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Abstract
Neural oscillations play an important role in the maintenance of brain function by regulating multi-scale neural activity. Char-
acterizing the traveling properties of EEG is helpful for understanding the spatiotemporal dynamics of neural oscillations. 
However, traveling EEG based on non-invasive approach has little been investigated, and the relationship with brain intrinsic 
connectivity is not well known. In this study, traveling EEG of different frequency bands on the scalp in terms of the center 
of mass (EEG-CM) was examined. Then, two quantitative indexes describing the spatiotemporal features of EEG-CM were 
proposed, i.e., the traveling lateralization and velocity of EEG-CM. Further, based on simultaneous EEG-MRI approach, 
the relationship between traveling EEG-CM and the resting-state functional networks, as well as the microstructural con-
nectivity of white matter was investigated. The results showed that there was similar spatial distribution of EEG-CM under 
different frequency bands, while the velocity of rhythmic EEG-CM increased in higher frequency bands. The lateralization 
of EEG-CM in low frequency bands (< 30 Hz) demonstrated negative relationship with the basal ganglia network (BGN). In 
addition, the velocity of the traveling EEG-CM was associated with the fractional anisotropy (FA) in corpus callosum and 
corona radiate. These results provided valid quantitative EEG index for understanding the spatiotemporal characteristics of 
the scalp EEG, and implied that the EEG dynamics were representations of functional and structural organization of cortical 
and subcortical structures.
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Introduction

Neural oscillations play an important role in the maintenance 
of brain function by regulating multi-scale neural activity 
(Fries 2005; Jacobs et al. 2007). The spatiotemporal patterns 
of rhythmic EEG represented how multiple brain regions 
recognize in different brain states (Brovelli et al. 2004; 
Cohen and X, 2017). Previous studies have examined the 
dynamic interactive characteristics of EEG by studying the 
point-to-point connections within local network or between 
different regions (Palva and Palva 2007; Tort et al. 2008). 
Since these rhythmic oscillations were presented as continu-
ous neural patterns in space and time (Freeman et al. 2000; 
Agarwal et al. 2014), characterizing the traveling properties 
of EEG may provide a novel approach for understanding the 
oscillation spatiotemporal dynamics.

Traveling EEG was usually characterized by spatially 
coherent oscillation in specific brain regions and tempo-
rally propagating across the time course (Zhang et al. 2018). 
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There were two hypotheses about the generation of traveling 
EEG: the first was that traveling EEG was associated with 
the corticocortical long axons conduction, with a speed of 
5-15 m/s; the second was that the slower traveling EEG was 
generated from the relatively local and slow-propagation 
oscillations, with a speed less than 1 m/s (Hindriks et al. 
2014). Previous studies of the mechanism of traveling EEG 
studies have mostly focused on the animal models or intrac-
ranial electrode recordings, and one common method was 
based on the phase lag between different neural populations 
or cortical electrodes, which was associated with stationar-
ity of the maximum values of the field distributions. The 
characterizations including wave front shape, traveling 
direction, velocity, were often involved in terms of spatial 
dimensions. It was found that the propagation of EEG in 
visual and somatosensory cortex was functionally impor-
tant to visual perception and movement (Rubino et al. 2006; 
Zanos et al. 2015). Moreover, EEG traveling was proposed 
associating with the short-range feedback in local cortex, 
and had mediation in the thalamocortical circuit (Halgren 
et al. 2019). Therefore, EEG traveling was considered as a 
key mechanism for guiding the spatial propagation of neu-
ral activity and computational processes across the brain 
(Ermentrout and Kleinfeld 2001). However, there has been 
little research on non-invasive traveling waves in human 
brain, mainly because the scalp EEG was greatly affected by 
attenuation and mingling of volume conduction. Therefore, 
instead of focusing on a region or a network, the center of 
mass (CM) was proposed to project all positive or negative 
sites in space onto a central site to characterize the global 
spatiotemporal dynamic of rhythmic EEG (Wackermann 
et al. 1993; Manjarrez et al. 2007). This method, commonly 
termed as vector averaging, has been used in a variety of 
studies in the context of spike activity to detect the source 
and the population firing patterns (Demas et al. 2003; Pren-
tice et al. 2011; Hilgen et al. 2017). Moreover, quantitative 
indicators of EEG traveling, such as lateralization and veloc-
ity, may refine the dynamic patterns of neural oscillations in 
different brain state. The relationship with the resting-state 
functional and structural connectivity may provide basis for 
the traveling properties of scalp EEG.

Simultaneous EEG-fMRI has been valid approach to 
detect the neural representations and the BOLD correla-
tions (Michel and Murray 2012). Resting-state networks 
were intrinsic functional network patterns of brain without 
external stimuli (Biswal et al. 1995), which provided basis to 
maintain stable brain function and respond rapidly to exter-
nal inputs (De Luca et al. 2006; Fox et al. 2006; Greicius 
2008). The lateralization of resting-state network helped to 
balance the resource allocation, and played an important 
role in cognitive processing and healthy brain development 
(Toga and Thompson 2003; Stark et al. 2008; Hugdahl and 
Westerhausen 2010). Moreover, asymmetry of scalp EEG 

rhythm has also been widely reported (Tomarken et al. 1992; 
Bolduc et al. 2003). As the scalp EEG was the summary of 
the cortical activity, we hypothesized that the spatiotemporal 
characteristics of the traveling EEG can be represented by 
the combination of certain intrinsic resting-state networks. 
Moreover, as the traveling EEG wave was associated with 
the corticocortical axons conduction, investigating the rela-
tionship between EEG traveling velocity and the white mat-
ter connectivity based on EEG-MRI fusion may provide 
potential information of structural foundation for the trave-
ling scalp EEG.

In this study, we examined the EEG global spatiotempo-
ral dynamics based on the EEG-CM in different frequency 
bands, and proposed two quantitative EEG indexes, the lat-
eralization and traveling velocity. Moreover, using simul-
taneous EEG and MRI, the association between EEG-CM 
traveling and the combination of resting-state functional 
networks, as well as the white matter structural connectiv-
ity were investigated (Fig. 1).

Materials and Methods

Participants and Simultaneous EEG‑MRI Acquisition

Sixty healthy participants (29 females; mean age: 23.8 years; 
standard deviation: 2.6 years) were recruited in simultaneous 
EEG-MRI recording. This study was performed according 
to the guidelines approved by the Ethics Committee of the 
University of Electronic Science and Technology of China 
(UESTC). MRI data were collected using a 3-T MRI scanner 

Fig. 1  Diagram of the EEG-MRI fusion in this study. After the pro-
cessing of the quantitative EEG-CM traveling, fMRI-based resting-
state network, and dMRI-based FA maps, the relationship between 
EEG-CM traveling and the functional / structural connectivity was 
calculated
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(Discovery MR750, GE) in the Center for Information in 
Medicine of UESTC. High-resolution T1-weighted images 
were acquired using a 3- dimensional fast spoiled gradient 
echo (T1-3D FSPGR) sequence (TR / TE = 5.936 ms / 1.956 
ms, flip angle [FA] = 9°, matrix = 256 × 256, field of view 
[FOV] = 25.6 × 25.6  cm2, slice thickness = 1 mm, no gap, 
152 slices). In addition, diffusion MRI (dMRI) data were 
acquired using a diffusion-weighted, spin-echo EPI sequence 
of 64 directions (2 × 2 ×  2mm3, FOV = 25.6 × 25.6  cm2,TR 
/ TE = 8500 ms / 70 ms, 76 slices, 64 directions, b=1000 s 
/  mm2).

Resting-state fMRI data were acquired using gradient-
echo EPI sequences (TR / TE = 2000 ms / 30 ms, FA = 90°, 
matrix = 64 × 64, FOV = 24 × 24  cm2, slice thickness/gap = 4 
mm/0.4 mm), with an eight channel-phased array head coil. 
A 510 s resting-state scan was collected for each participant. 
Simultaneous EEG data were recorded using a 64-chan-
nel MR compatible EEG cap (Neuroscan, Charlotte, NC) 
according to the 10–20 standard system with a reference at 
the Fcz position. The amplifier (Neuroscan, synAmps2) was 
placed outside the scanning room, and the sampling rate was 
set at 5000 Hz. Electrode impedances were lowered to below 
10 kΩ prior to recording. The EEG recording was synchro-
nized with the MR scanner’s internal clock to ensure the 
removal of the gradient artifacts in the EEG analyses. During 
the recording, all participants were instructed to close their 
eyes and relax without falling asleep.

EEG‑MRI Data Preprocessing

All fMRI data were preprocessed using SPM12 (Statistical 
Parametric Mapping, http:// www. fil. ion. ucl. ac. uk/ spm/) and 
NIT (http:// www. neuro. uestc. edu. cn/ NIT. html) toolboxes. 
The first five volumes were discarded for the magnetiza-
tion equilibrium from all fMRI scans. The remaining images 
were slice-time corrected, and spatially realigned to the first 
volume. All subjects have less than 2 mm for head move-
ment and 2° for head rotation during MRI scanning. The 
individual T1 images were coregistered to the functional 
images, and then segmented and normalized to the Montreal 
Neurologic Institute (MNI) space. Then, functional images 
were spatially normalized using T1-based transformation, 
resampled to 3 × 3 × 3  mm3 voxels, and spatially smoothed 
with a 6 mm full-width half maximum (FWHM) Gaussian 
kernel.

EEG data were preprocessed using Curry 7 software 
(Compumedics Neuroscan). MR gradient artifacts were 
removed by subtracting the averaged artifact template from 
the continuous EEG recordings based on the scanner trig-
gers (Allen et al. 2000); then, the EEG data were bandpass 
filtered (1–45 Hz) and down-sampled to 250 Hz. Here, 
the bandpass filtering was based on an Infinite Impulse 
Response (IIR) band-pass filter. The ballistocardiogram 

(BCG) artifacts were corrected using the OBS-based BCG 
correction using the ECG channel (Niazy et al. 2005). Then, 
we used ICA to manually reject the movement-related and 
residual ballistocardiac artifacts. Finally, the preprocessed 
EEG were re-referenced to the neutral infinite reference 
using Reference electrode standardization technique (REST) 
(Yao 2001; Yao et al. 2019).

Preprocessing for dMRI data was carried out using FSL 
software (http:// www. fmrib. ox. ac. uk/ fsl/). First, dMRI 
images were visually inspected for image quality, and then 
corrected for eddy current and head motion by registering 
the diffusion weighted images to the b0 images. Next, a 
diffusion tensor model was fitted at each voxel to gener-
ate fractional anisotropy (FA) maps. After constructing the 
whole-brain voxel-wise diffusion parameter, individual b0 
images were registered to the individual T1 images using 
rigid transformation. Then, individual dMRI images were 
normalized to the MNI standard space using the T1 trans-
formation matrix. Based on the tract-based spatial statistics 
(TBSS), the transformed FA images of all participants were 
averaged to generate a mean FA image, and then thinned to 
create the white matter skeleton. A non-maximum suppres-
sion algorithm was applied to search the images voxels with 
the highest FA value along the direction perpendicular to the 
local tract surface to create a mean FA skeleton. A threshold 
setting at 0.2 was used to exclude the skelet on voxels prob-
ably containing the gray matter voxels. Finally, the normal-
ized individual FA maps were projected to the mean FA 
skeleton to create individual skeletonized FA maps, which 
were used for the following EEG-MRI fusion analysis.

EEG‑CM Quantitative Indicators: Traveling Velocity 
and Lateralization

In this study, positive CM was calculated with the following 
equations based on the weighted vector averaging method 
(Manjarrez et al. 2007). For each time point, the EEG ampli-
tude of all channels formed the vector mi(t) , and CM is cal-
culated by the position-weighted average of the EEG data 
with positive amplitude.

wherex(t) , y(t) andz(t) are the orthogonal coordinates of CM; 
Ai , Biand Ciare the coordinates of the electrode channel i; 
and mi(t) is the positive voltage of channel i at time point t; 
and N is the electrode number.

(1)

x(t) =

∑

Aimi(t)
∑

mi(t)
, mi(t) > 0, i = 1… .N

y(t) =

∑

Bimi(t)
∑

mi(t)
, mi(t) > 0, i = 1… .N

z(t) =

∑

Cimi(t)
∑

mi(t)
, mi(t) > 0, i = 1… .N

http://www.fil.ion.ucl.ac.uk/spm/
http://www.neuro.uestc.edu.cn/NIT.html
http://www.fmrib.ox.ac.uk/fsl/
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Here, we calculated the EEG-CM of different frequency 
bands, theta (4-7 Hz), alpha (8-12 Hz), beta (13-30 Hz), and 
gamma band (31-45 Hz). According to the instantaneous 
EEG-CM, two quantitative indicators were obtained, i.e., 
EEG-CM traveling velocity and traveling lateralization.

EEG‑CM Traveling Velocity

The traveling velocity of EEG-CM at time point t was com-
puted based on the Euclidean distance between the orthogo-
nal coordinate of EEG-CM at this time point t and that at the 
prior time point t-1. Considering the fact that the source of 
scalp EEG is more likely located in the surface of the grey 
matter, we calculated the CM traveling velocity in the two-
dimensional scalp field:

To calculate the quantitative traveling velocity, we nor-
malized the electrode coordinates to the head model with the 
sphere radius r = 10 cm. Combing the sampling rate of the 
CM trajectory (i.e., 250 Hz in this analysis), the quantitative 
CM traveling velocity, i.e., m/s, was obtained.

EEG‑CM Traveling Lateralization

EEG-CM lateralization was obtained based on the trave-
ling trajectory across left and right hemisphere. The per-
pendicular distance from the EEG-CM to the center on the 
scalp formed the traveling trajectory sequence of the whole-
time course (here, the center was set as the sagittal plane of 
midline), with the positive values when EEG-CM traveling 
in the left hemisphere and negative values when EEG-CM 
traveling in the right hemisphere. Then, the lateralization of 
EEG-CM was calculated based on the following formula:

Here, L(CM)andR(CM)were the area under the curve (AUC) 
of the traveling trajectory sequence on the left and right 
hemisphere across the whole-time course, that is, the AUC 
of the positive values and AUC of the negative values. Then, 
the individual EEG-CM lateralization was obtained.

FMRI‑Based Resting‑State Network Lateralization

FMRI-based resting-state networks (RSNs) were obtained 
according to spatial independent component analysis (ICA). 
Group ICA was conducted in GIFT version 4.0a (Calhoun 
et  al. 2011) (http:// mialab. mrn. org/ softw are/ gift/). ICA 
decomposition generated independence components (ICs) 
with spatially non-overlapping and temporally coupled 
regions, and these regions formed a group of brain intrinsic 

(2)V(CM(t)) =
√

(x(t) − x(t − 1))2 + (y(t) − y(t − 1))2∕dt

(3)BCM =
L(CM) − R(CM)

L(CM) + R(CM)

network patterns. The estimation of ICs was repeated 20 
times in ICASSO (http:// resea rch. ics. tkk. fi/ ica/ icasso), and 
the number of independent components (ICs) was deter-
mined by the Minimum description length (MDL) (Li et al. 
2007). RSNs were identified based on the average power 
spectra and spatial pattern of the components (Luo et al. 
2012).The individual spatial maps and their related time 
courses were acquired using dual-regression back-construc-
tion method, and the participant-specific maps were con-
verted to Z-scores.

Then, standard MNI template was used to make a sym-
metrized template using the warping step, and the spatial 
maps of RSNs of all subjects were normalized to this sym-
metrized template. The group-level spatial maps of the nor-
malized RSNs (one-sample t-test, P < 0.01, FDR corrected) 
were used as the mask, and the lateralization of the RSNs 
was calculated using the following formula:

Here, L(network)andR(network)was the sum of the values in 
left and right hemisphere for one certain RSN, respectively.

Multivariate Regression for EEG‑CM 
and Resting‑State Network Lateralization

In order to evaluate the relationship of EEG-CM traveling 
lateralization with the RSNs, we used a multivariate regres-
sion to link EEG-based and fMRI-based lateralization index:

HereY = [y1, y2 … , yn]
Tdenoted the lateralization of EEG-

CM of all subjects, i.e.,BCM , and X = [X1,X2,… ,Xn]
T

was the explanatory variable consisting of the lateraliza-
tion of the RSNs of all subjects, where Xi = [x1, x2,… , xm]

denoted that subject i had m features in terms of RSNs, 
and� = [�1, �2,… , �m]

Twas the parameter of the regression 
model relative to the explanatory variable; �was the residual 
error.

After the parameters of the linear model was esti-
mated by the ordinary least square method, the statistic 
test was carried out on the linear model (F-test), and stu-
dent t test was also conducted to all the estimated parame-
ters� = [�1, �2,… , �m]

T . This analysis gave us the optimized 
combination of RSNs that was significantly linearly corre-
lated with the EEG-CM lateralization.

Covariation Between EEG‑CM Traveling Velocity 
and DTI‑Based FA Maps

Correlation analysis was performed between the FA maps 
and EEG-CM traveling velocity across subjects. Thus, the 

(4)Bnetwork =
L(network) − R(network)

L(network) + R(network)

(5)Y = X� + �

http://mialab.mrn.org/software/gift/
http://research.ics.tkk.fi/ica/icasso
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voxels of WM fiber that are significantly related to EEG-CM 
traveling velocity were obtained (P < 0.05, FDR corrected).

Results

Resting‑State EEG‑CM Dynamics

After projecting the EEG-CM on the 2D head surface, it 
was found that the trajectory of all frequency bands on the 
scalp was mostly concentrated in the central area. Figure 2 
illustrated a segment of EEG-CM trajectory (20 s) on the 
head scalp. The points demonstrated the traveling loca-
tion of EEG-CM, and the size and color represented the 
traveling velocity of EEG-CM at this moment. Then, the 
averaged traveling velocity across the time course for dif-
ferent frequency bands was compared using the one-way 
repeated measurement analysis of variance (ANOVAs). 
The results showed that there was significant difference 
of EEG-CM traveling velocity among different bands 
(P < 0.001). Moreover, the EEG-CM traveling velocity 
enhanced with the higher frequency bands. Theta band 
demonstrated much lower traveling velocity, at about 
1.2 m/s in group-level. The averaged velocity of alpha 

band in group-level was about 2.4 m/s, while the aver-
aged velocity of beta and gamma band can reach 4 m/s and 
6 m/s, respectively (Fig. 2b).

Resting‑State Networks and Relationship 
with Lateralization of EEG‑CM

Twelve components were selected as the RSNs from group 
ICA processing. In accordance with the previously published 
results (Smith et al. 2009; Luo et al. 2012), these networks 
were labeled as follows: (1) SMN: sensorimotor network, 
including the pre- and post-central gyrus, paracentral lobule, 
and supplementary motor area; (2) VN: the primary visual 
network, consisting of the cuneus, calcarine, and lateral lin-
gual gyrus; (3) AN: the auditory network, consisting of the 
middle temporal gyrus, superior temporal gyrus; (4) cerebel-
lum: primarily encompassing the cerebellum posterior lobe 
and declive; (5) pDMN: the posterior part of default mode 
network (pDMN,) involving the posterior cingulate cortex 
(PCC), precuneus, and bilateral angular gyrus; (6) BGN: 
basal ganglia network, involving pallidum, caudate, puta-
men nucleus and part of thalamus and the parahippocampal 
gyrus; (7) aDMN: the anterior part of DMN (aDMN) includ-
ing the superior frontal gyrus and middle frontal gyrus; (8) 
SN: the salience network, consisting of dorsal anterior cin-
gulate (dACC) and orbital frontoinsular cortices, as well as 
part of prefrontal areas; (9) LFPN: the left lateral frontopari-
etal network involving the left middle frontal gyrus, inferior 
parietal lobule, superior parietal lobule and angular gyrus; 
(10) RFPN: the right lateral frontoparietal network showing 
the similar spatial patterns with LFPN; (11) DAN: dorsal 
attention network, mainly including the bilateral intrapari-
etal sulcus, frontal eye field and middle temporal lobe; (12) 
CEN: the central executive network comprising the superior 
and middle frontal cortices, anterior cingulate and paracin-
gulate gyri. The spatial patterns of the RSNs were shown in 
Fig. 3. Then, we calculated the lateralization of the RSNs, 
and the maps of Bnetwork in the group level based on one-
sample t-test were illustrated in the Supplemental Materials 
(SFig. 1). There was a trend of leftward asymmetry in corti-
cal networks such as DMN, DAN, and subcortical networks 
involving cerebellum, and BGN.

To detect how the EEG-CM lateralization was inter-
preted by the lateralization of resting-state intrinsic net-
works, the multivariate linear regression between them 
was performed. We adopted the statistical significance in 
F-test for the linear regression model (P < 0.05, Bonfer-
roni-corrected), and t-test for the parameters (P < 0.05, 
non-corrected). The results showed that EEG-CM lat-
eralization in theta band was negatively correlated with 
BGN and SN. Lateralization of EEG-CM in alpha band 
was negatively correlated with BGN and cerebellum net-
work, and positively correlated with VN simultaneously. 

Fig. 2  The rhythmic EEG-CM traveling trajectory and velocity. 
a  Illustration of EEG-CM traveling trajectory in different frequency 
bands. b Averaged EEG-CM traveling velocity in different frequency 
bands
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EEG-CM in beta band demonstrated negative correlation 
with BGN and pDMN (Fig. 4). No significant correlation 
was found between EEG-CM in gamma band and RSNs.

Covariation Between EEG‑CM Traveling Velocity 
and DTI‑Based FA Maps

Correlation between EEG-CM traveling velocity and FA maps 
was carried out across subjects. It was found that rhythmic 
EEG-CM traveling velocity was associated with FA values of 
certain white matter fibers. Generally, corpus callosum (CC) 
and corona radiata (CR) were dominated fiber bundles which 
were correlated with EEG-CM traveling velocity (Fig. 5; 
Table 1). In theta band, EEG-CM velocity was negatively cor-
related with the FA values in CC, deep frontal white matter, 
and positively correlated with a few of superior CR. While 
EEG-CM velocity in alpha band demonstrated distinct posi-
tive correlation with CC. The results in beta mainly included 

the negative correlation with posterior CR and deep frontal 
white matter, as well as the positive correlation with CC. As to 
gamma band, the positive correlation with EEG-CM velocity 
was located in CC and superior CR.

Discussion

In this study, we proposed two quantitative indexes, EEG-
CM traveling lateralization and traveling velocity, to meas-
ure the global spatiotemporal characteristics of scalp EEG. 
Moreover, according to the simultaneous EEG-MRI fusion, 
EEG-CM traveling lateralization in low-frequency bands 
represented negative correlation with BGN. In addition, 
the relationship with corpus callosum and corona radiata 
implied the structural connectivity associated with the EEG 
spatiotemporal dynamics.

Fig. 3  The spatial patterns of 12 RSNs identified according to the group ICA
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Based on the vector averaging approach, EEG-CM was 
usually used to detect the patterns of neuronal activity in 
early studies (Demas et al. 2003; Prentice et al. 2011). In 
fact, EEG-CM was regarded as an epitome of the spectral 
topography according to spatial filtering. Most of EEG trave-
ling waves were obtained from the invasive measurements 
based on intracranial EEG or electrocorticographic (ECoG) 
recordings, such as calculating phase lag between different 
neural populations or cortical electrodes. The characteris-
tics including traveling direction, velocity, as determined by 
baseline crossing lags and peak lags in conventional EEG 
traces described the spatial gradient, which were associated 
with stationarity of the maximum values of the field distribu-
tions. However, due to the volume conduction effect of scalp 
EEG recording, it was not easy to investigate the spatial 
effect using the common measurements of traveling patterns, 
such as traditional phase synchronization, etc. In this article, 
we focused on the temporally dynamic CM representation, 
and the spatial topology was turned into a point in 2-dimen-
sional space, which can more simply describe EEG dynam-
ics in time. The results showed that EEG-CM trajectory in 
resting-state was concentrated near the center of the head, 
which may indicate the continuous characteristics of the 
spectral patterns covering the whole brain in the resting-state 
(Freeman et al. 2000). Here, resting-state EEG-CM traveling 

was not linked with cognitive function, but provided quan-
titative information, such as the traveling lateralization and 
velocity. In terms of traveling velocity, theta and alpha bands 
represented much lower velocity around 2 m/s, while beta 
and gamma demonstrated higher EEG-CM velocity around 
5 m/s. Previous studies proposed that low-frequency bands 
were dominant in long-range communication, while high 
frequency bands were more involved in the communication 
of local brain regions (von Stein and Sarnthein 2000; Daume 
et al. 2017). Therefore, more stable spatiotemporal patterns 
of scalp EEG in low-frequency bands may be associated 
with the inter-regional interactions, while these interactions 
could be denoted by the intrinsic resting-state networks.

As expected, the traveling lateralization of EEG-CM 
can be linearly described by the combination of resting-
state networks. For the low-frequency bands, i.e., theta, 
alpha and beta band, EEG-CM traveling lateralization was 
negatively correlated with the lateralization of BGN. BGN, 
as the main subcortical network of brain, was connected 
with the distributed cortical regions through the striatum 
pathway, and regulated cortical rhythmic oscillations and 
functional connectivity through thalamocortical projection 
(Ebner et al. 2015). The closed-loop circuit between BGN 
and neocortex, as well as between BGN and other subcor-
tical structures, provided the basis for resource allocation 

Fig. 4  The relationship between 
EEG-CM lateralization and 
the resting-state networks. The 
intrinsic networks which were 
linearly related with the rhyth-
mic EEG-CM lateralization, 
and the parameters (β values) 
in the regression model were 
illustrated (P < 0.05)
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and parallel processing of multiple information systems 
(Mchaffie et al. 2005). Therefore, the competition and con-
flict resolution strategies of the brain embodied by BGN had 
important significance for behavior selection. Due to the role 
of low-frequency rhythm in attention, cognitive control and 

long-range communication (Ward 2003), the relationship 
with BGN may indicate the negative modulation of subcor-
tical regions through lateral regulation of cortical oscilla-
tions. In this study, the group-level of resting-state EEG-CM 
tended to be right lateralization, while a lot of functional 

Fig. 5  The relationship between rhythmic EEG-CM traveling velocity 
and the FA values of white matter fibers (P < 0.05, FDR corrected). 
The voxels with the red color demonstrate the positive correlation 

voxels, and those with the blue color demonstrates the negative cor-
relation. The bottom row is the white matter skeleton atlas with dif-
ferent color denoting 48 skeleton regions
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networks demonstrated left lateralization. This functional 
lateralization may be associated with the structure lateraliza-
tion (Raz et al. 1995; Yamashita et al. 2011; Wyciszkiewicz 
and Pawlak 2014). In the previous studies, the structural lat-
eralization was investigated in normal and abnormal brains 
based on the volume calculation and statistical analysis. The 
results mainly focused on certain brain regions, including 
the cortical and the subcortical regions. In normal brain, the 
rightward asymmetry was reported in the frontal areas, and 
the left asymmetry was found in parietal areas. However, the 
results on lateralization of regional volumes for subcortical 
regions such as caudate nucleus, thalamus, putamen were so 
far controversial. In our results, although we didn’t detect the 
structural lateralization, we found dominant leftward asym-
metry in cortical networks such as DMN, DAN, as well as 
the subcortical networks involving cerebellum, and BGN. In 
addition, EEG-CM lateralization of theta was also negatively 
related to SN network. SN was involved in the regulation of 
the whole brain by dynamically controlling the activities of 
other network (Seeley et al. 2007; Bonnelle et al. 2012), and 
presented a kind of adaptive regulation in the goal-directed 
top-down control (Miller and Cohen 2001). Therefore, SN 
played an important role in resource regulation and main-
taining resource balance in cognitive tasks. The negative 
relationship between EEG-CM and SN lateralization may 
be related to the more concentrated resource invocation or 
less resource demand in the dominant hemisphere of SN. 
Similarly, pDMN network was also negatively related to 
EEG-CM in beta band. As the main network in resting-state, 
the deactivation of DMN acted upon the effective cogni-
tive and behavior. The negative relationship may be also a 
result of cognitive resource balance. It was interesting that 
the cerebellum network represented a negative correlation 
with alpha lateralization, while the VN has a positive cor-
relation with alpha lateralization. Previous study proposed 
that the circuit including cerebellum-BGN-cortical was 
associated with motor coordination, and this regulation was 
accompanied by synchronous alpha oscillation (Pollok et al. 
2007). The positive correlation with VN reflected the close 
link between alpha and occipital regions. The enhanced 
alpha activity in dominant visual hemisphere may be asso-
ciated with the inhibitory effect. Just like in visual atten-
tional tasks, visual stimuli generated greater alpha suppres-
sion in the non-attentional hemisphere (Zumer et al. 2014). 
The lateralization of the response of VN is determined by 
the stimulus demand, and the inhibitory effect of alpha on 
the dominant VN in the resting-state may be conducive to 
information entering into the non-dominant hemisphere, 
thus playing an important role in the parallel processing of 
external perception.

Neural oscillations can regulate the neural activities of 
multiple scales, which was of great significance for the com-
munication and functional integration of the brain (Wang 

2010; Siegel et al. 2012). Previous studies found that neural 
oscillation propagated on the cortical or scalp with certain 
direction (Lubenov and Siapas 2009; Fellinger et al. 2012), 
and was thought to be the basis for information calculation 
in different regions (Ermentrout and Kleinfeld 2001). Also, 
the traveling characteristic of EEG was related to the indi-
vidual behavior and cognitive functions. Most of the previ-
ous studies focused on the traveling wave of low-frequency 
band (Fellinger et al. 2012; Hindriks et al. 2014; Zhang et al. 
2018). The propagation velocity of alpha oscillation on cor-
tex was about 0.7-2.1 m/s, while the velocity on the scalp 
can reach to 5-15 m/s (Bahramisharif et al. 2013; Hindriks 
et al. 2014). The current study applied the temporal vari-
ation of EEG-CM to detect the traveling velocity, and the 
velocity range of these rhythmic oscillation was consistent 
with the previous studies (Massimini et al. 2004; Nunez and 
Srinivasan 2006; Manjarrez et al. 2007). The results dem-
onstrated rhythmic EEG-CM traveling was associated with 
FA values of certain white matter fibers. The traveling veloc-
ity of EEG-CM in alpha band was significantly correlated 
with corpus callosum. As the main inter-hemisphere white 
matter fiber, the corpus callosum and the diffusion condi-
tion with high FA values may be the physical foundation of 
inter-hemisphere coherence of alpha oscillation (TenHouten 
et al. 1987; Vecchio et al. 2014). In addition, theta, beta and 
gamma bands had relationship with corona radiata. Corona 
radiata was the projection fiber from internal capsule to 
cerebral cortex, mainly connecting subcortical and cortical 
area. Clinical and somatosensory evoked potential studies 
has revealed that the corona radiata was also involved in the 
organization of the sensory and motor pathways (Kalita and 
Misra 1998).The relationship with rhythmic oscillation may 
indicate the modulation arising from subcortical structures 
to the cortex (Grillner et al. 2005; Giber et al. 2015).

Since EEG-CM was an epitome of the spectral topog-
raphy, we conducted a complementary analysis and tried 
to investigate the relationship between the topography and 
the CM patterns. In terms of EEG topography, the common 
microstates of resting-state EEG were derived using global 
field power-based k-means clustering, and then, the CM pat-
terns in each microstate were described on the scalp. The 
results were demonstrated in the Supplementary Materials 
(SFig. 2), and showed that there were different spatial pat-
terns for each microstate. The predominant state with much 
longer duration was along with much lower CM traveling 
velocity. Moreover, we found that the traveling velocity was 
positively correlated with the microstate transition in theta 
and alpha band (P < 0.05). Therefore, although similar EEG-
CM trajectories occur with different topographic distribution 
of microstates, the dynamic feature, i.e., traveling velocity, 
may be one potential valid representation of the brain activ-
ity. What’s more, this univariate denoting the global spati-
otemporal patterns of brain activity was more likely to link 
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with the functional and structural connectivity using MRI-
based measurement.

Based on the simultaneous EEG-MRI, this study exam-
ined the functional and structural foundations of the traveling 
EEG-CM. However, there were several methodological limi-
tations in this study. The first was the physiological meaning 
of EEG-CM, which was impossible to define the location 
of the source of scalp EEG. Based on the hypothesis that 
the temporal characteristics of the scalp EEG was reserved 
to a large extent, and the scalp EEG was spatially tangled 
because of the volume conduction effect, the quantitative 
characteristics of the traveling CM may be meaningful for 
understanding the dynamic patterns of the brain. That was 
the difference between this study and the traditional EEG 
traveling methods based on the phase lags and peak lags in 
EEG traces which can describe the spatial gradient. In addi-
tion, we used the standard sphere head model (r = 10 cm) 
and normalized electrode coordinates in the calculation 
of EEG-CM. However, individual electrode coordinates 
were helpful for accurate EEG-CM calculation. Finally, the 
EEG-MRI fusion was mainly based on the linear correlation 
across subjects. In the future studies, model driven method 
linking EEG features and MRI-based features in the same 
source space may provide additional information.

Conclusions

In conclusion, the study provided two quantitative indexes 
in terms of the EEG traveling wave. Based on the simultane-
ous EEG-MRI, the negative relationship between EEG-CM 
lateralization and BGN lateralization was demonstrated. In 
addition, the traveling velocity of EEG-CM was related to 
corpus callosum and corona radiata. The results implied that 
the EEG dynamics were valid representations of functional 
and structural organization of cortical and subcortical struc-
tures, and may be helpful for understanding the spatiotem-
poral characteristics of the scalp EEG.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10548- 021- 00862-0.
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