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REVIEW ARTICLE

From psychosomatic medicine, brain–computer
interface to brain–apparatus communication

Dezhong Yaoa,b�, Yun Qina,b and Yangsong Zhangb,c

aMOE Key Lab for Neuroinformation, School of Life Science and Technology, University
of Electronic Science and Technology of China, Chengdu, China; bSichuan Institute for
Brain Science and Brain-Inspired Intelligence, Chengdu, China; cSchool of Computer
Science and Technology, Southwest University of Science and Technology,
Mianyang, China

ABSTRACT
In psychosomatic medicine, a harmonious brain–body interaction is an
important cornerstone of physical health. The modern brain–computer inter-
face (BCI), an interaction between the brain and abiotic devices, provides the
benefits for people with the help of powerful computers. Our newly proposed
term brain–apparatus communication (BAC), acknowledges the unique value
of the above two interactions and further describes their interdependence;
how this interdependence permits a better understanding of physical and
psychological health and promotes the harmonious coexistence of people
with the environment is worth exploring. This perspective article provides a
general review of the three types of interactions and discusses the possible
future trends.
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1. Introduction

Upon the fertilization of an egg, the brain and various organs develop
under the guidance of the genetic code, establishing an inextricable con-
nection between the brain and the body. The early stages of this inter-
action occur in the womb. Upon birth, new-borns are faced with a vast
variety of auditory, visual, and tactile stimulation from the environment
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that is delivered to the brain by a variety of sensory organs, leading to
rapid brain development and quickly establishing the way that the brain
perceives the external environment. Since both of these interactions (i.e.,
brain–body and brain–environment interactions) are centered on the
brain, they may be collectively referred to as brain–apparatus communica-
tion (BAC) [1]; this apparatus can be an internal organ (BAC-1) or an
external device/environment (BAC-2). Psychosomatic medicine was first
established �200 years ago, with an increased understanding of the BAC-
1 benefitting patients; since the mid-1960s, various BAC-2 styles have
been complemented with various artificial machines, especially computers,
creating a brain–computer interface (BCI). The emergence of BCIs has
brought good news for unlocking locked-in patients and facilitated neural
rehabilitation.

Moreover, BAC-1 and BAC-2 are essential and inseparable in daily life.
For example, when people play basketball, BAC-2 reflects the interactions
of the brain with the basketball and team members, while BAC-1 reflects
the interactions of the brain with the muscles, heart, lungs, etc. High-
intensity video games provide another example; they involve the inter-
action between the brain and the video game as well as the interaction
between the brain and many organs. In particular, this case involves sim-
ultaneous and intense internal and external interactions; we refer to it as
BAC-3. In the following sections of this article, we first briefly introduce
psychosomatic medicine and the BCI to provide historical background for
BAC-1 and BAC-2, respectively. Next, we introduce the concept of BAC
and additional examples. Finally, we discuss the importance and unique-
ness of BAC for the diversity of brains across species. We suggest that
promoting efficient BAC-3, which includes BAC-1 and BAC-2, will bene-
fit human health and well-being and even inspired the effective future
avenues to extend our ability.

2. Psychosomatic medicine: concept and history

In traditional Chinese medicine, “The Emperor’s Eighty-One Difficulties”
1900 years ago, recorded four methods for diagnosing various diseases
including brain disorders: “looking, listening, asking, and touching.”
“Looking” refers to observing the patient’s complexion, “listening” refers
to hearing the sound, coughing, and breathing, “asking” refers to inquir-
ing about their symptoms, and “touching” refers to noting their vital signs
(e.g., their heart rate). Thus, even this far in the past, the concept that the
body and the mind were united was understood and utilized to treat
patients. In 1818, Heinroth introduced the term “psychosomatic,” yet the
conceptual roots of psychosomatic medicine extend back to ancient
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Greece. After modern psychosomatic medicine was established as a med-
ical discipline, it rapidly developed, passing through various stages. The
central concept of psychosomatic medicine is that the brain and body are
integral to all human functions; practitioners assess the psychological fac-
tors that affect individual vulnerability as well as the course and outcome
of the illness and apply psychological therapies to treat physical illness.
Psychosomatic medicine seeks to explain how immaterial events, such as
behavioral or psychological responses to psychosocial stimuli, are trans-
formed into physical changes, such as anatomical, enzymatic, autonomic,
or endocrine responses. Additionally, this discipline attempts to elucidate
the role of the central nervous system (CNS) in the control and regulation
of endocrine and neural processes.

Figure 1 illustrates some of the representative research in the history of
psychosomatic medicine. This groundwork was laid in the 1910s–1920s
when Cannon investigated bodily changes accompanied by specific emo-
tions [2,3] and proposed the Cannon–Bard theory. This theory empha-
sizes the role of the thalamic and hypothalamic centers in organizing the
emotional responses to stimuli, marking a shift from the prior

Figure 1. Representative studies during the development of the field of psycho-
somatic medicine. In the early twentieth century, Cannon’s laboratory studied the
physiology of emotions for two decades; with the support and expansion of Bard’s
studies, they proposed the Cannon–Bard theory that linked emotions and physio-
logical responses. The Cannon–Bard theory was an important precursor for studies,
such as Papez’s “A proposed mechanism of emotion.” In the mid-twentieth century
(from the 1940s to the 1960s), the psychosomatic perspective identified different
kinds of psychological factors in illness, and physiological changes were discussed.
After the 1960s, researchers in the field proposed and discussed psychiatric connota-
tions, psychosomatic theory, behavioral therapy, and clinical criteria. In the past two
decades, the psychosomatic medicine framework has broadened to include numerous
psychiatric and physical systems, and its measurements and clinical practices for
treatment-related care come increasingly to the fore.
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James–Lange theory to the study of central brain mechanisms underlying
emotions [4–8]; it was an important precursor to the following studies.
Based on the Cannon–Bard theory, Papez proposed the mechanism of
emotion, and Maclean suggested the presence of a relationship between
psychosomatic disease and the “visceral brain” [9,10]. Alexander also
identified emotional tension as a significant cause of physical illness
[11,12], and the psychosomatic relationship between personality charac-
teristics and life situations were described [13]. The interaction between
stress and physical disease, especially cardiovascular disorders, has been
elucidated [14,15]. Thus, researchers gradually proposed a unified concept
of health and disease. Engel further provided a method of interviewing
subjects and assessing psychological data, developing a multifactorial
model of illness that was assumed to result from interactions of the cellu-
lar, tissue, organismic, interpersonal, and environmental levels [16–18]. In
this stage (1930s–1960s), the focus shifted from the occurrence of disease
to its context.

After the 1960s, the development of consultation-liaison (C-L) psych-
iatry provided an impetus to psychosomatic research worldwide and
enhanced the psychiatric connotation of the field. During this stage, the
preliminary application of psychosomatic medicine in consultation psych-
iatry was established [19–21]. Additionally, behavioral medicine grew and
was increasingly practiced. The risks of certain behaviors for the develop-
ment of disease were emphasized [22,23] as well as the importance of
family factors in the development and maintenance of severe psycho-
somatic problems in children [24,25]. Stress, trauma, and hostility were
also identified as important factors in psychosomatic processes [26–28].
Moreover, researchers proposed diagnostic criteria for psychosomatic syn-
dromes [29,30] and outlined the relationships with current psychiatric
nosology [31,32]. In this stage, behavioral therapy was on the rise, as it
demonstrated high potential for treatment options [33–36].

In the past two decades, psychosomatic medicine has continued to
advance, providing new effective strategies and measurements for clinical
practice [37–40]. Psychosomatic medicine has linked psychiatric and phys-
ical systems and provided extensions into new areas. Various studies have
concluded that immune modulation by psychosocial stressors or interven-
tions is a core mechanism underlying a diverse set of diseases [41].
Inflammatory, oxidative, and nitrosative stress pathways may be the genu-
ine organic cause of chronic fatigue and psychosomatic disorders [42].
How the brain-gut interactions work and the links of the gut microbiome
with neurodevelopment and depression suggest another psychosomatic
pathway of major importance [43,44]. Today, the field of psychosomatic
medicine is more scientifically rigorous, diverse, and treatment-related than
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ever before. Regarding depression and anxiety, which are highly prevalent
in patients with cardiovascular disease, the effectiveness of cognitive behav-
ioral therapy has been evaluated in internal medicine care [45].
Additionally, clinical practice guidelines have been refined and provided for
clinical applications [46–48]. In the past few years, the use of C-L psych-
iatry in psychosomatic medicine was recommended. Because C-L psychiatry
addresses wider linkages between psychiatry and other medical professions,
the integrating care in psychiatry has made the liaison role more important
than ever.

Currently, the environment and human lifestyle are experiencing pro-
found changes with advances in information science, intelligence science,
environmental science, and biological science [49]. Psychosomatic medi-
cine provides a microcosm perspective on mind–body interactions in dis-
ease and health; it also provides a basis for maintaining, improving, and
enhancing physiological functions in all aspects of human activities.

3. Brain–computer interface: history and progress

Humans have evolved basic ways to interact with the natural environ-
ment. For people with severe motor disabilities, BCI/brain–machine inter-
action (BMI) may provide a bidirectional link between the brain and
external devices that assist with retrieving motor function and communi-
cation. Historically, BCI was suggested to have potential applications for
neural rehabilitation or assistive devices that could be controlled directly
by the brain without muscle engagement [50–58]. Currently, BCI serves
as an important interconnection between the brain and devices and has
several applications.

Electroencephalography (EEG) is the main technology adopted for BCI.
EEG-based BCI dates back to the mid-1960s, with examples, such as the
brain-controlled lamp developed by Edmond Dewan [59]. In 1973, Vidal
coined the term “brain–computer interface” [60], and in the following
50 years, BCI gradually became an epicenter of scientific interest. Many
well-known BCI systems have been developed based on different types of
EEG signals. Fetz published the first paper on invasive operant condition-
ing of cortical spike trains in animals [61]. Subsequently, one of the most
famous BCIs was developed based on slow cortical potential (SCP) record-
ing by non-invasive EEG [62] and was used for self-regulation and external
control in 1979 [63–66]. EEG rhythms, used for very early forms of EEG
feedback, have brought out important BCI paradigms of self-regulation
[67–71]. In 1991, Wolpaw et al. achieved cursor control using the sensori-
motor rhythm (SMR); recently, SMR as well as its evolved event-related
desynchronization and synchronization features have been widely applied
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for realizing BCI systems [51,52,72–74]. At the same time, many studies
have been conducted on the use of event-related potentials (ERPs) and
evoked potentials (EPs) that indicate brain responses to external and
internal stimulation, such as the P300, steady-state visual evoked potential
(SSVEP), and motion-onset visual evoked potential (mVEP) [75–77].
Farwell and Donchin were the first to implement a P300-based BCI for
spelling, and subsequently, numerous methods of optimally presenting
stimuli and extracting single-trial responses were developed [75,78]. SSVEP
is evoked by a rapid serial visual presentation [77]; SSVEP-BCI has been an
important mode because it does not require training, has more reliable
classification characteristics, and achieves a high spelling speed [79–86].

With technological advancements in acquiring brain signals, BCIs in
the twenty-first century has become increasingly diverse. In 2007, a BCI
system based on functional near-infrared spectroscopy (fNIRS), was devel-
oped and controlled by blood flow in the brain [87]. Additionally, a neu-
rofeedback system based on functional magnetic resonance imaging
(fMRI) and a BCI system based on magnetoencephalography (MEG) were
also implemented [88,89]. The combination of BCI with VR generated a
new BCI mode [90,91]. A BCI system for multiperson cooperative con-
trol, i.e., multibrain BCI, was also constructed, and the first brain-to-brain
interface was introduced to solve the three-person collaborative problem
[92,93]. Many new BCI paradigms have emerged along other dimensions,
including different kinds of cognitive and affective BCIs [94–102].
Developing BCI paradigms that evolve from motion to mood, cognition,
and from active to reactive or passive paradigms would provide more BCI
applications [99,100,103–108]. In addition, the flourishing technologies
for acquiring and decoding brain signals at different scales also provide
new directions for BCI. For instance, it has become possible to decode
visual information from fMRI signals and synthesize speech from brain
cortical activity, restoring spoken communication by applying deep learn-
ing technology [109–111].

The history of BCI illustrates that the core technology of BCI is the spe-
cific paradigm, which includes the brain signals, what problems to address,
and what solutions are adopted. A new paradigm may offer a new domain
that attracts sufficient technological support for realization, including decod-
ing, encoding, transmission, data collection, data processing, feature estima-
tion, and pattern recognition, as well as new applications. In the future,
more consideration should be given to the real needs of humans and the
development of eco-friendly paradigms, followed by attention to supporting
technologies necessary to implement these paradigms. BCI is an interactive
pathway between the brain and the outside world and can provide unique
avenues to understand and explore the brain function. Figure 2 illustrates
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the main developments in BCIs since 1973. Early BCIs mainly focused on
motor function, but recent BCIs are expected to provide non-drug personal-
ized treatments for the millions of patients suffering from neurological and
mental disorders worldwide [112].

4. Brain–apparatus communication

We physically experience and interact with the world, driving the expres-
sion of intelligent behaviors [39,113]. Stimuli act upon integrated physio-
logical systems—the CNS, peripheral nervous system, endocrine system,
immune system, etc.—to initiate a network of responses, thus giving rise
to mind–body/body–mind interactions. Psychosomatic research, discussed
above, focuses on mind–body interactions. Body–mind interactions
include fields, such as embodied cognition, which emphasizes the deep
importance of the physiological status on cognitive processes [114,115],
and the study of somatopsychic disorders, which are mental disorders
caused or exacerbated by somatic disorders. In particular, endocrine dis-
orders, tumors, autoimmune disorders, and infections are associated with
psychiatric symptoms [116,117]. In contrast, BCIs focus on the interaction
between the brain and external devices. These two kinds of interactions
seem to be clearly distinguished. In fact, our brain is constantly in rela-
tionship with the body’s organs and also interacts with the environment
simultaneously. To encompass all these phenomena, we coined the terms
“brain–apparatus communication” in 2010 and Bacomics (BACþ omics)
in 2020, aiming to construct a unified framework that integrates the
brain, body, and external environment [1,118]. As noted above, BAC can
be divided into three different types of interactions: brain–body interac-
tions (BAC-1), brain–external environment/device interactions (BAC-2),
and the fusion of these two types of interactions (BAC-3) (Figure 3).

The integration of the brain and body exemplified in BAC-1 consti-
tutes the physiological basis of human growth and development and is
related to psychosomatic medicine. Network physiology has been

Figure 2. Main BCI paradigms in past studies. Early paradigms (in black) focused on
motor control; the recent paradigms (in red) focused on various modes of monitoring
and modulations.
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suggested to bridge integrated physiological systems and subsystems
[119]. In particular, the interaction between the brain and heart has
attracted increasing attention, facilitating the diagnosis and treatment of
cardiovascular and cerebrovascular diseases [120–124] as well as the
development of new methodologies to study brain function and heartbeat
dynamics [125,126]. Figure 4 provides a schematic diagram of the bidirec-
tional brain–viscera interaction. The brain–gut axis theory proposes that
gut microbes are key players in neurodevelopment and neurodegenerative
diseases and may modulate the occurrence and development of neuro-
psychiatric diseases [127–133]. The brain is also closely related to the
activities of other organs, such as the muscles, stomach, lungs, liver, and
kidneys [134–140]. BAC-1 also highlights the interdependence of the
brain and immune systems in neuroimmunology and neuropsychiatric
diseases [141], and different kinds of body–brain crosstalk, such as phys-
ical activity and dance, can benefit brain health [142–145]. Interactions
between the brain and the body, which involve the integration of multiple
central and peripheral systems, will lead to novel therapeutic options
[146]; this active field of research offers unique opportunities to draw

Figure 3. The concept of BAC. The interaction between the brain and body (BAC-1)
is represented inside the green circle, the interaction between the brain and external
equipment/environment (BAC-2) is represented in the outside circle, and simultan-
eous internal and external interaction (BAC-3) is indicated by the overlap.
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new theories blurring the border between cognition, emotion, and con-
sciousness, as well as between the mind and body.

BAC-2 includes a wide range of interactions between the brain and
non-biological apparatus, enabling the parsing of brain information, treat-
ment of impaired brain, and construction of new output channels, thus
realizing direct communication between the brain and external devices,
related to the above concepts of BCI/BMI. Figure 5 presents one example,
showing the neurorehabilitation of a child with cerebral palsy via a motor
imagery BCI. Recently, closed-loop BCIs and more advanced BCIs have
been developed. Closed-loop stimulation, which can simultaneously detect
brain activity and trigger neurostimulation, is a promising technology for
clinical practice [147–149]. Transcranial magnetic stimulation (TMS) and
transcranial electrical stimulation (tES), common neuromodulation tech-
niques, influence the excitability or inhibition of brain regions and cir-
cuits, non-invasively modulating sensory perception and cognitive ability;
they have provided important options for clinical intervention and cogni-
tive augmentation [150–154]. Additionally, real-time functional connectiv-
ity-informed neurofeedback based on fMRI has been developed; it allows
self-regulation of subcortical–cortical circuits and represents a potential
strategy to decrease anxiety [155]. There are many comprehensive reviews
or books on BCI/BMI [51,79,156–166]. We have identified four major
trends in the development of BCIs. First, BCIs have developed from the
original electricity-based paradigms to integrate electricity, magnetism,
sound, light, metabolism, and other inputs and outputs. Second, BCI

Figure 4. Brain–viscera interactions.
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hardware has shifted toward more flexible, wireless, miniaturized, higher-
throughput, and lower-power devices. Third, BCI application scenarios
have gradually expanded from rehabilitation of motor function to inter-
vention and treatment of neurological/mental disorders, as well as to
enhance perception and cognitive abilities. Fourth, BCIs have been com-
bined with artificial intelligence, big data, digital medicine, and cloud
technology, progressing from interaction to intelligent encoding/decoding
and intelligent integration.

BAC-3 represents a fusion of BAC-1 and BAC-2, i.e., a fused intelli-
gence. On the one hand, humans can enhance their intelligence and the
acquisition of skills (BAC-1) depending on the communication between
the brain and external objects (BAC-2); on the other hand, BAC-2 can
promote the full integration of natural pathways in the human body
(BAC-1). For example, controlling over a “third hand” can complement
the natural movement channel, benefitting multitasking [167]. In addition
to the vast majority of research that focused on the brain, interfaces with
peripheral nerves and organs that monitor and modulate peripheral
organs have emerged as new options in the diagnosis and treatment of
neurological, metabolic, and immune disorders [168]. Although BAC-2
provides a promising means of controlling artificial actuators, the best
solution for restoring sensation to a prosthetic limb may be the full inte-
gration of the artificial actuators into the user’s self-image [169].
Therefore, in recent years, some studies have integrated the existing

Figure 5. Neurorehabilitation of a child with cerebral palsy using a motor
imagery BCI.
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visual, sensory, and motor pathways of the body to restore sensory per-
ception, improve motor ability, and control residual limbs by applying
physical stimulation to the central or peripheral pathways [170,171].
Moreover, BAC-3 can incorporate brain-like intelligence (BAC-1) into
BCIs (BAC-2), facilitating the development of artificial intelligence.
Combining the neuromorphology of the brain with deep learning may
lead to brain-like network models with extensive connectivity, hierarchical
organization of structure and function, and time-dependent neuronal and
synaptic functions, which would provide new avenues for the develop-
ment of artificial intelligence and brain–apparatus intelligence (BAI) mod-
els. Other interactive approaches, such as music, video games (Figure 6),
computer-based training, and acupuncture, play important roles in phys-
ical and mental well-being by eliciting physiological responses in the
body. For example, computer-based cognitive training has become a
powerful option with the generalized beneficial effects across a large range
of cognitive functions [172]. The affective game, an emerging modulation
approach, involves a wide range of physiological interactions and bidirec-
tional brain-game interactions [173]. Low-intensity electroacupuncture
with acupoint specificity activates the vagal–adrenal axis, thus suppressing

Figure 6. Infrared imaging of an individual playing a video game. The game loop
includes psychological and physiological (e.g., cognitive, emotion, and action) inputs
and context-based feedback, as well as a wide range of physiological interactions
(e.g., of the brain, heart rate, breathing, muscles, metabolism, and skin temperature).
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systemic inflammation and providing a neuroanatomical basis for the
selection of acupoints in stimulating specific autonomic pathways [174].

5. Diverse brains and brain–apparatus communication

Worldwide, brains exhibit a diverse array of anatomical and functional adap-
tations. For example, jellyfish do not have a centralized nervous system,
instead possessing dispersed neurons. The brain of earthworms is small and
mainly guides movement by sensing light rather than controlling the
muscles. Therefore, if the brain of an earthworm is removed, it is difficult to
determine changes in behavior. Caenorhabditis elegans has 302 neurons that
determine its behaviors, such as chemotaxis and thermotaxis. Cockroaches
have two “brains,” divided into a forebrain and a hindbrain, with one in the
tail; thus, if their heads are removed, cockroaches can survive for another
week. Dolphins exhibit unihemispheric sleep, resting the left or right hemi-
spheres of their brains for �2h at a time. Octopuses are very intelligent sea
creatures with nine brains (one in their head and one in each tentacle), con-
structing brain networks. Moreover, sponges, which have no brains or nerve
cells, have existed for hundreds of millions of years. Sponges are thought to
have possessed nerve cells deep in their evolutionary history but to have sub-
sequently abandoned them due to lack of use: sponges merely rest on the
seabed and filter out food that flows past them. Starfish, which have eyes at
the end of their arms, can detect differences in illumination, perceiving light
and darkness, and thus neatly avoid predators, but they have no brain or
CNS; they belong to the group of organisms that apparently lost their
“brains” over the course of evolution.

Rich and varied brain patterns have been observed, with differences
depending on the interactions between the brain and internal organs as
well as between the brain and the living environment. Over the course of
evolution, human brains became larger and much more complex, which
is the key biological adaptation that allowed us to cope with natural disas-
ters and the challenges faced by other species, and reach the top of the
food chain. However, in the face of rapidly changing environments,
including more complex artificial technology and the new environment of
space and the deep sea, the rate of evolution of the human brain seems
insufficient; brain evolution is limited by various biological aspects includ-
ing physiology, biochemistry, information transmission efficiency, energy
supply and delivery of abundant nutrients. That is, evolution alone is
unable to meet the developing needs of humans in the real world. In this
sense, the emergence of BCI can be considered an attempt to break
through biological constraints, as linking computers with the brain can
address both internal and external challenges.
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The diversity of the biological brain determines the vividness of crea-
tures in the biological world. Currently, BAC-1 is undoubtedly the pri-
mary and critical focus, but it is possible that brains may one day develop
that solely rely on BAC-2. When the brain and external devices eliminate
biological limitations, a “superman” may truly be achieved. Although this
is possible in principle for a cyborg with pure BAC-2, it may take a long
time and poses many ethical issues. Furthermore, if we relax the con-
straint of biology and assume the interaction is solely between the exter-
nal environment and the “virtual brain or digital twin brain” [175], a
pure robot world could eventually emerge. If this robot exhibits the cap-
acity for natural evolution, it may eventually come to rule the world.
However, are there any creatures with brains but no bodies? Cosmologists
assume that the low-entropy universe could give rise to many low-entropy
consciousnesses, i.e., Boltzmann brains. These brains are freed from the
constraints of biological organisms and may be infinitely more common
than humans [176].

Finally, we provide speculations on the evolution of BAC as illustrated
by the five evolutionary models in Figure 7. Model 1 represents a body
without a brain; Model 2 represents an organism with brain–body inter-
actions (BAC-1); Model 3 represents the coordination of the brain, body,
and external objects (BAC-3¼BAC-1�BAC-2), as is currently possible;
Model 4 represents the brain of an intelligent robot, such as cyborg
(BAC-2); and Model 5 represents a highly intelligent agent alone (i.e.,
only the brain). Currently, we are at the most exciting stage of BAC evo-
lution: Model 3. The beautiful world is all around us, and we can interact
with it. Therefore, we should cherish it.

Figure 7. Five models of BAC. Model 1 and Model 5 are unusual, and should be
taken as hypotheticals, while Model 3 reflects our current reality.
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