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Abstract
Frontal lobe epilepsy has recently been associated with disrupted brain functional connectivity; variations among various 
resting-state networks (RSNs) across time remains largely unclear. This study applied dynamic functional network connec-
tivity (dFNC) analysis to investigate functional patterns in the temporal and spatial domains of various functional systems 
in FLE. Resting-state fMRI data were acquired from 19 FLE patients and 18 controls. Independent component analysis was 
used to decompose RSNs, which were grouped into seven functional systems. Sliding windows and clustering approach 
were used to identify the dFNC patterns. Then, state-specific connectivity pattern and dynamic functional state interactions 
(dFSIs) were evaluated. Compared with healthy controls, FLE patients exhibited decreased dFNC in almost all four patterns, 
changes that were mostly related to the frontoparietal system, suggesting a disturbed communication of the frontoparietal 
system with other systems in FLE. Additionally, regarding the fundamental connectivity pattern (state 3 in this study), FLE 
showed decreased time spent in this state. Moreover, the duration positively correlated with seizure onset. Furthermore, 
significantly reduced dynamic connections in this state were observed in the frontoparietal system linked to the cerebellar and 
subcortical systems. These findings imply abnormal fundamental dynamic interactions and dysconnectivity associated with 
the subcortical and cerebellar regulation of dysfunctions in frontoparietal regions in FLE. Finally, based on the developed 
FSI analysis, temporal dynamic abnormalities among states were observed in FLE. Therefore, this altered dynamic FNC 
extended our understanding of the abnormalities in the frontoparietal system in FLE. The dynamic FNC provided novel 
insight into the fundamental pathophysiological mechanisms in FLE.

Keywords  Frontal lobe epilepsy · Dynamic functional network connectivity · Dynamic functional state interaction · 
Resting-state fMRI · Double regression

Introduction

Frontal lobe epilepsy (FLE) is characterized by seizures 
involving the frontal lobes and usually occurs for a cer-
tain duration (usually for brief periods) during wakeful-
ness or sleep. FLE occurs in approximately 20–30% of 
focal epilepsy sufferers (Doelken et al. 2012). Seizures in 
FLE originate from the frontal lobes and interrupt relative 
function in frontal regions but may differ in terms of the 
location involved (Mayo Clinic 2008; Beleza and Pinho 
2011) or depending on the functional networks impacted. 
Seizures in FLE may mostly fall under multi-cognitive 
defects and motor-related abnormality networks (Kelling-
haus and Lüders 2004; Beleza and Pinho 2011). These 
phenomena implicate abnormality in multiple functional 
systems in FLE patients. Nonetheless, in contrast to the 
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other types of epilepsy such as temporal lobe epilepsy, 
FLE imaging studies are few, which makes it relatively 
difficult to ascertain the functional network diversities 
and behavioural correlates across the whole brain, thereby 
obscuring clarity.

Recently, neuroimaging methods have started to become 
increasingly employed to understand epileptic disorders 
across various modalities; for example, EEG-fMRI has 
been used to localize the potential original regions of sei-
zures in FLE (An et al. 2015). In addition, imaging methods 
have been used to delineate the focal regions of seizures 
suggested to have different functional connectivity patterns 
in FLE patients (Luo et al. 2014). Resting-state functional 
connectivity has also been used to explore the connectivity 
alterations within resting-state networks (RSNs) in various 
types of epilepsy (Luo et al. 2015; Tracy and Doucet 2015; 
Jiang et al. 2017; Zhong et al. 2018). Functional network 
connectivity (FNC) has been used to identify the connec-
tivity between networks from different point of views (Jafri 
et al. 2008) and has also been applied in epilepsy and other 
diseases to uncover the coupling among RSNs (Luo et al. 
2012; Tan et al. 2015; Li et al. 2017a, b). Even so, all of 
these methods mentioned focus on the static relationship 
within or between brain networks, and these methods have 
recently been challenged by fundamental models. Thus, 
static connectivity basically only measures brain activities 
averaged over time during resting scans. Consequently, the 
resulting static connectivity has been suspected to mask 
various states of dynamic connectivity (Rashid et al. 2014; 
Graña et al. 2017) occurring within the individual brains. 
In light of this, the current study focused on the use of win-
dowed dynamic FNC to investigate differences that occur 
between various networks during resting-state in both the 
temporal and spatial domains.

Dynamic functional connectivity has been proposed 
to be eminent throughout rest (Deco et al. 2013). Studies 
using dynamic methods have shown that not only do subtle 
events exist at rest but also certain statistical properties are 
inherent. Extensive analyses, such as those done by Chang 
and Glover (2010), suggested that significant differences in 
resting information observed in the posterior cingulate cor-
tex were the result of dynamic events observed using the 
wavelet-based continuous frequency but not necessarily by 
static properties. Other studies have used sliding window 
correlational approaches to observe the dynamic functional 
connectivity (Damaraju et al. 2014; Rashid et al. 2014) in 
the brains of both patients and healthy individuals. Conse-
quently, the field of dynamic FNC has widened in regard 
to characterizing such differences, particularly during the 
disease resting-state in patients. In epilepsy, the interictal 
epileptic discharges are often transient for propagation in 
different regions and affects the multi-systems. Dynamic 
FNC might therefore provide complimentary, if not fresh, 

insight into the underlying pathophysiological mechanisms 
in patients.

To our knowledge, this is the first time windowed 
dynamic connectivity among RSNs has been applied to 
FLE data to explore the temporal and spatial patterns. We 
used a clustering approach and exploratory methods to deter-
mine the dynamic FNC of the derived temporal and spatial 
matrices.

Materials and Methods

Participants

In this study, we used resting-state fMRI experimental data 
collected from 37 participants, including a total of 19 FLE 
patients [nine females; mean age = 24.2 years; standard devi-
ation = 9.5 years; age range 13–51 years; number of patients 
with unilateral interictal epileptic discharges (IED) = 4 (left) 
and 6 (right), number of patients with bilateral IED = 9] 
recruited from the Clinical Hospital of Chengdu Brain Sci-
ence Institute (CBSI), University of Electronic Science and 
Technology of China (UESTC). All patients were diagnosed 
by neurologists based on the clinical information in accord-
ance with the International League Against Epilepsy (ILAE) 
guidelines (Engel and International League Against Epilepsy 
(ILAE) 2001). Routine CT and MRI examinations did not 
show any structural aberrations in the FLE patients. Detailed 
demographic information (such as; age of epilepsy onset, 
Interictal EEG, seizure type, medication, family history of 
epilepsy) can be found in Table S1 (Online resource). The 
dataset used in this study is same as our previous research 
(Dong et al. 2016). In addition, 18 age and gender-matched, 
healthy participants were also recruited (five females; mean 
age = 23.9 years; standard deviation = 8.9 years; age range 
11–41 years). All approaches and the study procedure were 
approved by the local Ethics Committee of UESTC. We also 
required that written approval forms be submitted by each 
participant. All subjects provided written consent to par-
ticipate in this study. Part of the consent included the exact 
information about the scanning procedure and psychological 
assessment. The study was approved by the Ethics Commit-
tee of the clinical hospital of CBSI in accordance with the 
Declaration of Helsinki.

Imaging Parameters

All MRI data were collected using an MRI scanner (3.0T, 
Discovery MR750, GE, USA) in The Clinical Hospital of 
Chengdu Brain Science Institute of UESTC. T1-weighted 
anatomical images were collected using a three-dimensional 
fast spoiled gradient-echo (3D FSPGR) sequence, and the 
scanning parameters were as follows: slices = 152; TR/
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TE = 6.008 ms/1.984 ms; field of view = 256 × 256 mm2; 
flip angle = 9°; matrix size = 256 × 256 and slice thick-
ness = 1 mm (no gap). The functional images were col-
lected using a gradient-echo echo-planar imaging sequence. 
The scanning parameters were as follows: slices = 35; TR/
TE = 2000 ms/30 ms; field of view = 240 × 240 mm2; flip 
angle = 90°; matrix size = 64 × 64 and thickness = 4 mm. A 
total of 255 volumes were obtained over a 510-s period. 
During the resting-state fMRI scanning, all subjects were 
explicitly instructed to close their eyes and relax without 
falling asleep.

Preprocessing and Independent Component 
Analysis of fMRI

For functional images, the first five (5) volumes were dis-
carded to remove the T1 saturation effects, followed by slice 
timing, realignment, spatial normalization (3 × 3 × 3 mm3) 
and smoothing [6-mm full-width at half maximum 
(FWHM)] representing the preprocessing steps. Our anal-
ysis was performed by using a combination of toolboxes, 
including the fMRI toolbox found in the SPM8 software, 
(http://www.fil.ion.ucl.ac.uk/spm/softw​are/spm8/), neurosci-
ence information toolbox (Dong et al. 2018) for preprocess-
ing and the group ICA (GICA) toolbox in the GIFT (http://
miala​b.mrn.org/softw​are/gift/) for independent component 
analysis of fMRI. Data collected were thresholded at transla-
tion < 2 mm and rotation < 2° to avoid extreme head motion, 
which is known to introduce noise. The removal of the pos-
sible nuisance was done as follows: nuisance signals, which 
included linear trend, head motion, and the individual means 
of the white matter and cerebrospinal fluid signals, were 
excluded from the fMRI data through multiple linear regres-
sion analysis; Besides, framewise displacement (FD) was 
evaluated in the two groups (Power et al. 2012). The FD for 
each participant was evaluated using the following formula;

where T is the number of the fMRI time points, and 
x1
i

/
x2
i
, y1

i

/
y2
i
 and z1

i
∕z2

i
 are translations/rotations at the ith 

time point in the x, y and z directions, respectively; 
Δdx1

i
=x1

i
−x1

i−1
.

We adopted GICA to analyse all the data from both 
the patients and healthy subjects. We then decomposed 
all data resulting in linear combinations representing dis-
tinct timecourses. For us to achieve better components 
corresponding to anatomical and functional segments, 
we applied a high model order of 100 components. The 
Infomax algorithm was used for ICA estimation and was 
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repeated 20 times in ICASSO in other to identify stable 
and consistent components. We then selected intrinsic 
components based on peak activation in the grey matter, 
low spatial overlap and low TC frequency fluctuations.

Functional Network Divisions

During the ICA decomposition, we used a high model 
order to obtain the functional parcellation, where the 
number of components, C = 100. The model was used to 
decompose functional regions that exhibited temporal 
coherency. We retained 150 principal components (PCs) 
during the principal component analysis for subject-spe-
cific data reduction. Furthermore, the expectation maximi-
zation algorithm, implemented in the GIFT toolbox, was 
used to retain C = 100 principal components during the 
group data reduction.

After ICA was performed, the following two steps were 
taken: (1) 50 ICs were selected from 100 ICs and then 
grouped into seven network systems based on the spatial 
distribution of each IC; and (2) the timecourse of each 
selected IC was processed, and was further used to calcu-
late static FNC (sFNC).

Here, 50 ICs were selected based on peak activation 
clusters in the grey matter with little or no overlap within 
the white matter and other areas, such as the edges of the 
brain and ventricles; this was done through the inspection 
of spatial maps, as well as of the associated timecourses. 
We bandpass filtered the processed timecourses for the 
RSNs with a high frequency cut-off of 0.15 Hz; this was 
done to ensure the removal of the effects of scanner drift, 
as well as movement variations, we then inspected the 
power spectra (ratio of low to high frequencies) of each 
IC, components with frequencies higher than 0.15 Hz and 
lower than 0.01 Hz were excluded and reordered to fit 
the arrangement of the FNC matrix based on their ana-

tomical and known functional properties, specifically for 
perceptual and higher cognitive networks, which resulted 
in an ordered row division including the default mode net-
work (DMN), subcortical network (SCN), auditory net-
work (ADN), frontoparietal network (FPN), visual net-
work (VSN), cerebellar network (CRN), and sensorimotor 
network (SMN). The intrinsic components were grouped 
into seven brain networks for further analysis (Allen et al. 
2011). We used the seven networks order to estimate the 
sFNC matrix in a way similar to our previous studies (Luo 
et al. 2012; Li et al. 2015; Jiang et al. 2018).

http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
http://mialab.mrn.org/software/gift/
http://mialab.mrn.org/software/gift/
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FNC with Sliding Window and Clustering Analysis

We employed a sliding window approach (Allen et al. 2011) 
to evaluate the dynamic FNC patterns for all subjects. We 
computed correlations between the selected ICs with a win-
dow width size of 22 TRs = 44 s and sliding steps = 1, result-
ing in 228 windows. The 228 windows were obtained for all 
37 subjects; thus, there were 228 × 37 = 8436 instances. To 
ensure a complete covariance matrix and sparsity, we set 
constraints on the L1 norm by using the graphical LASSO. 
Each subject’s regularization parameter was evaluated by 
independently optimizing lambda to ensure capture of 
unseen data.

We used all the windows of the temporal matrices 
between the RSNs and applied the k-mean clustering 
algorithm to obtain a set of discrete cluster centroids. The 
k-mean clustering was used because the model of dynamic 
connectivity repeats within subjects across time. We selected 
k from 2 to 10 representing cluster states. In each selection 
state, the clustering algorithm was repeated 500 times to 
increase the odds of escaping local minima for clustering by 
using different distance functions, which produced similar 
results with (50 × (50 − 1))/2 = 1225. To obtain the optimal 
number of cluster centroids, we used the Gap statistic, elbow 
criterion and Silhouette algorithms. Consequently, k = 4 was 
obtained from the elbow criterion (this result was selected 
because the results from the other two methods gave less 
than three states, i.e. k = 2, also four clusters represented 
more differences, which is better for pattern evaluation com-
pared to only two clusters. Thus, more clusters will give 
more interacting FC among states and can be used to find 
abnormal functions in patients) and the medians are pre-
sented as FCs for each state capturing all features. A subject 
median was estimated for each cluster division obtained 
from the subject windows, representing the connectivity of 
subjects for each state.

In addition, we used the transition state vectors computed 
from the dynamic FNC matrices of the windows of the IC 
timecourses to compute the dwell time (average number of 
successive windows in the same state) and fraction of time 
(proportion of all windows) in each state. The evaluations of 
group difference using these state vectors were done through 
rank-sum, non-parametric tests (data were not distributed 
around the means of the windows, and we were interested 
in finding which group was more or less than the other), and 
the threshold was set as p < 0.05. Furthermore, we proceeded 
to estimate the differences in variation of the dwell time 
across subject for each state, here, we computed the vari-
ances by taking the standard deviations of all subjects within 
each group. The variance of each state was then compared 
through non-parametric permutation test with random rep-
etition of 1000 times, the test was run for four times which 
resulted in four p values threshold at p < 0.05. Moreover, 

to estimate the difference in variation of dwell time across 
states for each subject, we computed the standard deviation 
across the four clusters within each subject, this resulted in 
two vectors (each column and row representing a group and 
the variability for each subject respectively), then the differ-
ence between patients and HC was calculated through two 
sample t-test (p < 0.05).

Individual Dynamic FNC Analysis Using Double 
Regression

Here, we adopted the double regression approach as an 
exploratory method to back-construct individual states 
(spatial weights) and their dynamic variation across sliding 
windows (temporal features). This method, as described in 
(Beckmann et al. 2009), is widely used in back-construction 
processing in group ICA analysis to define the timecourses 
and intrinsic independent components within each subject.

We applied the double regression method as follows:
First regression step:

where Y epresents the individual FNC matrix of each slid-
ing window, and X1 indicates the matrices for the four 
states obtained from the clustering mentioned above, which 
reflects the spatial pattern of states. Thus, β1 represents the 
temporal feature, that is, the dynamic variation in the weight 
of a given state across sliding windows in the individual 
level. ε signifies the error term.

Second regression step:
Here, β1 was included as a regressor to identify the indi-

vidual spatial weight of each state in all sliding windows.

where Y was set as the individual FNC matrix of each sliding 
window, and X2 equals β1 in the first regression step. Thus, 
β2 represents the distinct spatial weight of each state, which 
reflects the individual dynamic FNC of each state.

Finally, we computed the correlation of β1 to reflect 
dynamic functional interactions between states (dFSI) at the 
individual level. We used a non-parametric statistical analy-
sis through permutation tests to evaluate the differences in 
dFSI between the two groups. Here, the dFSI matrix demon-
strates a high-order correlation and reveals the pattern of the 
inter-state connectivity. The dynamic FNC (spatial weight 
of each state, β2) values were also compared between groups 
using non-parametric (the observed data were not normally 
distributed about the means) statistical analysis.

Correlation Analysis

The between-group significance obtained, marked by the 
temporal state matrices, was followed up by a correlation 

(2)Y = �1X1 + �

(3)Y = �2X2 + �
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analysis between the state vectors and the clinical features 
of epilepsy (age of onset), while controlling for gender. The 
correlation analysis was done through partial correlation 
with p < 0.05 (FDR-corrected). We utilized the partial cor-
relation function in the MATLAB13b software.

In summary, Fig. 1 illustrates the analytical procedure 
involved in the process used in generating our results, involv-
ing data processing, ICA decomposition for the selection of 
intrinsic RSNs, and dynamic FNC matrices were computed 
within all windows for each subject, followed by clustering 
analysis to generate state matrices for temporal and spatial 
analyses. State matrices were evaluated in the temporal 
domain, and the double regression method was employed 
to estimate the spatial matrices.

Results

Seven Functional Networks

Out of the 100 components decomposed, we identified seven 
networks composed of 50 IC groups based on their anatomi-
cal and functional features, as shown in Fig. 2a, namely, nine 
default mode network components (DMN-ICs 14, 15, 18, 
32, 33, 34, 37, 43 and 48), four subcortical network com-
ponents (SCN-ICs 4, 6, 17 and 24), four auditory network 
components (ADN-ICs 29, 41, 61 and 65), 14 frontoparietal 
network components (FPN-ICs 5, 7, 9, 11, 12, 13, 22, 23, 
25, 28, 30, 31, 99 and 100), nine visual network components 
(VSN-ICs 19, 21, 36, 39, 40, 52, 90, 97 and 98), five cer-
ebellar network components (CRN-ICs 10, 16, 42, 50 and 
60) and five sensorimotor network components (SMN-ICs 
26, 27, 35, 38 and 51). The RSNs in the various networks 
are arranged in the circular order shown in Fig. 2b. The 
T-maps and power spectra information of the selected com-
ponents are shown in Fig. 1 (Online Resource). Table S2 
(Online Resource) shows the peak activation for the all the 
ICs across the seven networks. The between-group differ-
ences in the sFNC are shown in Fig. 2 (Online Resource).

Clustering and Dynamic FNC Patterns

Four FNC patterns were identified for the FNC matrices 
from the sliding window analysis, and the temporal matrices 
from the clustering resulted in FC within the subject data, 
which were arranged in order of occurrence from k = 2 − 10, 
as shown in Fig. S3a (Online Resource). The elbow criterion 
resulted in k = 4, as shown in Fig. S3b (Online Resource). 
The group-specific median of the clustering for all sub-
jects in each of the four states is shown in Fig. S4a (Online 
Resource), indicating the cluster centroid, which speci-
fies the FC, and the percentages attached to the centroids 
(medians) represent the ratio of the number of occurrence 

per state to the total number of sliding windows. Fig. S4b 
and c (Online Resource) are the group-specific centroids 
for the FLE patients and healthy subjects, respectively. In 
addition, the 1% connections with high-cluster amplitudes 
in each state are shown in Fig. S5 (Online Resource). From 
Figs. S4 and S5 (Online Resource), we found that state 1 
showed major connections among the SMN with the DMN 
and others; the main links in state 2 related to the high-level 
networks (DMN and FPN); state 3 showed general commu-
nication among all of seven networks with the highest per-
centage (33%), which represents the fundamental connection 
pattern in the whole brain that facilitates specific patterns of 
brain activation; and the main connections in state 4 were 
located in the FPN, CRN and VSN.

Furthermore, between-state differences obtained in the 
dwell time analysis showed that, compared with healthy 
controls, FLE patients exhibited significantly brief aver-
age dwell times (p = 0.0026), and a fraction of the duration 
(p = 0.0021) in state 3 is shown in Fig. 3a, b.

In addition, we found significant difference in the com-
puted variations of the dwell time across subjects for each 
state (compared with HC, patients were lower, p = 0.044, in 
state 3). Besides, there was no significant difference in the 
subject variability across states (tdf=35 = 0.346, p < 0.731), 
where df = degree of freedom.

We observed a significant positive correlation (p = 0.003) 
between the percentage mean dwell time in state 3 and the 
clinical feature (Age of onset) shown in Fig. 3c, whereas we 
found no correlation between the other state vectors and the 
clinical scores.

Individual Dynamic FNC

Through the non-parametric tests, we found major altered 
spatial patterns of dynamic FNC in patients for the four 
states: (1) For state 1, we found increased connections in 
FPN-SCN (IC9-IC6) and FPN-CRN (IC22-IC42) as well 
as decreased connections in FPN-SCN (IC5-IC6), FPN-
SMN (IC9-IC35), ADN-FPN (IC61-IC100) and FPN-CRN 
(ICIC100-IC60). All of them connected to the FPN. (2) In 
state 2, increased connections were found in DMN-SMN 
(IC48-IC51), and decreased connections were also found 
in SCN-FPN (IC24-IC100), ADN-VSN (IC65-IC39), FPN-
SMN (IC9-IC27), FPN-CRN (IC12-IC16), and DMN-SMN 
(IC37-IC26). (3) In state 3, an increased relationship was 
found in DMN-SMN (IC48-IC27), with more decreased 
connections in FPN-SCN (IC7-IC4), FPN-CRN (IC7-IC16), 
FPN-SCN (IC12-IC6), FPN-SCN (IC22-IC6), FPN-CRN 
(IC22-IC10), FPN-CRN (IC28-IC42) and FPN-CRN (IC31-
IC42). (4) Finally, in state 4, we found only decreased con-
nections in SCN-SMN (IC4-IC51), SCN-SMN (IC24-IC51), 
FPN-SCN (IC11-IC24), FPN-VSN (IC11-IC52), FPN-CRN 
(IC12-IC16), VSN–VSN (IC52-IC98) and VSN-SMN 
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(IC98-IC26). These patterns are shown in Fig. 4a. In short, 
we found 70% altered connections (19/27) related to the 
FPN; particularly, all of the decreased connections in state 
3 (seven links in eight altered connections) were located in 
the FPN linked to the CRN and SCN. Moreover, the follow-
ing observations were made in dFSI among the four states: 
we observed a significantly reduced relationship between 
states 1 and state 2, as well as a reduced relationship between 
states 3 and state 4, as shown in Fig. 4b.

Discussion

We explored dynamic FNC using a sliding-window approach 
to estimate the changes between FLE patients and healthy 
subjects. Four dynamic FNC patterns were identified across 
all subjects. Moreover, evaluations were performed within 
the temporal and spatial domains of the subject matrices 
for four patterns. Consequently, the following findings were 
revealed: (1) Compared with healthy subjects, FLE patients 
demonstrated major reductions in dynamic FNC in almost 
all of the patterns. Interestingly, 70% of the decrease was 
related to the FPN, suggesting disturbed communication of 
the frontoparietal system with other systems in FLE. (2) For 
the fundamental connection pattern (state 3), FLE showed 
decreased dwell time in windows and fractions of time spent 
in this state. Additionally, the duration spent by patients in 
this state positively correlated with seizure onset. In addi-
tion, significantly reduced dynamic connections in this state 
were observed in the FPN linked to CRN and SCN. These 
findings implied abnormal dynamic interactions in the fun-
damental connective pattern in FLE, and also the dysconnec-
tivity between the frontoparietal system with cerebellum and 
subcortical nuclei contributed to the major abnormalities in 
this state. (3) Finally, the novel exploratory analysis showed 
significantly reduced relationships among the states across 
all sliding windows in FLE. To the best of our knowledge, 
this study was the first to demonstrate significant differences 
in the dynamic FNC between FLE patients and controls. 
The approach, therefore, provided novel insight into the 

fundamental pathophysiological mechanisms of the fron-
toparietal system in FLE.

FNC, as a method of exploring functional alterations 
and interactions among resting-state networks, has been 
the focus of neuroimaging research recently. It is an impor-
tant method to statistically analyse whole-brain networks, 
particularly mechanisms and changes in neuropsychiatric 
disorders (Jafri et al. 2008; Wang et al. 2015). The sFNC 
approach depends on the notion that functional connectivity 
is due to the static nature of features over time during scan-
ning. Some studies (Li et al. 2015, 2017a, b) used sFNC to 
investigate alterations in epilepsy. In FLE, the propagation 
of epileptic activation might influence multiple regions that 
differ from the common RSNs in healthy controls (Luo et al. 
2014). In the current study, the static connectivity showed 
significant group differences between the SMN and the 
VSN, networks that are primary involved in sensory per-
ception, as well as motor processes. This finding might indi-
cate primary perceptual discrepancies in FLE. Furthermore, 
our study explored dynamic matrices and found that FLE 
patients demonstrated major reductions in dynamic FNC in 
almost all patterns. In epilepsy, the dynamic analysis would 
contribute to uncovering the propagation path of epileptic 
activity and seizures prediction (Direito et al. 2017) and 
detection (Li et al. 2016; Geier and Lehnertz 2017).

Thus, these findings extended the previous static dys-
connectivity to disturbed dynamic connectivity in FLE and 
provided more evidence for understanding the dysfunc-
tional connectivity mechanisms in FLE. Interestingly, 70% 
of the decreased connections were related to the FPN, and 
the disturbed communication between the frontoparietal 
system and other systems played a key role in the general 
abnormalities in the whole brain of FLE to some extent. 
In addition, cognitive defects are often found in FLE (Wil-
liamson and Jobst 2000; Fletcher and Henson 2001; Exner 
et al. 2002; Braakman et al. 2013; Dong et al. 2016). Sev-
eral investigations have suggested that profound cognitive 
activities underlie resting experimental changes in the func-
tional connectivity pattern (McAvoy et al. 2008). Hence, 
evidence directed towards the dynamic processes and sud-
den brain changes that occur in functional connectivity in a 
time-varying manner increasingly make this approach worth 
applying (Shen et al. 2015). Consistent with this presump-
tion, abnormalities in the frontoparietal system within the 
temporal and spatial domains, demonstrated in FLE here, 
would implicate the relationship with behavioural cognitive 
alterations in FLE.

According to the connective pattern and state percent-
age resulting from the cluster of dynamic FNC, state 3 with 
widespread connections in all seven networks, might reflect 
a fundamental connection pattern in the whole brain, which 
would facilitate a specific pattern of brain activation. Our 
study explored dynamic matrices obtained from temporal 

Fig. 1   An overview of the analysis steps of dynamic functional net-
work connectivity. The analysis included the following steps: a pre-
liminary resting-state fMRI data were preprocessed; b ICA decompo-
sition was performed, and 50 intrinsic RSNs were selected c dynamic 
FNC matrices were computed within all windows for each subject; d 
clustering and state analyses were performed to evaluate the dynamic 
FNC changes; e transition state vectors were obtained through the 
calculated membership assignments for all windows; f temporal state 
vectors were then computed and could be viewed for all states; and 
g exploratory analysis was conducted from the state matrices, yield-
ing patterns within each state between the two groups. Abbreviations, 
dFSI, dynamic functional state interactions; dFNC, dynamic func-
tional network connectivity

◂



401Brain Topography (2019) 32:394–404	

1 3

state vectors within the temporal domain to uncover state-
specific alterations. FLE patients had shorter durations than 
the controls across the windows and spent less time in state 
3, with no significant differences in the other states. Besides, 
the variability of dwell time across subjects also indicated 
patients had lower variability than healthy controls in state 
3. In addition, positive correlations between the mean dwell 
time of this state and seizure onset were observed, suggest-
ing that early seizure onset leads to more severe effects on 
this state. Similar to the reduced relationship mentioned 
above, patients demonstrated reduced FC patterns in this 
state, including two profound aspects, namely, connections 
indicating that modulations exist between the frontal lobe 
and subcortical nuclei processes, as well as fronto-cerebel-
lar networks (Braakman et al. 2013) found in FLE. Here, 
the SCN consisted of the putamen and caudate, which play 
important roles in the regulation of epileptic discharges 
(Norden and Blumenfeld 2002). Abnormalities, including 
epileptic activities, located within the frontoparietal areas 
may be responsible for mental dysfunctions in FLE patients 
(Exner et al. 2002; Braakman et al. 2011). In this study, the 
decreased connection between the frontal-subcortical net-
work fundamental connection patterns suggested the mod-
ulation of subcortical nuclei of the frontoparietal system, 
which might be responsible for the altered dynamic function, 
consistent with previous studies. In addition, studies have 
found the cerebellar role and its interactions with epileptic 
discharges (Kros et al. 2015a, b). In our study, the decreased 

contribution of the spatial dynamic FC of the fundamental 
state might have influenced the dynamic modulation by the 
FPN and cerebellum of the epileptic activity in FLE patients. 
Collectively, these results revealed the abnormal dynamic 
functional architecture in the fundamental connection pat-
terns, reflecting the base pathophysiological mechanisms 
of FLE. In addition, the subcortical nuclei and cerebellum 
played crucial roles in the interaction with the frontoparietal 
system, implicating basal ganglia and cerebellar regulation 
of epileptic discharges in FLE.

Apart from the analysis within the spatial domain, we 
identified relationships corresponding to the dynamic spa-
tial pattern among states across windows. A state-related 
timecourse was constructed to describe the contribution of 
each state to the dynamic matrices in the temporal domain 
using a double regression analysis. The timecourse related to 
each FC state can be different from the timecourses associ-
ated with the independent components derived directly from 
BOLD rs-fMRI data using ICA. The BOLD re-fMRI related 
timecourses were used to calculate sFNC and would reflect 
the contribution of a given state for the time-varying FNC 
matrices. Besides, the dynamic functional state interaction 
(FSI) reflects the temporal coupling of all states, which rep-
resented high-order dynamic features of functional networks. 
The high-order correlation is similar to those proposed in 
previous studies (Xiaobo et al. 2016; Zhang et al. 2017). 
Essentially, this was the first study to evaluate the FSI of 
each state timecourse in patients with epilepsy. Here, we 

Fig. 2   Identified network systems. a RSNs arranged into seven subcategories. Each color in the composite map matches a different ICN. b Net-
work arrangement used in the subsequent analysis of the RSNs
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observed reduced FSI between states 1 and 2 as well as 
between states 3 and 4, in FLE. Besides, this study pro-
vided more evidence to understand the disrupted dynamic 
functional connectivity in FLE patients.

Although this study brought to light the ability of 
dynamic FC as a means of evaluating FNC in a whole-
brain analysis, during this study, a number of constraints 
were evident. (1) The sample size of the patients for our 
RSN analysis was relatively small. This limitation resulted 
in our inability to apply certain methods, such machine 
learning, to further characterize the dynamic features. 
Therefore, we suggest a reasonably larger dataset in future 

studies. (2) Though the ICA analysis, subsequent sliding 
windows and noise removal was supposed to separate the 
artefacts, such as head motion and heart beat rates, from 
the components; we were not able to do a thorough arte-
fact removal analysis, which may have influenced our FC 
results. Finally, k-mean clustering, as used in this study, 
comes with various limitations, such as issues that have 
to do with size, density and when a dataset has outliers. 
As a result, we hope that our next study will include other 
clustering methods proven to be much more efficient than 
k-mean clustering.

Fig. 3   Group differences in the temporal metrics obtained from state 
transition vectors. The asterisk(*) in the bar plots signifies statistically 
significant differences between the two groups. Error bars represent 
the standard error of the group differences between groups obtained 

from the state transition vector a: mean dwell time, b: fraction of time 
spent in each state, and c: correlation between percentage dwell time 
and age of onset. *Indicates outliers, which were not included in the 
correlation analysis
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Conclusion

Using dynamic FNC, this study analysed temporal and 
spatial dynamic connectivity in FLE. FLE patients demon-
strated decreased dynamic FNC in almost all states, mainly 
in the dysfunctional connections between the frontopari-
etal system and other systems. Additionally, states with 
fundamental connective patterns were observed in the 
temporal and spatial dynamic abnormalities in FLE. Inter-
estingly, the cerebellum and basal ganglia had disrupted 
dynamic interactions with the frontoparietal system in this 
state, which suggests basal ganglia and cerebellar regula-
tion of epileptic discharges in the frontoparietal lobe in 
FLE. Finally, based on the developed FSI analysis, which 
highlighted the capability of temporal dynamic analysis 
to delineate differences in neurological diseases, the tem-
poral dynamic abnormalities in states were also observed 
in FLE. This abnormal dynamic FNC therefore extended 
our understanding of the pathophysiological brain network 
mechanisms in FLE.
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