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Abstract
The corpus callosum is the commissural bridge of white-matter bundles important for the human brain functions. Previous
studies have analyzed the structural links between cortical gray-matter networks and subregions of corpus callosum. While
meaningful white-matter functional networks (WM-FNs) were recently reported, how these networks functionally link with
distinct subregions of corpus callosum remained unknown. The current study used resting-state functional magnetic
resonance imaging of the Human Connectome Project test–retest data to identify 10 cerebral WM-FNs in 119 healthy
subjects and then parcellated the corpus callosum into distinct subregions based on the functional connectivity between
each callosal voxel and above networks. Our results demonstrated the reproducible identification of WM-FNs and their
links with known gray-matter functional networks across two runs. Furthermore, we identified reliably parcellated
subregions of the corpus callosum, which might be involved in primary and higher order functional systems by functionally
connecting with WM-FNs. The current study extended our knowledge about the white-matter functional signals to the
intrinsic functional organization of human corpus callosum, which could help researchers understand the neural
substrates underlying normal interhemispheric functional connectivity as well as dysfunctions in various mental disorders.
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Introduction
Functional magnetic resonance imaging (fMRI) detects hemo-
dynamic changes associated with neural activity based on
the blood-oxygenation-level-dependent (BOLD) signals (Ogawa

et al. 1990). Using the BOLD signals, we can assess temporally
synchronized brain activity across local brain regions (Biswal et
al. 1995; Lowe et al. 1998). However, most of these studies in fMRI
have primarily focused on the gray-matter BOLD signals. The
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signals from the white-matter have usually been considered to
be noise dominated and rarely reported in the literatures. Recent
studies have demonstrated the presence of small yet reliable
changes in specific white-matter regions responding to tasks
(Ji et al. 2017; Marussich et al. 2017). A few studies have also
demonstrated neural-driven white-matter signal fluctuations
during rest (Peer et al. 2017; Ding et al. 2018; Jiang et al. 2019).

Given that white matter densely connects different regions
of the gray matter and accounts for nearly half of the human
brain (Teo et al. 1997; Zhang and Sejnowski 2000; Arai and
Lo 2009; Harris and Attwell 2012), a few researchers have
explored the relationship between white-matter networks
and gray-matter networks based on resting-state functional
connectivity in normal and clinical populations. Ding and
colleagues have found that BOLD signals in certain white-
matter tracts are functionally correlated with specific gray-
matter regions during different tasks (Ding et al. 2018). Moreover,
Peer and colleagues demonstrated the presence of distinct
symmetric white-matter functional networks (WM-FNs) in
resting-state fMRI signals, which were closely related to both
gray-matter functional networks (GM-FNs) and the underlying
structural white-matter tracts (Peer et al. 2017). They suggested
that the interaction between the WM- and GM-FNs provide clues
as to how these spatially networks were connected. On the
other hand, the symmetric WM-FNs corresponding to the gray-
matter perception-motor system were altered in patients with
schizophrenia, which demonstrates that connections between
the WM- and GM-FNs are necessary to maintain the normal
functionality of the brain (Jiang et al. 2019).

As the largest white-matter fiber bundle, the corpus callosum
connects the two hemispheres of human brain and contains
more than 250 million axons (Nolte 2002). Thus, the corpus
callosum plays a crucial role in transmitting sensory, motor,
and cognitive information between homotopic regions of the
two cerebral hemispheres (Gazzaniga 2000). It has been demon-
strated that a larger callosal area has a performance advantage
in cognitive tasks (Berlucchi 1983; Yazgan et al. 1995). Because
the primary function of corpus callosum is to act as the primary
cortical projection system (Rosas et al. 2010), any focal or diffuse
abnormalities of the bilaterally connected cortical regions may
result in the secondary effects on homotopically distributed
fibers in the callosum. For example, patients with schizophrenia
have been reported to have a statistically significant reduction
in cortical area within the corpus callosum compared to healthy
controls (Woodruff et al. 1995). Patients with attention-deficit
hyperactivity disorder have been shown to have a smaller area
in the rostrum and rostral body of corpus callosum compared
to healthy controls (Giedd et al. 1994; Baumgardner et al. 1996).
Patients with Alzheimer’s disease are reported to have atrophy
of corpus callosum (Vermersch et al. 1996). A range of neu-
rodevelopmental disorders and dysplasias has been reported to
lead to corpus callosum agenesis (Sebire et al. 1995). Moreover,
the morphologic anomalies of corpus callosum have also been
reported for a wide variety of childhood neuropsychiatric illness
and sexual dimorphism (Giedd et al. 1999).

Several studies on the structure of the corpus callosum
have divided the corpus callosum into different subregions
that connects bilateral corresponding cortical areas in the brain
(Aboitiz et al. 1992; Huang et al. 2005; Chao et al. 2009). For
instance, by using light microscopic examination in 10 regions of
the corpus callosum, Aboitiz and colleagues found the regional
differentiation of fiber types in the corpus callosum (Aboitiz
et al. 1992). Huang and colleagues divided the corpus callosum

into six major subdivisions based on trajectories to different
cortical areas by using DTI tractography (Huang et al. 2005). In
addition, the corpus callosum was parcellated into different
subregions based on its cortical trajectories to specific cytoar-
chitectural regions using HARDI-based tractography and tract-
based transformation (Chao et al. 2009). It has been shown that
distinct regions of the corpus callosum were activated during
different tasks, such as motor, tactile, visual, auditory, gustatory,
and memory task (Mazerolle et al. 2008; Yarkoni et al. 2009;
Fabri et al. 2011). Moreover, these activation foci in the corpus
callosum were distributed according the anterior (taste stimuli),
middle (motor task), middle and posterior (tactile stimuli) and
splenium (visual stimuli) (Fabri et al. 2011). These cumulative
findings support that the subregions of the corpus callosum
are associated with the distinct functions of the human brain.
Although the corpus callosum has been structurally parcellated
into different subregions, the underlying BOLD fMRI signals
in the corpus callosum and how functional information is
transferred within the corpus callosum and other brain regions
have not been investigated.

Therefore, we hypothesize that the corpus callosum may
be differentially connected with WM-FNs. To address this
hypothesis, we evaluated the WM-FNs by performing a
clustering analysis to the voxel-based white-matter functional
connectivity matrix, and studied the relationships between
WM- and GM-FNs. Subsequently, we used partial correlation
analysis to explore the connectivity between the WM-FNs and
each voxel in the corpus callosum. Using a winner-take-all
algorithm, each callosal voxel was assigned to a single WM-
FN with the most similar profile of connectivity. In this way, we
identified the subregions of corpus callosum related to specific
WM-FNs. In the end, to assess the reproducibility of our findings,
we validated the WM-FNs and divided the corpus callosum in
different datasets.

Materials and Methods
Data Acquisition

This study employed the test–retest dataset from
the Human Connectome Project (HCP) dataset (https://db.
humanconnectome.org). The datasets of 129 healthy subjects
were used in this study, including both resting-state fMRI and
T1-weighted anatomical scans from two different days, which
had four runs (rfMRI_rest1_LR, rfMRI_rest1_RL, rfMRI_rest2_LR,
and rfMRI_rest2_RL). Rest1 and Rest2 were acquired on different
days. We chose the two runs of data for the current analysis
including the rfMRI_rest1_LR and rfMRI_rest2_LR. The HCP
scanning protocol was approved by the local Institutional
Review Board at Washington University in St. Louis. All subjects
signed an informed consent. Imaging data were collected on a
customized Siemens 3-T Connectome-Skyra scanner. Because
details about the imaging parameters have been described
elsewhere in detail (Van Essen et al. 2013), it is briefly described
here. The imaging parameters used to collect the rfMRI data
were as follows: TR = 0.72 s; TE = 33.1 ms; flip angle = 52◦; field
of view = 208 × 180 mm2; slice number = 72; functional spatial
resolution = 2 mm isotropic voxel; multiband factor = 8; echo
spacing =0.58 ms; bandwidth = 2290 Hz/px; volumes = 1200.

Data Preprocessing

Functional images were preprocessed by using the Data
Processing Assistant for Resting-State fMRI (http://rfmri.org/
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DPARSF) and SPM12 software (http://www.fil.ion.ucl.ac.uk/spm/
software/spm12). The data preprocessing included following
steps. First, we discarded the first 10 volumes, correction for
head-motion-related signal changes. Subjects with maximum
displacements greater than 3 mm or 3◦ were excluded from
further analyses, resulting in a cohort of 119 subjects out of the
original 129 subjects. Each individual’s T1-weighted MPRAGE
image was co-registered to the mean functional image using a 6
degree-of-freedom linear transformation without re-sampling.
Each structural image was segmented into gray matter (GM),
white matter (WM), and cerebrospinal fluid (CSF), to obtain
the transformation from native to standard MNI space. Linear
trends were removed. Signal from CSF and 24 rigid body motion
parameters (6 head motion parameters, 6 head motion param-
eters one time point before, and the 12 corresponding squared
items) were regressed from the data. To reduce the impact of
head motion, scrubbing using motion “spikes” was performed
as separate regressors identified by framewise displacement
(FD) greater than 1 mm. The head motion scrubbing regressors
were used in this study as it has been shown to be effective in
reducing the effect of head motion at the spike on the signal
without changing the correlation values (Power et al. 2012;
Satterthwaite et al. 2013). To retain as much of the signal of
interest as possible, the white-matter and global mean signals
were not regressed from the dataset. Temporal filtering was
done in the low-frequency range of 0.01–0.15 Hz in line with
prior white-matter functional connectivity studies to reduce
non-neuronal contribution to BOLD fluctuations (Peer et al.
2017; Jiang et al. 2019). To avoid mixing white-matter and gray-
matter signals, the functional images were minimally spatially
smoothed separately (4-mm full-width half-maximum [FWHM],
isotropic) within the white-matter and gray-matter templates
for each subject. The white-matter and gray-matter voxels were
identified by using the segmentation results from each subject
(using a threshold of 0.5 using SPM12’s tissue segmentation)
(Peer et al. 2017; Jiang et al. 2019). Finally, we merged the white-
matter and gray-matter images into full functional images using
the smoothed data. Following smoothing, the functional images
were transformed from individual native space into MNI space
with a voxel size of 3 × 3 × 3 mm3.

The Creation of Group White-matter Mask

To obtain group white-matter mask for clustering across the
group, segmentation was used for each subject’s dataset to
minimize the influence from other signal sources, particularly
the gray matter. Specifically, for each subject, we identified each
voxel in the whole brain as belonging to one of the following
three classes: white matter, gray matter, or CSF based on the
maximum probability from the three segmentation images. This
step generated a binarized white-matter mask for each subject.
Then, these masks were averaged across all subjects. The voxels
with a ratio of subjects greater than 60% were considered as
white-matter voxels in the T1 images. The voxels of resulting
mask were then selected and identified as the white-matter
mask in greater than 80% of subjects in the functional data.
Finally, the Harvard-Oxford Atlas (Desikan et al. 2006) was uti-
lized to correctly classify the deep brain structures (Babalola et
al. 2010; Lorio et al. 2016).

The Corpus Callosum Mask

We obtained the corpus callosum mask from the JHU ICBM-DTI-
81 WM atlas (Mori et al. 2008). To minimize the effect of the gray

Figure 1. Corpus callosum mask obtained from the JHU ICBM-DTI-81WM atlas.

The group level white-matter mask is used to limit the size of corpus callosum.

matter, we used the group white-matter mask to limit the size
of corpus callosum (Fig. 1).

Clustering WM-FNs in the Group White-Matter Mask

Since our study aimed to explore the correlation between the
WM-FNs and corpus callosum, we excluded these voxels of
corpus callosum in the group white-matter mask using the
corpus callosum mask. To reduce the calculative complexity
of clustering, we used an interchanging grid to subsample the
white-matter mask (including 16 839 voxels). Every second voxel
along the image rows and columns were taken and shifted by
1 between slices to reduce missing columns of data. Then, we
could obtain a subsampled mask including 4192 voxels. Pear-
son’s correlation coefficient was computed between each of the
white-matter voxel time series and all of the subsampled mask
voxels, resulting in a white-matter correlation pattern for each
voxel (16 839 × 4192) (Yeo et al. 2011; Craddock et al. 2012). To
obtain a group-level correlation matrix, the correlation matrices
for each subject was calculated and then averaged across all
119 subjects. K-means clustering (distance metric correlation, 10
replications) was performed on the group-level voxelwise corre-
lation matrix to obtain the WM-FNs (Blumensath et al. 2013; Yeo
et al. 2014). The numbers of clusters were chosen from 2 to 22,
and the stability of each cluster was analyzed to get the optimal
number of WM-FNs (Yeo et al. 2011). Specifically, the group-
level correlation matrix was randomly divided into fourfolds. For
each number of clusters, we computed the clustering process
on each fold separately and analyzed the similarity. To analyze
the similarity of clustering in different folds, we calculated an
adjacency matrix for each fold and compared them using Dice
coefficient. The average Dice coefficient computed by compar-
ing each other in all four adjacency matrices was computed to
detect the stability for each number clustering (Yeo et al. 2011).
A number of stable clusters were found at 4, 7, 9, and 12 clusters,
and then we chose the most detailed level (12 WM-FNs) (Fig. S1–
1). Finally, we kept 10 WM-FNs for further analysis and excluded
two white-matter cerebellum networks, since we focused on the
cortex within this study. To test the reproducibility between the
two runs, we obtained the WM-FNs using the clustering method
from run 1 and reanalyzed the correlation between the WM-
FNs and the corpus callosum for each of the two runs. We also
obtained 12 WM-FNs using the clustering method in the run 2
and analyzed the spatial overlap for different WM-FNs between
two runs (Fig. S2–1).

Functional Connectivity of WM-FNs

To study the correlation between WM- and GM-FNs, Pearson’s
correlation coefficient was calculated between each averaged
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WM- and GM-FNs time series for each subject. The GM-FNs
atlas employed in this study was the same with that used in
previous studies (Peer et al. 2017; Jiang et al. 2019). In addition,
we also obtained 7 GM-FNs using present data and analyzed
the correlation between WM-FNs and new GM-FNs (Figs S4–1
and S4–2). To analyze the correlation between different WM-
FNs, we calculated the Pearson’s correlation coefficient between
averaged WM-FNs time series.

The Functional Parcellation of Corpus Callosum

Functional connectivity between the 10 WM-FNs, and each voxel
in the corpus callosum was used to identify the different sub-
regions of the corpus callosum. Specifically, partial correlation
analysis was calculated between the averaged time course of
each WM-FN and every voxel time course in the corpus callosum
mask, while controlling for the effect of all other nine WM-FNs.
All the correlation coefficients were then Fisher-transformed to
Z-scores. A one-sample t-test was calculated across all partic-
ipants, resulting in a statistical t-map of connectivity pattern
for each WM-FN as region of interest (ROI). A “winner-take-
all” algorithm was adopted such that each callosal voxel was
assigned to a single WM-FN with the most similar profile of
connectivity. To have a more comprehensive understanding of
the relation between the corpus callosum and those 10 WM-FNs,
we performed a statistical correction to the one-sample t-test
map of each WM-FN as ROI (P < 0.05, Family Wise Error (FWE)
corrected). To explain the reproducibility of our results, these
analyses were performed on run 1 and run 2 data separately.

Measures of Reproducibility

To estimate the similarity of callosal subregions and WM-FNs
between two runs, we introduced the Dice coefficient. The Dice
coefficient was calculated according to the standard formula:

Dice (V1, V2) = 2 | V1 ∩ V2 |
| V1 | + | V2 |

where V1 is the dataset from run 1 and V2 is the dataset from
run 2. The Dice coefficient was 2categorized approximately as
follows: low (0–0.19), low moderate (0.2–0.39), moderate (0.4–
0.59), moderate high (0.6–0.79), or high (0.8–1) in line with prior
study (Wilson et al. 2017).

To analyze the reproducibility of the functional connectivity
between WM-FNs, we calculated the Pearson’s correlation coef-
ficient between averaged functional connectivity matrices from
two runs. Similarly, the reproducibility of the functional connec-
tivity between the WM- and GM-FNs was also analyzed. Finally,
to analyze whether current method was suitable for studies with
small number of subjects, we repeated the clustering for WM-
FNs and parcellation procedures in different sample sizes (1, 5,
10, 20, 30, 40, 50, 60, 70, 80, 90, 100, and 110) (Figs S5–1 and S5–2).

Results
Identification of WM-FNs

The WM-FNs were identified by using K-means clustering on the
averaged functional connectivity matrix. The clustering and the
Dice coefficient results showed that the largest number of WM-
FNs was 12, which was selected for identifying final clustering
results (Fig. S1–1). The final WM-FNs involved two cerebellar

networks and 10 cerebral networks (Fig. 2). Except for the left
prefrontal network, the resulting WM-FNs showed an interlaced
and a relatively symmetric pattern. The WM-FNs in run 2 similar
to the WM-FNs from run 1 were reproduced on the resting-state
fMRI dataset of run 2 (Fig. S2–1).

Reproducibility of Functional Connectivity of WM-FNs

Our study found strong correlations between different WM-
FNs, including the deep, occipital, orbitofrontal, anterior corona
radiata, sensorimotor middle, posterior corona radiata, and sen-
sorimotor superficial WM-FNs (Fig. 3A,C). Pearson’s correlation
coefficient was computed on the two averaged functional con-
nectivity matrices between two runs to show the reproducibility
of functional connectivity. The functional connectivity between
WM-FNs was reproducible in two runs (r > 0.99). In addition,
we also estimated the relationship between the WM- and GM-
FNs. The tempofrontal, occipital, and sensorimotor superficial
WM-FNs exhibited high functional connectivity (r > 0.9) with
the gray-matter default mode network (DMN), visual network,
and sensorimotor network, respectively. Moreover, the func-
tional connectivity between WM- and GM-FNs was reproducibil-
ity between two runs (r > 0.99).

Functional Connectivity between the WM-FNs and
Corpus Callosum

Since WM-FNs were reproducibly identified in the bilateral
hemispheres, we further tested how WM-FNs were related to
interhemispheric connections, by examining functional con-
nectivity between WM-FNs and each voxel of corpus callosum.
Based on the geometrical landmark defined by Witelson and
colleagues, the corpus callosum can be divided into seven
subregions based on the length of corpus callosum including
the rostrum, genu, rostral body, anterior midbody, posterior
midbody, isthmus, and splenium of the corpus callosum
(Witelson 1989). We found that the WM-FNs significantly
connected to the different regions of corpus callosum (after
thresholding by winner-take-all) (Fig. 4, Table 1). Specifically, the
left prefrontal WM-FN correlated with the anterior midbody
of corpus callosum. The callosal subregions corresponding to
tempofrontal WM-FN concentrated mainly on the splenium
and genu. The subregions relating with deep WM-FN had
distributions in the anterior midbody, isthmus, posterior
midbody, and rostral body of corpus callosum. Occipital WM-FN
was only connected with the splenium of corpus callosum. The
orbitofrontal WM-FN was mainly associated with the rostral
and genu of corpus callosum. The regions corresponding to
anterior corona radiata WM-FN distributed in seven areas of
corpus callosum. The voxel of corpus callosum associated with
the sensorimotor middle WM-FN mainly distributed in the
anterior midbody, isthmus, and posterior midbody of corpus
callosum. Finally, the posterior corona radiata WM-FN was
related with the isthmus and splenium of corpus callosum. No
voxels in the corpus callosum corresponded to sensorimotor
superficial WM-FN. The callosal regions corresponding to
inferior corticospinal WM-FN exhibited differences between two
runs. The inferior corticospinal WM-FN was associated with
isthmus and splenium of corpus callosum in the run 1 data.
However, there were no voxels corresponding to the inferior
corticospinal WM-FN in the run 2 data. More details about the
correlation between the corpus callosum and WM-FNs were
shown in the Table 1.
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Figure 2. WM-FNs identified using K-means clustering method. 01. Left prefrontal WM-FN; 02. Tempofrontal WM-FN; 03. Inferior corticospinal WM-FN; 04. Deep WM-
FN; 05. Occipital WM-FN; 06. Orbitofrontal WM-FN; 07. Anterior corona radiata WM-FN; 08. Sensorimotor middle WM-FN; 09. Posterior corona radiata WM-FN; 10.
Sensorimotor superficial WM-FN; 11. Cerebellar inferior WM-FN; 12. Cerebellar superior WM-FN.

Reproducibility of Functional Connectivity between
WM-FNs and Corpus Callosum

To detect the reproducibility of the correlation between the WM-
FNs and corpus callosum, the Dice coefficient was computed
on the result regions of corpus callosum corresponding to each
WM-FN between two runs. The spatial overlap for callosal subre-
gions corresponding to each WM-FN showed different levels that
were classified as moderate, moderate-high, and high (Fig. 5).
Specifically, the subregions of corpus callosum corresponding to
these four WM-FNs had a high Dice coefficient between two runs
(The Dice coefficients for callosal subregions corresponding to
the deep, occipital, orbitofrontal, and posterior corona radiata
WM-FNs were found to be 0.84, 0.80, 0.92, and 0.90, respectively.)
The subregions of corpus callosum associated with these three
WM-FNs revealed a moderate-high Dice coefficient between two
runs (The Dice coefficients for callosal subregions correspond-
ing to the tempofrontal, anterior corona radiata, and sensori-
motor middle WM-FNs were found to be 0.76, 0.64, and 0.61,
respectively.) Finally, we found that the subregions of corpus
callosum linking the left prefrontal WM-FN had only a moderate
level overlap between two runs (The Dice coefficient for callosal
subregion corresponding to the left prefrontal WM-FN was 0.40.)
We did not show the results of Dice coefficient corresponding to
the callosal subregions related to the inferior corticospinal and
sensorimotor superficial WM-FNs in the Figure 5, because there
were no relevant voxels between these two WM-FNs and corpus
callosum calculated using run 2 data.

Further Explorations of the Correlation between the
WM-FNs and Corpus Callosum

The one-sample t-test maps and resulting callosal subregions
(P < 0.05, FWE corrected), corresponding to the inferior corti-
cospinal, sensorimotor superficial, and inferior corticospinal
WM-FNs, were shown in Figure 6. The remaining maps of cal-
losal subregions after correction corresponding to other seven

WM-FNs were shown in the Figure S3–1. The Dice coefficient
was calculated to the maps of callosal subregions corrected by
FWE (P < 0.05) corresponding to each WM-FN between two runs.
The subregions of corpus callosum associated with these two
WM-FNs (the left prefrontal and sensorimotor superficial WM-
FNs) revealed a moderate–high Dice coefficient between two
runs. The subregions of corpus callosum linking the inferior
corticospinal WM-FN had a low-moderate level overlap between
two runs.

Discussion
This study used temporal correlation between voxelwise time
series BOLD signals from the white matter and corpus callosum
to demonstrate novel concordance between them. Our findings
demonstrated that corpus callosum had a functional segmen-
tation and unique spatial distribution patterns with WM-FNs.
Furthermore, this study confirmed a close relationship between
the WM- and GM-FNs in line with recent studies. Different
subregions of the corpus callosum might connect the specific
WM-FNs to further associate with the cerebral cortex, and use
this way to transmit sensory, motor, and cognitive information
between homotopic regions of the two cerebral hemispheres.
In the end, the correlation between the WM-FNs and corpus
callosum was found reproducible by using two runs of HCP data
with same subjects.

Increasing studies have shown meaningful functional
activity in the white-matter regions, like stimulus-induced
activations in the white matter (Gawryluk et al. 2014; Ji et al.
2017; Marussich et al. 2017; Wu et al. 2017; Courtemanche et al.
2018). For instance, Huang and colleague have demonstrated
that white-matter voxels were activated mostly along the
fiber pathways relevant to visual activity (Huang et al. 2018).
Here, we identified 10 WM-FNs, which were consistent with
previous studies (Fig. 2) (Peer et al. 2017). We found that WM-FNs
showed a close relationship with GM-FNs (Fig. 3B,D). Specifically,
the tempofrontal, occipital, and sensorimotor superficial
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Figure 3. Functional connectivity of the WM-FNs in resting state. (A) and (C) show averaged functional connectivity strength between the different WM-FNs in run #1
and run #2 data, respectively. (B) and (D) show averaged functional connectivity strength between the WM-FNs and GM-FNs in run #1 and run #2 data, respectively.

The colorbar shows the correlation coefficient. The reproducibility of functional connectivity of the WM-FNs is estimated by calculating the Pearson’s correlation
coefficient between averaged functional connectivity matrices from two runs.

WM-FNs were closely associated with the GM-FNs with the
DMN, visual network, and sensorimotor network, respectively
(r > 0.9, Fig. 3B). This association between WM- and GM-FNs
might be attributed to the participation of WM-FNs in the
support for brain functions together with GM-FNs (Jiang et al.
2019). Although the deep, orbitofrontal, and posterior corona
radiata WM-FNs were not associated with any GM-FNs, they
showed strong connection with other WM-FNs (r > 0.5, . 3A). For
example, deep WM-FN (Fig. 2, 04) was not strongly associated
with any GM-FNs (r < 0.5, Fig. 3B) but with orbitofrontal WM-FN
(Fig. 2, 06) and posterior corona radiata WM-FN (Fig. 2, 09). These
results suggest that certain WM-FNs indirectly participate in the
whole brain functional integration.

The organization between the corpus callosum and WM-
FNs was revealed in this study (Fig. 4). To the best of our
knowledge, this is the first study that identified subregions of
corpus callosum by using resting-state functional connectivity

of white-matter BOLD signals. The corpus callosum is crucial
for the functional integration between homotopic regions
of the two hemispheres (Gazzaniga 2000). Studying subjects
with different types of callosal lesions and callosotomies has
significantly improved our understanding of the functional
role of callosal subregions and brain function in general
(Gazzaniga 2005). Moreover, the association between corpus
callosum and other brain regions has been intensively studied,
but most studies focused on cortical gray-matter regions and
networks (de Lacoste et al. 1985; Huang et al. 2005; Hofer
and Frahm 2006; Chao et al. 2009). As one of major white-
matter fiber bundles, how the corpus callosum mediates
functional information transfer remains unknown (van der
Knaap and van der Ham 2011). In this study, we demonstrated
that corpus callosum could be parcellated into 10 subregions,
which functionally linked with superficial, middle, or deep
WM-FNs (Fig. 4).
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Figure 4. Reproducible subregions of corpus callosum in the two runs using winner-take-all method.

Figure 5. The overlap between callosal subregions corresponding to each WM-FN from two runs. The x-axis represents the eight subregions of corpus callosum using
run #1 data, and the y-axis represents the eight subregions of corpus callosum using run #2 data. The color bar shows the Dice coefficient between callosal subregions
corresponding to each WM-FN from two runs.

For sensorimotor system, we found that the anterior mid-
body, posterior midbody, and isthmus of corpus callosum were
strongly connected with the deep and sensorimotor middle WM-
FNs (Fig. 4). It is commonly acknowledged that these regions of
corpus callosum are involved in the gray-matter sensorimotor

system (Witelson 1989; van der Knaap and van der Ham 2011).
We also found sensorimotor superficial WM-FN was closely
associated with sensorimotor middle WM-FN (r > 0.5, Fig. 3A)
and gray-matter sensorimotor network (r > 0.9, Fig. 3B). However,
the correlation between the sensorimotor superficial WM-FN

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/30/5/3313/5741376 by guest on 12 M

ay 2022



3320 Cerebral Cortex, 2020, Vol. 30, No. 5

Table 1 The detailed specification of callosal subregion corresponding to each WM-FN in runs #1 and #2 data

Corresponding WM-FNs Voxel size Peak intensity (T) MNI coordinate Side
x y z

Left prefrontal WM-FN
Run #1 20 6.47 6 −3 27 IH
Run #2 15 6.4 0 −3 27 IH
Tempofrontal WM-FN
Run #1 61 24.22 12 30 −6 R

51 16.71 9 −45 9 IH
Run #2 57 16.3 9 −45 9 IH

44 19.89 12 30 −6 R
4 8.11 0 −12 27 IH

Inferior corticospinal WM-FN
Run #1 15 6.74 9 −27 30 IH
Run #2 — — — — — —
Deep WM-FN
Run #1 71 17.43 −18 −9 33 L

54 23.17 15 3 30 R
Run #2 59 19.52 −18 −9 33 L

53 18.64 15 −3 33 R
Occipital WM-FN
Run #1 3 14.48 24 −60 12 R
Run #2 3 13.01 24 −60 12 R
Orbitofrontal WM-FN
Run #1 320 36.95 18 24 21 IH
Run #2 314 29.85 −18 33 12 IH
Anterior corona radiata WM-FN
Run #1 57 8.16 3 −15 27 IH

40 14.48 6 21 18 IH
Run #2 199 13.25 6 21 18 IH
Sensorimotor middle WM-FN
Run #1 50 9.79 −15 −15 36 L

39 13.36 15 −18 36 R
Run #2 37 11.76 −15 −18 36 L

14 11.12 15 −12 36 R
Posterior corona radiata WM-FN
Run #1 321 37.02 −27 −51 18 IH
Run #2 303 29.95 −27 −51 21 IH
Sensorimotor superficial WM-FN
Run #1 — — — — — —
Run #2 — — — — — —

IH (inter-hemisphere).

and corpus callosum was weak since we did not find any corre-
sponding callosal voxels directly associated with sensorimotor
superficial WM-FN. This might constitute the gradient infor-
mation flow between corpus callosum, via intermediate white-
matter and gray-matter sensorimotor cortex. Previous study on
schizophrenia demonstrated that the dysfunctional association
between gray-matter perception-motor system and the superfi-
cial WM-FNs was compensated through the middle-deep WM-
FNs (Jiang et al. 2019). Such gradient functional organization
might be beneficial for brain health.

The voxels of callosal subregion corresponding to the
occipital WM-FN mainly concentrated on the splenium of
corpus callosum. It is commonly acknowledged that the fiber
bundles passing through the splenium of corpus callosum are
related to the gray-matter occipital cortex connecting with
visual system (Witelson 1989; van der Knaap and van der
Ham 2011). We found that the occipital WM-FN has close
relationship with gray-matter visual network (r > 0.9) (Fig. 3B,D).

The subregion of corpus callosum corresponding to the occipital
WM-FN might participate in the adjustment of transmitting
visual information between two hemispheres. Moreover, we
found that the occipital WM-FN was closely associated with
the sensorimotor superficial WM-FN (r > 0.5) (Fig. 3A). Several
studies have revealed that the visual system has a close
relationship with motor system (Held and Hein 1963; Goodale
and Milner 1992; Loula et al. 2005). The visual systems process
information either through the dorsal stream or the ventral
stream. The parietal areas are key parts of dorsal stream,
which is believed to process the visual information needed for
understanding spatial relationships and controlling spatially
directed actions (Mishkin et al. 1983; Nolte 2002; Milner and
Goodale 2006). Our findings that the splenium of the corpus
callosum was corresponded to the occipital WM-FN associated
with sensorimotor superficial WM-FN may provide new clues to
understand the mechanism of dorsal stream in cerebral visual
system.
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Figure 6. One-sample t-test maps and subregions of corpus callosum from the two different runs. The left side shows the results of callosal one-sample t-test maps.
The right side shows the results of corrected maps to one-sample t-test maps (P < 0.05, FWE correction). The color bar shows the t value from the one-sample t-test.

The Dice coefficient between callosal subregions corresponding to each WM-FN from two runs is shown.

We also found that callosal subregion in the splenium and
genu of corpus callosum corresponded to the tempofrontal WM-
FN (Fig. 4), which had a close relationship with the DMN (r > 0.9
Fig. 3B). The histological evidence suggests that these subre-
gions of corpus callosum were structurally connected to the
gray-matter occipital, inferior temporal, and prefrontal regions
(Witelson 1989; van der Knaap and van der Ham 2011). This has
been shown to be the main component distributed in the DMN.
Callosal subregion corresponding to tempofrontal WM-FN was
frequently associated with self-referential function (Greicius
et al. 2003; Sheline et al. 2009).

For other higher order functional systems, four distributed
subregions of corpus callosum were found in relation to left
prefrontal, anterior/posterior corona radiata, and orbitofrontal
WM-FNs (Fig. 4). First, anterior midbody of corpus callosum
showed strong functional connectivity with left prefrontal WM-
FN, which had a high correlation with the gray-matter fronto-
parietal network (r = 0.64, Fig. 3B). This functional pathway
might play a role in modulating cognitive control (Zanto and
Gazzaley 2013). Second, as for the subregion of corpus callosum

corresponding to the anterior corona radiata WM-FN, it was
found to be distributed in seven areas of corpus callosum having
been previously reported (Witelson 1989; van der Knaap and van
der Ham 2011). Furthermore, anterior corona radiata WM-FN
was associated with the gray-matter ventral attention network,
which suggested this callosal subregion might be associated
with detecting unattended or unexpected stimuli and triggering
shifts of attention. (Shulman et al. 2002). Third, the subregion of
corpus callosum corresponding to the posterior corona radiata
WM-FN was located in the isthmus and splenium of corpus
callosum defined by Witelson and colleagues (Witelson 1989).
Fourth, the subregion of corpus callosum corresponding to the
orbitofrontal WM-FN, mainly included the rostral and genu
of corpus callosum. Notably, the posterior corona radiata and
orbitofrontal WM-FNs were not strongly connected with any
GM-FNs (r < 0.5, Fig. 3B), but they were connected with other
WM-FNs and corpus callosum (Figs 3 and 4), which enabled
them to be involved in maintaining normal brain function.

In this study, we tested the reproducibility of our find-
ings in the second resting-state run. We found that the
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associations between identified callosal subregions and WM-
FNs were consistent in two runs, which suggested a high
reproducibility (Fig. 5). Additionally, the inferior corticospinal
and sensorimotor superficial WM-FNs had no correspond-
ing voxel in the corpus callosum across participants in
run1 and/or run2. This might be due to the winner-take-all
method, which assumes only a single network exists (Buckner
et al. 2011). Therefore, we used different strategy (one-sample
t-test with FWE correction) for the left prefrontal, inferior
corticospinal, and sensorimotor superficial WM-FNs, according
to prior study (Yuan et al. 2016). We found that the Dice
coefficients for callosal subregions corresponding to the left
prefrontal and sensorimotor superficial WM-FNs were within
the moderate–high level (Fig. 6). These results suggest that
the callosal subregions corresponding to the left prefrontal
and sensorimotor superficial WM-FNs are reproducible (the
one-sample t-test maps and FWE-corrected results for the
other seven WM-FNs were displayed in Fig. S3–1). In sum,
the associations between WM-FNs and corpus callosum were
reproducible.

The present study described a new approach of dividing
the corpus callosum into different subregions using resting-
state functional connectivity. To more fully understand the con-
nection between the corpus callosum and the brain’s func-
tional organization, we reviewed previous studies parcellating
the corpus callosum using different approaches such as those
described within microscopy and DTI approaches (Table S6–1)
(Aboitiz et al. 1992; Huang et al. 2005; Hofer and Frahm 2006;
Zarei et al. 2006; Chao et al. 2009; Archer et al. 2019). We com-
pared our corpus callosum parcellation results with previous
results using other methods and found that they had a high
similarity. Specifically, first the sensorimotor superficial WM-
FN, related with gray-matter sensorimotor networks (r > 0.9)
(Fig. 3), was closely linked with the anterior midbody of corpus
callosum (Fig. 4). The sensorimotor middle WM-FN was asso-
ciated with the anterior midbody, isthmus, and posterior mid-
body of corpus callosum. Previous callosal segmentation stud-
ies revealed that the isthmus, anterior midbody, and posterior
midbody of corpus callosum were correlated to the gray-matter
motor and somatosensory cortical areas, which was consistent
with our callosal subregions corresponding to the sensorimotor
superficial and sensorimotor middle WM-FNs (Hofer and Frahm
2006; Chao et al. 2009; Archer et al. 2019). Second, the occipital
WM-FN that was closely related with the gray-matter visual
network (r > 0.9) (Fig. 3) was associated with the splenium of
the corpus callosum (Fig. 4), which was consistent with pre-
vious callosal subregions corresponding to the occipital lobe
(Table S6–1). Third, the tempofrontal WM-FN, associated with
the DMN (r > 0.9) (Fig. 3), was closely related with the splenium
and the genu of the corpus callosum that was confirmed to
correspond to the temporal and frontal lobes (Table S6–1). Here,
we mainly compared some subregions of corpus callosum that
corresponded to WM-FNs closely related with GM-FNs (r > 0.9).
For the remaining segmentation results of the corpus callosum,
see Table S6–1. A comparison with previous callosal segmenta-
tion results suggested that our callosal parcellation results were
reliable and consistent with previous results.

Limitations

This study has several limitations. First, some researchers have
speculated that the BOLD signal from white matter may have
infiltrated from the gray-matter due to partial volume effect. To

minimize the partial volume effect and the influence of gray-
matter signals, we performed the spatial smoothing on white-
matter and gray-matter separately and used only voxels identi-
fied as white matter for each subject. Second, this study did not
have the structural connection results for the WM-FNs or corpus
callosum. However, other studies have demonstrated DTI-based
connections of WM-FNs (Peer et al. 2017) and corpus callosum
(Huang et al. 2005; Chao et al. 2009) separately. Future research
is needed to characterize the relationship between the WM-FNs
and corpus callosum combining with diffusion tensor imaging
(DTI) data. Third, to measure the reproducibility of our results,
we used two runs of data to analyze WM-FNs and subregions of
corpus callosum. Although the results of the two sets of data
were highly consistent, there were some differences with the
inferior corticospinal WM-FN. Though it may be due to the lower
BOLD signal quality in the brainstem area, future research is
needed to further evaluate these WM-FNs. Finally, it is unclear
whether the fMRI parameters optimized for the GM are also
reliable for these studies investigating the white-matter BOLD
signal. Future research is needed to analyze the white-matter
BOLD signal.

Conclusion
The current study demonstrates that the corpus callosum
connecting different WM-FNs has functional segmentation
and spatial distribution patterns. In addition, different callosal
subregions might be responsible for various cognitive functions
of the brain. Several previous studies and our study have
revealed the close relationship between WM- and GM-FNs. Our
study has provided more detailed pathway patterns of brain
function between the corpus callosum and brain functional
networks, which might be important for better understanding
the whole brain organization of primary and higher order
functional systems.
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