diagnosis of schizo-
phrenia was verified using Diagnostic and Statistical Manual of Mental 
Disorders, 4th edition, (DSM-IV) criteria. Exclusion criteria included the 
following: 1) major medical conditions including neurological disorders; 
2) a history of head trauma; 3) current drug or alcohol abuse or 
dependence; 4) current pregnancy or breastfeeding; 5) an unstable 
clinical state including aggressive behavior; 6) meeting other mental 
disorder criteria according to the DSM-IV; 7) electroconvulsive therapy 
or transcranial magnetic stimulation within the last six months; or 8) 
contraindications to MRI scanning. Following the baseline MRI scan, all 
patients were treated with second generation antipsychotics (SGAs). The 
choice of drug and dose were managed by their clinical psychiatrists. 
The Positive and Negative Syndrome Scale (PANSS) was used to assess 
symptoms (Kay et al., 1986) by the same researcher at baseline and at 
12-week follow-up. Treatment response, measured as the reduction ratio 
in PANSS total score, was defined as follows (Howes et al., 2017; 
Obermeier et al., 2010): 

ΔPANSS =
PANSSt1 − PANSSt2

PANSSt1 − 30
× 100% 

67 HC matched on age, gender, education and handedness were 
recruited from the Shanghai Mental Health Center through online 
advertisement. They were screened by the Mini-International Neuro-
psychiatric Interview (M.I.N.I.) plus v 5.0 (Sheehan et al., 1998). The 
same exclusion criteria used for patients were also applied to HC. In 
addition, HC with any mental illness history or a family history in a first- 
or second-degree relative were also excluded. 

The SZ patients underwent MRI at both baseline and the follow up 
while the controls only underwent MRI scans at baseline. All patients 
finished MRI scan and the clinical assessment. All participants contrib-
uted voluntarily to the study and signed written informed consents. The 
study was approved by the Institutional Review Board of Shanghai 
Mental Health Center. 

2.2. Imaging data acquisition and preprocessing 

The fMRI data were acquired in a Siemens Verio 3.0 T MRI scanner at 
the Shanghai Mental Health Center. Resting-state fMRI images were 
obtained using a gradient-echo (GRE) echo-planar imaging (EPI) 
sequence with the parameters as follows: TR = 2 s, TE = 30 ms, matrix =
74 × 74, flip angle = 77◦, field of view = 220 mm, voxel size = 2.97 ×
2.97 × 3 mm3, slice thickness = 3 mm, and 50 slices without slice gap. 
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Totally, 240 volumes were obtained in 480 s. Data preprocessing steps 
were consistent with our previous studies (Jiang et al., 2017) and details 
are provided in the Supplement. 

2.3. Definition of the triple-network of DMN, CEN and SN 

Consistent with our previous study (Jiang et al., 2017), the triple- 
network was identified using seed-based FC analysis. The coordinates 
of seeds were from previous literature. The seed coordinates (− 5, − 49, 
40) for the DMN were selected from a meta-analysis of anticorrelations 
during task performance (Fox et al., 2005). The seed for the CEN used 
the peak voxel coordinates (48, 18, 17) from an area with significant 
group differences between controls and schizophrenia patients (Whit-
field-Gabrieli et al., 2009). The seed coordinates (38, 22, − 10) for the SN 
is based on a previous study (Wotruba et al., 2014) The 8-mm spheres of 
the three coordinates were used as the seed regions for the DMN, CEN 
and SN separately. Voxel-wise functional connectivity (FC) analyses 
were performed to define the mask of the triple-network. Pearson’s 
correlation coefficients were calculated between the time series of each 
seed and that of whole brain voxels, and then transformed into Fisher z 
scores. This yielded a FC z map of each seed and each subject. Finally, 
one sample t-tests were performed on the FC z maps to identify the re-
gions exhibiting significantly positive connectivity with the seed. After 
multiple comparisons correction (p < 0.05, FDR correction), the peaks of 
clusters were considered as nodes of the triple-network. A total of thir-
teen nodes were included in this study (see Supplementary materials: 
Table S1). 

2.4. Functional interactions across the triple-network 

Dynamic cross-network interactions were estimated using dynamic 
FC analysis. Our dynamic FC approach was similar to prior studies 
(Supekar et al., 2019) and is briefly described here (see Supplement for 
details). First, functional interactions across the DMN, CEN and SN were 
estimated using a sliding window strategy. Second, group-specific brain 
functional states exhibiting distinct dynamic triple-network interactions 
were identified using a group-wise k-means clustering approach. Third, 
similar to previous studies (Supekar et al., 2019), we calculated the 
mean lifetime of each brain state to reveal the dwelling time of dynamic 
brain states for each subject. Fourth, we assessed the brain network 
interaction index (NII), which reflects functional interactions across the 
three networks (Menon, 2019; Menon and Uddin, 2010). The NII is 
calculated as the difference between the FC(SN, CEN) and FC(SN, DMN), thus 
capturing the degree to which the SN transiently connected with the 
CEN and separated from the DMN (Greicius et al., 2003; Supekar et al., 
2019). As the SN and the CEN are typically co-activated during cognitive 
tasks, while the SN and the DMN are typically anti-correlated, the NII is 
defined as following equation: 

NII = FC(SN,CEN) − FC(SN,DMN)

The FC(SN, CEN) is the functional connectivity, measured by the Fisher 
z-transform of Pearson’s correlation coefficient between the time series 
of the SN and the CEN. The FC(SN, DMN) is the functional connectivity, 
measured by the Fisher z-transform of Pearson’s correlation coefficient 
between the time series of the SN and the DMN. A larger NII reveals 
more segregation of functional interactions in the CEN-SN-DMN triple 
network. Here, we used the brain state–specific dynamic network 
interaction index (dNII) to further represent interactions across the 
networks in each dynamic brain state (Supekar et al., 2019). Specif-
ically, the NII of each sliding window was calculated to yield time- 
varying NIIs. Subsequently, the averaged NIIs for the windows in cor-
responding brain state were computed as dNII. Next, we computed the 
mean value and variability (measured by standard deviations) of dNIIs 
of each subject across all dynamic brain states. Two sample t-tests were 
used to examine the difference between pre-treatment schizophrenia 

and HC and paired t-tests were used to investigate longitudinal changes 
after treatment. 

2.5. Dynamic functional connectivity analysis 

In addition to the dynamic functional interactions among the DMN, 
CEN and SN, we also investigated the sliding window dynamic FC (DFC) 
between any two nodes within the triple-network. Specifically, the FC 
between any two nodes was calculated for each sliding window. This 
yielded a series of time-varying FCs across all windows. The DFC was 
computed based on the standard deviations of time-varying FCs. 

2.6. Statistical analysis 

Two sample t-tests were performed to compare the differences in 
mean lifetime of dynamic brain states, dNII, and DFC between pre- 
treatment schizophrenia patients and controls. Paired t-tests were used 
to assess changes in the mean lifetime of brain states, dNII, and DFC 
between post-treatment and pre-treatment schizophrenia groups. The t- 
tests were conducted after controlling for the influence of age, sex, ed-
ucation and frame displacement of head motion. 

Some priori studies suggest that there may be a nonlinear relation-
ship between brain imaging indicators and clinical symptoms，such as 
the relation of the maturation of striatal connectivity with core deficits 
in motor and inhibitory control, impulsivity, and inattention, and dy-
namic associations between frontostriatal white matter integrity and 
delay of gratification skills (Achterberg et al., 2016; Barber et al., 2019). 
Therefore, an exploratory analysis was performed to investigate dy-
namic FC measures for potential associations with clinical symptoms, 
using a both linear and quadratic curve estimation model to assess mean 
values and variability of dNII for relevance with PANSS scores. 

2.7. Predicting clinical features and treatment outcomes via machine 
learning 

To examine whether DFCs within the triple-network could predict 
individual symptoms (PANSS scores at baseline) and clinical outcomes 
following antipsychotic treatment (PANSS reduction at follow-up), 
baseline DFCs were selected as features entered into a support vector 
machine (SVM) supervised multivariate regression model 
(https://www.csie.ntu.edu.tw/~cjlin/libsvm). A feature-selection pro-
cedure was further conducted using a stepwise linear regression during 
SVM training. Leave-one-out cross-validation (LOOCV) was used to 
validate the robustness and reliability of the model (Li et al., 2018; Shen 
et al., 2017). Specifically, in each cross-validation iteration, one sub-
ject’s data was selected as a test set, using the remaining subjects’ data as 
a training set to build the SVM regression model. The data of the subject 
who was left out was then used as input into the trained SVM regression 
model, yielding a prediction value. Repeating this procedure, the 
LOOCV produced a prediction for each subject. Finally, we used Pear-
son’s correlation analysis to assess the association between the predicted 
values and observed true values. Statistically significant (p < 0.05) 
correlations would suggest that triple-network DFCs were predictive of 
clinical response following medication. 

3. Results 

3.1. Demographics 

Table 1 lists the participant’s demographic and clinical features. All 
subjects were right-handed. No significant difference was observed be-
tween the SZ and HC groups in age, sex, or education level. There was a 
significant difference in PANSS total and subscale scores between pre- 
and post- antipsychotic treatment (Table 2). 

Y. Wang et al.                                                                                                                                                                                                                                   

https://www.csie.ntu.edu.tw/~cjlin/libsvm


Schizophrenia Research 236 (2021) 29–37

32

3.2. Antipsychotic treatment 

All the patients were treated with atypical antipsychotics. Forty pa-
tients(62.5%) received monotherapy: olanzapine (n = 15), risperidone 
(n = 7), amisulpride (n = 7), paliperidone (n = 6), aripiprazole (n = 4), 
and quetiapine (n = 1); and twenty-four patients (37.5%) received 
combined medication: aripiprazole and olanzapine (n = 8), risperidone 
and olanzapine (n = 4), amisulpride and olanzapine (n = 3), aripipra-
zole and paliperidone (n = 2), quetiapine and paliperidone (n = 2), 
risperidone and quetiapine (n = 1), aripiprazole and quetiapine (n = 1), 
ziprasidone and olanzapine (n = 1), ziprasidone and aripiprazole (n = 1) 
and olanzapine and quetiapine (n = 1) (see Supplement for details). The 
average dose in chlorpromazine equivalence (CPZ eq) was 442.11 ±
195.64 mg/day (Leucht et al., 2016). 

3.3. Dynamic functional interactions across the triple-network 

Dynamic functional interactions among the triple-network were 
measured using a DFC approach. There were eight states (temporal 
clusters) in the SZ group (Fig. 1A) at baseline (SZt1), four states at 
follow-up (SZt2) (Fig. 1B) and two states in the HC group (Fig. 1C). We 
compared the mean lifetime of dynamic brain states between the SZt1, 
SZt2 and HC groups (Fig. 1D). At baseline, the mean lifetime of state 1 

and state 2 in the HC group was significantly longer than that of the 
eight states in the SZt1 group (p < 0.0001). After medication, the mean 
lifetime of corresponding brain states was significantly extended (SZt2- 
SZt1, p < 0.0001). 

We next compared the mean value (Fig. 1E) of dNIIs in all dynamic 
brain states between SZt1, SZt2, and HC. At baseline, the mean value of 
dNIIs across dynamic brain states was significantly lower in the SZt1 
group than in the HC (p = 0.016). After treatment, the mean value of 
dNIIs in the SZt2 group was significantly higher than in the SZt1 group 
(p = 0.022). We also compared variability in dynamic functional in-
teractions in the triple-network between the SZt1, SZt2, and HC groups 
(Fig. 1F). Compared with HC, SZt1 showed greater variability in dNIIs 
across brain states, indicating that functional interactions are more 
variable in SZ than healthy controls (p < 0.0001). However, the 
increased variability of dNIIs in the SZ patients did not significantly 
change after treatment (p = 0.594). 

3.4. Relationship between dynamic functional interactions and clinical 
outcomes 

We found a significant quadratic relation between longitudinal 
change in mean dNII and the reduction ratio in PANSS total score after 
treatment (F = 7.49, p < 0.001) (Fig. 2). There was no significant linear 
or quadratic correlation between dynamic functional interactions and 
positive or negative symptoms either at baseline or at follow-up (all p 
values >0.05). 

3.5. Changes in DFC within the triple-network 

This study identified thirteen triple-network nodes, including six 
DMN nodes of the medial prefrontal cortex (MPFC), posterior cingulate 
cortex (PCC), bilateral angular gyrus (AG) and bilateral middle temporal 
gyrus (MTG); four CEN nodes of the bilateral dorsolateral prefrontal 
cortex (DLPFC) and inferior parietal lobule (IPL); and three SN nodes of 
the anterior cingulate cortex (ACC) and bilateral insula (INS) (Table S1, 
Fig. 3A). Baseline comparisons between the SZt1 and HC groups indi-
cated that the SZt1 group displayed a pattern of reduction in DFCs of 
some connections of the triple-network (p < 0.05, uncorrected) 
(Fig. 3B). Specifically, the DFCs between the DMN and SN (AG.L-ACC), 
between the CEN and SN (IPL.R-ACC), and intra-DMN (MPFC-MTG.L, 
and MPFC-AG.R) were lower in the SZt1 group compared to the HC 
group. No increased DFC was found in the SZt1 group. Longitudinal 
comparison between SZt1 and SZt2 showed that after 12 weeks of 
antipsychotic medication, the DFCs between the DMN and CEN (MTG.R 
- IPL.L), between the DMN and SN (AG.L- INS.R), and intra-DMN (MPFC- 
AG.L) were significantly higher at SZt2 relative to SZt1 (p < 0.05, un-
corrected) (Fig. 3C). No decreased DFC was found in patients at follow- 
up compared with baseline. 

3.6. Prediction of individual symptoms and medication outcomes using 
baseline DFC within triple-network via machine learning 

We found that intra-SN DFC (INS.R-ACC), intra-DMN DFC (MTG.L- 
AG.L) and DFCs between the SN and the DMN (ACC-MTG.L, INS.L-AG.R, 
INS.L-AG.L, INS.R-PCC) were predictive of PANSS total scores (r =
0.611, p < 0.001) at baseline (Fig. 3D). In addition, intra-CEN DFC 
(DLPFC.L-IPL.L) and DFCs between the DMN and the CEN (MPFC-IPL.R, 
MTG.L-DLPFC.R, AG.R-IPL.L, AG.R-IPL.R, MTG.R-IPL.R) were predic-
tive of PANSS reduction (r = 0.539, p < 0.001) after medication 
(Fig. 3E). 

4. Discussion 

This study investigated dynamic functional interactions among the 
triple-network in schizophrenia patients pre- and post- 12 weeks of 
antipsychotic treatment, and developed a model using dynamic FC 

Table 1 
Characteristics for the schizophrenia and health controls.   

Schizophrenia 
(Mean ± SD) 

Health controls 
(Mean ± SD) 

Statistics p 
value 

Number 64 67   
Gender (M/F) 31/33 32/35 χ2 =

0.006  
0.938 

Age (years) 24.69 ± 6.82 24.16 ± 6.07 t = 0.588  0.558 
Education 

(years) 
13.00 ± 3.02 13.64 ± 2.89 t =

− 1.244  
0.216 

Handness 
(left/right) 

0/64 0/67   

DUP (months) 16.25 ± 14.20    
CPZ eq (mg/d) 442.11 ± 195.64    
PANSS- 

reduction 
(%) 

54.61 ± 22.86    

Notes: PANSS, Positive and Negative Syndrome Scale; DUP, Duration of un-
treated psychosis; CPZ eq, Chlorpromazine equivalent doses. Two-sample t-tests 
were used to compare age and education between the two groups, and χ2 test 
was used to compare gender distribution. 

Table 2 
Characteristics for the schizophrenia patients at baseline and after 12-week 
follow-up.   

SZt1 
(baseline) 
(Mean ±
SD) 

SZt2 
(follow- 
up) 
(Mean ±
SD) 

Change 
(Mean ±
SD) 

Statistics p value 

PANSS Total 
scores 

88.22 ±
15.86 

56.64 ±
14.86 

32.09 ±
16.86 

t =
15.227  

<0.001* 

PANSS 
Positive 
scores 

24.05 ±
5.36 

12.31 ±
4.45 

11.73 ±
6.31 

t =
14.883  

<0.001* 

PANSS 
Negative 
scores 

19.77 ±
7.85 

14.70 ±
6.15 

6.29 ±
5.06 

t = 6.440  <0.001* 

PANSS 
General 
scores 

44.39 ±
6.93 

29.64 ±
6.81 

14.75 ±
8.53 

t =
13.836  

<0.001* 

Notes: PANSS, Positive and Negative Syndrome Scale. p values were obtained by 
using paired t-tests. 

* p < 0.05. 
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metrics and machine learning techniques to predict symptomatic 
response after treatment. 

4.1. Dynamic functional interactions across the triple-network 

We examined mean lifetime of dynamic brain states and found eight 
states in the schizophrenia group and two in the control group. The 
mean lifetime of state 1 and state 2 in the HC group was significantly 
longer than that of the eight states in the SZ group at baseline. After 
antipsychotic treatment, the mean lifetime of corresponding brain states 
was significantly extended in SZt2. These results are similar to previous 
studies (Lottman et al., 2017; Supekar et al., 2019), indicating that 
compared with healthy controls, patients show less persistent and more 
unstable brain states, which normalize to some extent after antipsy-
chotic treatment. In this study, dynamic functional interactions across 
the triple-network were found to be altered in first-episode schizo-
phrenia patients as compared to healthy controls at baseline. The 

patients showed significantly shorter and more unstable SN-centered 
functional interactions among the three networks. These abnormalities 
were found to normalize to some extent after antipsychotic treatment, 
with significant increases in mean dNII values, but no significant change 
in the variability of dNII. These results are consistent with a previous 
study (Supekar et al., 2019), suggesting an impairment of integration of 
the SN with the CEN and a de-linked dysfunction of the SN with the DMN 
in schizophrenia which improved after antipsychotics treatment. 
Reduced SN-centered cross-network interactions imply poor integration 
between the SN and the CEN, and decreased separation of the SN with 
the DMN, representing an impaired ability to flexibly and dynamically 
allocate cognition-related processing resources in schizophrenia 
(Menon, 2011; Menon and Uddin, 2010; Sridharan et al., 2008; Supekar 
et al., 2019). Failure to shift attention from the internal self-world to an 
objective external environment properly may hinder the ability to filter 
irrelevant neutral information, thus may lead to core symptoms of 
schizophrenia such as delusion of reference and autistic thinking. 

Fig. 1. Dynamic functional interactions among the triple network. (A) The schizophrenia group at baseline (SZt1) showed eight dynamic brain states (S1 to S8). (B) 
The schizophrenia group at follow-up (SZt2) showed four states (S1 to S4), and (C) The healthy control group (HC) showed two states (S1 to S2). In each brain state, 
the mean lifetime and dynamic network interaction index (dNII) were computed. (D) The mean lifetime of dynamic brain states was significantly shorter in the 
schizophrenia group compared with the HC. After treatment, the mean lifetime of states in the SZt2 group was significantly increased than that in the SZt1 group. (E) 
The temporal mean of dynamic cross-network interaction, assessed using the mean of the dNIIs across brain states, was significantly lower in the schizophrenia group 
compared with the HC group. After treatment, the mean of dNIIs in the SZt2 group was significantly increased than that in the SZt1 group. (F) The temporal 
variability of dynamic cross-network interaction, assessed using the standard deviation of the dNIIs across brain states, was significantly higher in the schizophrenia 
group compared with the HC group. 
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In the current study, we found a significant quadratic relation be-
tween longitudinal change in mean NII and the reduction ratio in PANSS 
total score, indicating an inverted U-shaped pattern in the relationship 
between the dynamic functional interactions across the networks and 
the degree of symptom improvement. The inverted U curve is an 
important concept in developmental economics and psychology (Wiese, 
2017; Xu et al., 2019). It is widely found in the study of relationship 
between motive and effect, pressure and efficiency. The inverted-U 
model is also used to describe a nonlinear relation between brain acti-
vation and cognitive capacity especially working memory load in 
schizophrenia (Eryilmaz, 2016; Snellenberg et al., 2016). The result of 
this study suggests that symptoms improvement is associated with dy-
namic functional interactions across the networks in a specific range, 
and when the difference between NII mean time at baseline and follow 
up reaches the most appropriate value, the best treatment effect is 
achieved. Future researches may further explore the significance of the 
network interaction index (NII) in evaluating treatment outcomes. 

4.2. Dynamic functional connectivity in triple-network 

We examined the dynamic functional connectivity between key 
nodes of the triple-network in schizophrenia patients’ pre- and post- 
treatment utilizing resting state fMRI. By applying sliding window and 
functional connectivity methods, we investigated group differences be-
tween SZt1 and HC, and between SZt1 and SZt2. At baseline, patients 
showed decreased (less variable) DFC between the nodes involving 
inter-network (between DMN and SN and between CEN and SN) and 
intra-network connections of the DMN compared with healthy controls. 
Subsequently, an increased DFC pattern among the triple-network was 
observed at follow up. It is interesting that the longitudinal increases in 
DFC do not involve the same edge connections for which SZ showed 
reductions relative to HC. We infer that perhaps this is not strictly 
network function normalization, but more of a compensatory effect. 

Recently, dynamic functional connectivity approaches have shown 
great promise for exploring the pathogenesis and investigating disease 
biomarkers of schizophrenia (Calhoun et al., 2014; Damaraju et al., 
2014). A small number of longitudinal studies were conducted to assess 

brain network DFC changes after antipsychotic treatment. Similar to 
previous studies (Dong et al., 2019; Duan et al., 2020), our findings of 
decreased FC variability between the nodes in SZ compared with HC 
showed an abnormal dynamic interaction among the triple network and 
suggested a attenuated (less flexible) interaction of core brain networks 
in schizophrenia. After 12-week treatment, we found increased 
between-node DFC, especially for the DMN intra-network DFC. This 
finding suggests that schizophrenia symptom improvement may be 
associated with improved integration in the triple-network, especially 
the intra-network DFC in DMN post-treatment. 

This study points out that triple-network DFC may predict clinical 
features and antipsychotic treatment response in drug-naïve first- 
episode schizophrenia patients. Using machine learning techniques, 
we identified triple-network DFC features that successfully predicted 
clinical features and response to antipsychotic medications. According 
to our findings, DFC features of different nodes in the triple-network are 
predictive of clinical symptoms as evaluated by the PANSS and re-
ductions in clinical symptoms following treatment. The SVR model that 
significantly predicted PANSS total scores included intra-SN and intra- 
DMN DFC, and DFC between the SN and the DMN. Prediction of the 
PANSS total score reduction involved intra-CEN DFC and DFC between 
the DMN and the CEN. These findings suggest that intra-SN DFC, intra- 
DMN DFC and interactions between the SN and the DMN may play a 
more important role in clinical features while intra-CEN DFC and the 
relationship between CEN and DMN may mainly take effect in clinical 
outcomes. Ours is an exploratory result. Further research is needed to 
clarify the value of analyzing network interactions and dynamics to 
predict clinical characteristics and outcomes in patients with 
schizophrenia. 

5. Limitations 

Some limitations of the current study should be taken into account. 
First, patients were scanned pre- and post- treatment while the healthy 
controls participating in this study were scanned only at baseline, so we 
cannot completely exclude other causes of changes in brain imaging. 
Though changes over time were generally considered to be negligible in 
healthy subjects, some alteration such as normal neurodevelopment 
may have occurred. Therefore, a design of scanning at 2 time points in 
health controls is needed in future studies. Second, patients were treated 
with different types of antipsychotic medications in a naturalistic 
treatment and we did not perform analyses to separate drug specific 
effects. Third, the present study did not include neuropsychological 
assessments so we can only conclude that the altered network in-
teractions are associated with patients’ general psychopathology. As a 
next step, we plan to study the three core networks by combining 
resting-state fMRI with assessments of social cognition and neuro-
cognitive functioning. Indeed, this is an exploratory study without prior 
hypothesis and the reliability of the findings still needs further confir-
mation. Future studies could utilize larger samples to examine effects of 
sex, antipsychotic agents, duration of untreated psychosis, and other 
factors that may influence SN and triple-network dysfunction. Longitu-
dinal studies of longer-term follow-up for more accurate information 
about the clinical outcomes are also warranted. 

6. Conclusions 

Using DFC and machine learning analyses, we found that abnor-
malities in dynamic functional interactions among the triple-network 
are prominently featured in first episode schizophrenia. Abnormal dy-
namic functional interactions among the triple-network were found to 
be regulated with symptomatic improvement after medication and DFC 
organization in the triple-network model may predict symptom severity 
and outcome of schizophrenia. The current study supports the hypoth-
esis of an aberrant salience triple-network model of psychosis and ex-
plores its potential role in predicting treatment outcomes. 

Fig. 2. A significant quadratic relation between longitudinal change in mean 
dNII of dynamic brain states and the reduction ratio in PANSS total score in 
patients with schizophrenia after medication. 
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Comprehension of dynamic variation in the triple-network connectivity 
may advance our understanding of the neurobiological mechanisms and 
biomarkers that underlie psychopathology in schizophrenia. 
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Fig. 3. Dynamic functional connectivity within the triple-network. (A) A total of thirteen nodes were identified in the triple network, including six DMN nodes of 
medial prefrontal cortex (MPFC), posterior cingulate cortex (PCC), bilateral angular gyrus (AG) and bilateral middle temporal gyrus (MTG); four CEN nodes of 
bilateral dorsolateral prefrontal cortex (DLPFC), inferior parietal lobule (IPL); and three SN nodes of anterior cingulate cortex (ACC) and bilateral insula (INS). (B) 
Baseline comparison between the SZt1 and HC groups indicated that the SZt1 group displayed a pattern of reduction in the dFC between the key nodes of the triple- 
network. (C) After the 12-week medication, the dFCs were significantly increased in the SZt2 group relative to the SZt1 group. (D) The connectome of intra-SN dFC, 
the intra-DMN dFC and the dFCs between the SN and the DMN could significantly predict the PANSS total scores for schizophrenia patients at baseline. (E) The 
connectome of the intra-CEN dFC and the dFCs between the DMN and CEN could significantly predict the PANSS reduction for schizophrenia patients 
after medication. 
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