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Abstract

Background. Schizophrenia has been primarily conceptualized as a disorder of high-order
cognitive functions with deficits in executive brain regions. Yet due to the increasing reports
of early sensory processing deficit, recent models focus more on the developmental effects of
impaired sensory process on high-order functions. The present study examined whether this
pathological interaction relates to an overarching system-level imbalance, specifically a disrup-
tion in macroscale hierarchy affecting integration and segregation of unimodal and transmo-
dal networks.
Methods. We applied a novel combination of connectome gradient and stepwise connectivity
analysis to resting-state fMRI to characterize the sensorimotor-to-transmodal cortical hier-
archy organization (96 patients v. 122 controls).
Results. We demonstrated compression of the cortical hierarchy organization in schizophre-
nia, with a prominent compression from the sensorimotor region and a less prominent com-
pression from the frontal−parietal region, resulting in a diminished separation between
sensory and fronto-parietal cognitive systems. Further analyses suggested reduced differenti-
ation related to atypical functional connectome transition from unimodal to transmodal
brain areas. Specifically, we found hypo-connectivity within unimodal regions and hyper-
connectivity between unimodal regions and fronto-parietal and ventral attention regions
along the classical sensation-to-cognition continuum (voxel-level corrected, p < 0.05).
Conclusions. The compression of cortical hierarchy organization represents a novel and inte-
grative system-level substrate underlying the pathological interaction of early sensory and cog-
nitive function in schizophrenia. This abnormal cortical hierarchy organization suggests
cascading impairments from the disruption of the somatosensory−motor system and ineffi-
cient integration of bottom-up sensory information with attentional demands and executive
control processes partially account for high-level cognitive deficits characteristic of
schizophrenia.

Introduction

When ‘dementia praecox’ was first proposed to describe schizophrenia by Kraeplin in the late
19th century, cognitive deficit was regarded as the core component of the disorder (Dondé,
Avissar, Weber, & Javitt, 2019), as evidenced by impaired function of higher-order brain
regions, such as the prefrontal cortex (Minzenberg, Laird, Thelen, Carter, & Glahn, 2009).
Since then, perceptual deficits in the development of schizophrenia have been relatively
ignored in the research field compared to the focus on the cognitive deficits. Although early
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sensory deficits have been well described in the schizophrenia lit-
erature, they have often been attributed to failures of attention and
other top-down mechanisms and not been emphasized within
prevailing psychiatric models (Rassovsky, Green, Nuechterlein,
Breitmeyer, & Mintz, 2005; van der Stelt, Frye, Lieberman, &
Belger, 2004). Traditional top-downmodels emphasize higher-order
cognitive deficit, which lead to deficient integration and organization
of lower-level sensory information processes, as evidenced by the
impaired casual forward influence of higher-order cognitive regions
on sensory input regions during perception in schizophrenia (Dima
et al., 2009; Dima, Dietrich, Dillo, & Emrich, 2010).

However, a growing number of studies demonstrate basic audi-
tory and visual deficits significantly contribute to higher-order
cognitive dysfunctions (Butler et al., 2007, 2009; Calderone
et al., 2013; Dias, Butler, Hoptman, & Javitt, 2011; Dondé et al.,
2019; Hoptman et al., 2018; Leitman et al., 2010), and interven-
tion that directly targets the sensory processing impairments
can drive substantial gains in higher-order cognition functions,
in addition to improving sensory functions (Adcock et al., 2009;
Biagianti, Fisher, Neilands, Loewy, & Vinogradov, 2016; Dale
et al., 2016; Fisher, Holland, Merzenich, & Vinogradov, 2009).
These findings highlight the importance of sensory processing
dysfunction by ‘bottom-up’ dysregulation towards higher cogni-
tive function in schizophrenia (Javitt, 2009b; Javitt & Freedman,
2015; Javitt & Sweet, 2015), in which the cognitive deficits in
schizophrenia could be viewed as hierarchically organized, with
deficits in early basic perceptual processes that localize to primary
sensory brain regions propagating to higher-order brain cognitive
regions contributing to subsequent higher levels functional
impairment (Butler et al., 2007; Calderone et al., 2013; Dias
et al., 2011; Leitman et al., 2010). Accordingly, recent models
are gradually shifting the research focus more to the impaired
developmental interactions between early sensory and high-order
processes in schizophrenia (Javitt, 2009b; Javitt & Freedman,
2015; Javitt & Sweet, 2015). As such, the identification of neural
mechanisms underlying the impaired functional integration
between and within early sensory and cognitive brain systems is
crucial to understand the pathophysiology mechanisms of schizo-
phrenia, which ultimately helps guide future interventional
approaches.

The aforementioned functional interaction can be explored by
characterizing functional connectivity within and between differ-
ent brain systems (Van Den Heuvel & Pol, 2010). Using resting-
state functional connectivity (rsFC), researchers are able to
observe abnormal FC within the high-order default, frontoparietal
network as well as ventral attention network in schizophrenia
(Dong, Wang, Chang, Luo, & Yao, 2018; Jiang et al., 2019; Liao
et al., 2019; Pettersson-Yeo, Allen, Benetti, McGuire, &
Mechelli, 2011). Aside from these abnormalities, an increasing
number of rsFC studies suggest dysfunctional intrinsic connectiv-
ity within visual and somatosensory systems in this condition
(Bordier, Nicolini, Forcellini, & Bifone, 2018; Chen et al., 2015,
2016; Dong et al., 2019; Jiang et al., 2015; Liu et al., 2018;
Zhang, Guo, & Tian, 2019). In addition, a recent meta-analysis
found altered resting-state regional brain activity both in high-
order cognitive regions (e.g. default and ventral attention net-
work) and regions in visual and sensorimotor network (Gong
et al., 2020). Up to this point, only a few studies have looked at
how sensory networks pathologically interact with higher-order
association systems in schizophrenia (Berman et al., 2016;
Hoptman et al., 2018; Kaufmann et al., 2015). In this more holis-
tic view, brain dysfunction in schizophrenia is proposed to result

from the abnormal hierarchical cerebral organization rather than
from individual systems alone (Yang et al., 2016). However,
detecting abnormality in the cerebral hierarchy organization
represents a challenge, due to the limited number of approaches
explicitly designed to evaluate hierarchical information propaga-
tion in the brain system.

Recent advances in neuroscience towards the understanding of
brain organizational principles have highlighted a cortical
hierarchy as a unifying functional mechanism for information
processing in the primate and mouse brains (Burt et al., 2018;
Chaudhuri, Knoblauch, Gariel, Kennedy, & Wang, 2015;
Demirtaş et al., 2019; Fulcher, Murray, Zerbi, & Wang, 2019;
Margulies et al., 2016; Mesulam, 2012; Paquola et al., 2019, 2020;
Taylor, Hobbs, Burroni, & Siegelmann, 2015). Specifically, this
mechanism refers to the functional system extending from primary
sensorimotor to association areas, along which it increasingly
represents more abstract and complex information in the brain.
This hierarchical architecture facilitates segregated processing of
specialized function domains (e.g. sensory and cognitive process),
while also enabling a dynamic configuration and cross-
communication of networks for more complex and integrated
mental activity (Huntenburg, Bazin, & Margulies, 2018; Murphy
et al., 2018; Sepulcre, Sabuncu, Yeo, Liu, & Johnson, 2012; Taylor
et al., 2015). Investigating the cortical hierarchy provides an inte-
grative window into the impairments of functional integration
between and within early sensory processing and high-order cogni-
tive functions in schizophrenia.

The present study aimed to examine how the impaired func-
tion and integration of both sensory and cognitive processes
relates to macroscale cortical hierarchy in schizophrenia. We
applied a novel combination of connectome gradient mapping
(Margulies et al., 2016) and stepwise functional connectivity
(SFC) analyses (Martínez et al., 2020; Sepulcre et al., 2012),
which offer complementary characterization of hierarchical
abnormalities in schizophrenia. In contrast to the common prac-
tice of partitioning brain regions into discrete communities with
sharp boundaries, the gradient mapping approach, which is a
non-linear decomposition of high-dimensional resting-state func-
tional connectivity (rsFC), can identify brain functional hierarch-
ies by representing brain connectivity in a continuous,
low-dimensional space that places sensory and motor networks
on one end and transmodal network on the other. This approach
thus provides a more integrated vision on the rsFC anomalies in
schizophrenia by capturing continuous spatial patterns of con-
nectivity beyond segregated networks and provides simplified
representation in terms of main dimensions to characterize the
alteration of the macroscale cortical hierarchy in schizophrenia.
SFC, developed earlier, has shown that brain hierarchy can also
be understood as a sequence of steps in connectivity space. SFC
was initiated from a priori-defined sensory seeds-based FC to fur-
ther examine the hierarchical stream of information from uni-
modal sensory regions (visual, auditory, and somatosensory) to
transmodal regions in schizophrenia patients and healthy con-
trols. More importantly, SFC analytical approach allows for ana-
lysis of indirect FC (medium and large connectivity distances
from the seed), which is thought to provide information integra-
tion about hierarchical flow across specific brain networks
(Sepulcre, 2014). This approach thus enabled us to investigate
the presence of atypical functional transitions from unimodal to
multimodal cortical areas in schizophrenia. SFC is well-suitable
to confirm the ‘bottom-up’ dysregulation of higher cognitive
functions in this condition.

772 Debo Dong et al.

https://doi.org/10.1017/S0033291721002129 Published online by Cambridge University Press

https://doi.org/10.1017/S0033291721002129


Based on the pathological mechanisms of ‘bottom-up’ dysre-
gulation of higher cognitive functions and deficiency of top-down
integration in schizophrenia mentioned above, and the initial
observation of impaired connectivity between sensory and cogni-
tive processes system in schizophrenia (Berman et al., 2016;
Hoptman et al., 2018; Kaufmann et al., 2015), we hypothesized
that the pathological interaction between sensory and cognitive
processes in schizophrenia would be reflected by the expected
abnormal macroscale cortical hierarchy in schizophrenia. To
this end, we first constructed the macroscale cortical hierarchy
at voxel level for each subject, and then conducted the statistical
comparison between patients with schizophrenia (SZ) and health
controls (HC) at voxel level with correction for multiple compar-
isons using the false discovery rate procedure. Finally, exploratory
analyses examined possible correlations between altered gradient
values, SFC values and clinical symptoms.

Methods

Participants

Patients were diagnosed with schizophrenia according to the
structured clinical interview for DSM-IV Axis I disorders −
clinical version (SCID-I-CV). Ninety-six schizophrenia patients
and 122 healthy controls were included in the final analysis. See
supplementary methods for details about participant recruitment.
Demographic and clinical information of all participants is sum-
marized in Table 1. Two groups did not show statistically signifi-
cant differences in age, sex, education and handedness ( p > 0.3).
All patients received treatment with antipsychotics. All anti-
psychotic drugs were converted into chlorpromazine equivalents
using Woods conversion (Woods, 2003). The mean illness dur-
ation is 15.1 years. The authors assert that all procedures contrib-
uting to this work comply with the ethical standards of the
relevant national and institutional committees on human experi-
mentation and with the Helsinki Declaration of 1975, as revised in

2008. All procedures involving human subjects/patients were
approved by the Ethics Committee of the Clinical Hospital of
Chengdu Brain Science Institute. Written informed consent was
obtained from all subjects.

Data acquisition and image preprocessing

Structural and resting-state functional MRI data were acquired on
a 3-T GE Discovery MR 750 scanner at the MRI Center of
University of Electronic Science and Technology of China. See
supplementary methods for details.

All preprocessing steps were consistent with our previous stud-
ies (Ding et al., 2019; Dong et al., 2020), see Fig. 1a and supple-
mentary methods for details. To rule out the effects of head
motion as much as possible, we conducted wavelet despiking pro-
cessing, deleting data with high and frequent head motion, regres-
sing out 24 motion parameters and taking relative motion as a
covariate in statistical analysis. We did not conduct global signal
regression (GSR) in the main analysis because GSR may distort
between-group comparisons of inter-regional correlation (Saad
et al., 2012). Besides, studies suggest that altered global signal is
an important neuroimaging feature in schizophrenia (Hahamy
et al., 2014; Yang et al., 2014). However, because GSR is still con-
troversial, we repeated core analyses (gradient and SFC) with GSR
in the control analyses. To reduce computational demands, the
rsfMRI data were down-sampled to 4 mm isotropic voxels, result-
ing in 18 815 voxels. Subsequent gradient and SFC analyses were
voxel-based calculation. Consistent with previous voxel-wise FC
computation (Tomasi & Volkow, 2010), spatial smoothing was
not conducted in the image preprocess step, but was conducted
in postprocessing steps (6 mm) for gradient and SFC maps.

Connectivity gradient analyses

Gradient mapping techniques describe a continuous coordinate
system at the systems level that place sensory and motor networks

Table 1. Demographic characteristics of schizophrenia patients and controls

Variables

Patients (N = 96) Health controls (N = 122)

p valueMean S.D. Mean S.D.

Age (years) 39.78 11.48 37.95 14.74 0.32

Gender (female：male) 30 : 66 41 : 81 0.71a

Handedness (right : left) 93 : 3 121 : 1 0.32a

Education (years)b 11.64 2.94 11.07 3.22 0.22

Chlorpromazine equivalents (mg/d)c 332.95 165.06

Duration of illness (years)d 15.10 10.33 – –

PANSS-positivee 13.44 5.88 – –

PANSS-negativee 20.73 6.00 – –

PANSS-generale 28.22 5.81 – –

PANSS-totale 62.39 13.11 – –

FD 0.049 0.038 0.046 0.027 0.38

Notes:
FD, framewise displacements; PANSS, positive and negative syndrome scale.
ax2 test.
bData of 76 patients and 111 controls available.
cData of 72 patients available and calculated using Woods method (Woods, 2003).
dData of 88 patients available.
eData of 64 patients available.
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Fig. 1. Summary of workflow. (a) The steps for image preprocessing. (b) Computation of the thresholded FC. The thresholded FC was then submitted to the gra-
dient and SFC analyses. (c) Schematic representation of gradient analysis. This example (C1) presents a schematic representation of gradient analysis. It illustrates
the calculation of the principal functional gradient of four cerebral cortex voxels (red, green, blue, magenta) based on their functional connectivity with two target
cerebral cortex voxels (yellow, orange). (C2) Connectivity from each cerebral cortex voxel (red, green, blue, magenta) to the two target cerebral cortex voxels (yel-
low, orange) is represented as a two-dimensional vector. (C3) All vectors can be represented in the same two-dimensional space. (C4) Cosine distance between each
pair of vectors is calculated, and (C5) an affinity matrix is constructed as (1-cosine distance) for each pair of vectors. This affinity matrix represents the similarity of
the connectivity patterns of each pair of voxels. (C6) A Markov chain is constructed using information from the affinity matrix. Information from the affinity matrix is
thus used to represent the probability of transition between each pair of vectors. In this way, there will be higher transition probability between pairs of voxels with
similar connectivity patterns. This probability of transition between each pair of vectors can be analyzed as a symmetric transformation matrix, thus allowing the
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on one end and transmodel network on the other. This approach
thus provides us a simplified representation in terms of main
dimensions to characterize the alteration of the macroscale cor-
tical hierarchy in schizophrenia.

First, the voxel-level connectivity matrix for each subject was
computed using Fisher’s Z-transformed Pearson’s correlations
(Fig. 1b). Based on previous studies (Dong et al., 2020; Guell,
Schmahmann, Gabrieli, & Ghosh, 2018; Hong et al., 2019;
Margulies et al., 2016), we thresholded the rsFC matrix with the
top 10% of connections per row retained, whereas all others
were zeroed. The negative connections were zeroed as well.
Then, we used cosine distance to generate a similarity matrix
that reflected the similarity of connectivity profiles between
each pair of voxels. We used diffusion map embedding
(Coifman et al., 2005), a nonlinear dimensionality reduction algo-
rithm, to identify a low-dimensional embedding from a high-
dimensional connectivity matrix. This methodological strategy
has been proved to successfully identify relevant aspects of func-
tional organization in the cerebral cortex in previous studies
(Hong et al., 2019; Margulies et al., 2016). Figure 1c showed the
schematic representation of the gradient analysis. The result of
diffusion embedding is not one single mosaic of discrete net-
works, but multiple, continuous maps (gradients), which capture
the similarity of each voxel’s functional connections along with a
continuous space. All gradients are orthogonal to each other and
capture a portion of data variability in descending order.

To compare between the SZ and HC groups, we used an aver-
age connectivity matrix calculated from all patients and controls
to produce a group-level gradient component template. We
then performed Procrustes rotation to align the gradients of
each participant to this template (Langs, Golland, & Ghosh,
2015). To maximize interpretability, we only used the first gradi-
ent component in our main analyses. The first gradient explains
as much of the variance in the data as possible (∼29%, online
Supplementary Fig. S1) and, from a neurobiological point of
view, represents a well-understood sensorimotor-to-transmodal
organizational principle in the cerebral cortex connections. In
addition, there’s no consensus about the second gradient pattern
among the previous studies (Bethlehem et al., 2020; Hong et al.,
2019; Margulies et al., 2016). Furthermore, the second gradient
extracted from functional connectivity data could not be repro-
duced as successfully as the principal gradient at the single-subject
level (Guell et al., 2018). A supplementary exploratory analysis
tested group differences using the second gradient component
in our analysis. Further analyses based on the second gradient
were outside of the scope.

Stepwise functional connectivity analyses

SFC analysis is a graph-theory-based method that detects both
direct and indirect functional couplings from a defined seed
region to other regions in the brain. More importantly, SFC ana-
lytical approach allows for analysis of indirect FC (medium and

large connectivity distances from the seed), which is thought to
provide information integration about hierarchical flow across
specific brain networks (Martínez et al., 2020; Pretus et al.,
2019; Sepulcre, 2014; Sepulcre et al., 2012). This approach thus
enables us to investigate the presence of atypical functional tran-
sitions from unimodal to multimodal cortical areas within the
framework of the cortical hierarchy in schizophrenia.

SFC analysis computes the number of functional paths
between defined seed regions and every other voxel in the brain
at successive numbers of relay stations or ‘link-step’ distances
(Martínez et al., 2020; Sepulcre, 2014; Sepulcre et al., 2012).
Hence, it complements connectivity gradient approaches by
allowing voxel-level functional connections to be assessed at a
range of intermediate relay stations. Following previous studies
(Martínez et al., 2020; Pretus et al., 2019; Sepulcre et al., 2012),
connectivity matrices were first filtered to include only positive
correlations due to the ambiguous interpretation of negative cor-
relations. After that, the connectivity matrices were further filtered
to contain only correlations surviving a stringent false-discovery
rate (FDR) correction (q < 0.001). Finally, we submitted the result-
ing FDR thresholded matrices to SFC analysis.

Given that deficits of visual, auditory, and somatosensory pro-
cessing in schizophrenia were consistently observed [for reviews
(Javitt, 2009b; Javitt & Freedman, 2015)], three bilateral primary
sensory seed regions of interest (ROIs) including visual [MNI
coordinates x, y, z: −14/10 (left/right), − 78, 8; (Brodmann 17,
V1)], auditory [−54/58, −14, 8; (Brodmann 22, A1)] and somato-
sensory [−42/38, −29, 65; (Brodmann 3, hand area)] areas
(Sepulcre et al., 2012), were defined as cubic regions of eight vox-
els each. To assess the degree of combined SFC of all sensory
seeds irrespective of modality, a combined mask was constructed
by combining information from all three primary sensory regions.
The method is described in detail elsewhere (Martínez et al., 2020;
Pretus et al., 2019; Sepulcre, 2014; Sepulcre et al., 2012) and sche-
matically represented in Fig. 1d. The degree of SFC of a given
voxel of the brain is defined as the number of functional paths
connecting that voxel with an a priori selected seed region at a
specific link-step distance. A link-step distance is defined as the
number of edges that pertain to a path connecting a given voxel
to the seed regions. At each link step, SFC maps were standar-
dized to Z-scores by subtracting the mean and dividing by its
standard deviation (S.D.) to yield SFC values. Therefore, each
SFC map represents a relative increase of connectivity degree
across different link-step distances. As demonstrated in previous
studies (Buckner et al., 2009; Sepulcre et al., 2012), functional
pathways ‘collapse’ into the cortical hubs of the adult human
brain after link-step distances >7; accordingly, we constrained
our SFC analysis to seven link-step distances.

Statistical and control analyses

General linear models were used to determine diagnostic differ-
ences (schizophrenia patients (SZ) v. HC) in dependent variables,

calculation of eigenvectors. (C7) Eigenvectors derived from this transformation matrix represent the principal orthogonal directions of transition between all pairs
of voxels. Here, we illustrate the first resulting component of this analysis – the principal functional gradient of our four cerebral cortex voxels (red, green, blue,
magenta) based on their connectivity with our two target cerebral cortex voxels (yellow, orange) progresses from the blue, to the green, to the magenta, to the red
voxel. (C8) This order is mapped back into cerebral cortex map, allowing us to generate functional neuroanatomical descriptions. Of note, cerebral cortex functional
gradients were calculated using functional connectivity values of each cerebral cortex voxel with the rest of cerebral cortex voxels (rather than between four voxels
and only two target cerebellar voxels, as in this example). Vectors in our analysis thus possessed many more than just two dimensions, but cosine distance can also
be calculated between pairs of high-dimensional vectors. Figure 1c is adapted from Guell et al. (2018). (d) Computation of the SFC. Figure 1d is adapted from
Martínez et al.(2020). (e) Statistical analyses.

Fig1. contd
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i.e. Z-normalized values of the principle (first) gradient scores,
and SFC degree at each of the seven link-step distances with
age, sex, handedness and mean FD controlled for each voxel.
This was implemented in DPARBI toolbox (DPABI v4.1, http://
rfmri.org/dpabi) (Yan, Wang, Zuo, & Zang, 2016). Two-sample
t tests were calculated to determine diagnostic differences (schizo-
phrenia patients (SZ) v. HC) in Z-normalized values of the prin-
cipal (first) gradient scores, and SFC degree at each of the seven
link-step distances. Age, sex, handedness and mean FD were set
as covariates. The results for each test are reported at a voxel-
based threshold corrected for false-discovery rate of multiple
comparisons (FDR voxel-wise correction p < 0.05). We also
imposed a minimum cluster extent of 20 voxels. All the results
reported below are based on without global signal regression
(GSR). GSR, confounding effect analyses of head motion and
medication were performed to ensure robustness of the main
findings, see supplementary methods for details.

Correlations between altered gradient scores, SFC degree, and
clinical variables

As an exploratory investigation, to further examine the relation-
ship between altered gradient scores, SFC degree, and clinical fea-
tures, we calculated Pearson’s correlations between gradient
scores, SFC degree and the severity of clinical symptoms mea-
sured by PANSS (positive, negative, general psychopathology
symptoms subscales and overall scores) in the patients’ group.
Analyses were computed in each region where the SZ and HC
groups differed significantly in the statistical analyses. Given its
high correlation with age, illness duration was not included sep-
arately in correlation analysis (Moser et al., 2018).

Data and code availability

The preprocessing software is freely available (DPABI v4.1, http://
rfmri.org/dpabi) (Yan et al., 2016). The code for gradient analysis
is openly available via the BrainSpace toolbox (http://brainspace.
readthedocs.io) (de Wael et al., 2020). The code for SFC analysis
is available via a direct request to Jorge Sepulcre. The results were
visualized with BrainNet Viewer v1.7 (https://www.nitrc.org/
projects/bnv/) (Xia, Wang, & He, 2013). The imaging and clinical
data are made available via a direct request to the corresponding
author (Cheng Luo). Sharing and re-use of imaging and clinical
data need the expressed written permission of the authors and
clearance from the relevant institutional review boards.

Results

The principal functional gradient of cerebral cortex
in schizophrenia

The principal gradient of cerebral cortex FC showed a similar
sensorimotor-to-transmodal gradient of cortical organization in
HC and SZ (Fig. 2). It extended from primary cortices to trans-
modal areas. Of note, there was no significant difference between
SZ and HC in the explained variance of the principal gradient
(two-sample t test, t = 0.86, p = 0.39).

Compared to HC (Fig. 2 and Table 2), schizophrenia patients
showed increased gradient values in regions of sensorimotor net-
work and visual network, including bilateral post/precentral
gyrus, posterior insula, middle occipital gyrus, and lingual gyrus;
and decreased gradient scores in transmodal regions mainly

belonging to FPN, i.e. middle frontal gyrus, superior frontal
gyrus, inferior parietal lobule; also including a few regions in
DMN (e.g. medial frontal gyrus, middle temporal gyrus and angu-
lar gyrus). Of note, cerebral cortex network allocations are based on
Yeo network classification (Yeo, et al., 2011), which was also shown
in the online Supplementary Fig. S2D. As shown in the scatterplot
of Fig. 2c, functional gradient abnormalities in this case extended
across the whole principal gradient spectrum. More specifically,
higher principal gradient values in the SZ group were localized in
the lowest pole of principal gradient (which corresponds to primary
sensorimotor and visual processing areas), whereas lower values in
the SZ group extended from the medium aspects to the highest pole
of principal gradient (transmodal regions).

To better characterize the altered pattern of sensorimotor-
transmodal hierarchical gradient, global histogram analyses were
performed. As shown in the right bottom corner of Fig. 2c, this
analysis revealed that there was a prominent compression of the
lowest portion of the principal functional gradient and a less
prominent compression of the highest portion of the principal
functional gradient. Furthermore, Kolmogorov−Smirnov test
(Matlab function) indicated that the distribution of SZ group
gradient values was significantly different from the distribution
of HC group gradient values ( p < 0.001, ks2stat = 0.08). To quan-
titatively demonstrate the overall compression, we tested whether
there was a linear correlation between X and X−Y per spatially
corresponding voxel (X represents voxel-level gradient values in
SZ group mean map, i.e. red histogram of Fig. 2c, Y represents
voxel-level gradient values in HC group mean map, i.e. blue
histogram of Fig. 2c, and X−Y represents differences of gradient
values between SZ and HC mean map per spatially corresponding
voxel). We found there was a significant correlation between X−Y
and X (r = 0.51, p < 0.001), which suggested the overall gradient
value compression in SZ group compared to HC group. In the
same logic, we tested the compression of transmodal pole and
sensorimotor pole, we found the correlation value in sensori-
motor pole (r = 0.53, p < 0.001) was higher than transmodal
pole (r = 0.10, p < 0.001), which suggested there was a prominent
compression of sensorimotor regions and a less prominent
compression of transmodal regions.

Connectivity gradient analysis provides a description of the con-
nectome where each voxel is located along a gradient according to
its connectivity pattern. Voxels with similar connectivity patterns
are located close to one another along a given connectivity gradient.
Therefore, the gradient value represents information about the spa-
tial pattern in the embedding space− shifts in value are not ‘more’
or ‘less,’ but rather reflect changes in relative similarity within a
latent dimension, i.e. the similarity of functional connectivity pat-
terns along each dimension (‘gradient’). The gradient values are a
scalar, and for this reason significant gradient value alterations in
schizophrenia reflect the extent to which the patient group deviates
from the HC group. Our interest here was the different spatial dis-
tributions of cortical hierarchy between two groups. Interestingly,
our finding of compressed cerebral cortical functional gradients
suggested a less differentiated global hierarchical organization, i.e.
diminished network differentiation in schizophrenia, in which
there is a relatively stronger shift in functional affiliation from vis-
ual−sensorimotor towards transmodal regions in gradient space.

The SFC degree in schizophrenia

The SFC degree showed a similar spatial transition pattern along
the sensation-to-cognition continuum in SZ and HC (Fig. 3a).
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In steps 1 and 2, sensory-related seeds display a regional–local FC
along with the unimodal areas, e.g. somatomotor and visual cor-
tex. From 3 to 7 link-step distances, sensory-related seeds showed
gradual transitions towards multimodal integration areas (e.g.
dorsal anterior cingulate cortex and frontal eye field, frontoinsular
cortex), and eventually displayed convergent to the cortical hubs
regions (e.g. dorsolateral prefrontal, inferior lateral parietal cortex,
medial prefrontal cortex, posterior cingulate cortex / precuneus or
the lateral temporal cortex).

Statistical comparison indicated that at link-step distance 1,
corresponding to classic seed-based FC analysis, patients with
schizophrenia showed reduced SFC degree between the unimodal
seeds and visual and sensorimotor systems, i.e., bilateral middle
occipital gyrus, lingual gyrus and pre/postcentral gyrus (online
Supplementary Table S1 and Fig. 3b). Interestingly, this reduced
SFC pattern was consistently observed across all link-steps
distances (steps 2–7). Increased SFC degree was found between
unimodal seeds and frontoparietal regions, i.e. middle/superior
frontal gyrus, inferior parietal lobule, supramarginal gyrus, and
dorsal precuneus), and ventral attention regions (dorsal anterior
cingulate cortex and bilateral anterior insular cortex/central oper-
cular cortex) at early and medium link-step distances (steps 1−4).

However, this increased SFC degree gradually faded in the
remaining link-step maps (steps 5−7).

Control analyses

Control analyses foundGSR,micro headmovements andmedication
did not significantly affect trends of overall results (gradient and SFC
analyses), which ensured robustness of main results, see online
Supplementary Fig. S2−S3 and supplementary results for details.

Association among altered gradient, SFC and clinical severity
of symptoms in schizophrenia

The severity of clinical symptoms was related to decreased func-
tional gradient values in ventral medial frontal gyrus, left anterior
insula and left precuneus (online Supplementary Table S2 and
Fig. S4). Across all the link-step distances, most of the significant
correlations fit the following rule: for those regions involved in
high-order cognitive function (i.e. superior frontal gyrus, anterior
insular cortex), increased SFC degree was associated with less clin-
ical severity. Accordingly, for those regions involved in sensory
processing function, i.e. pre/postcentral gyrus and visual areas,

Fig. 2. Group mean patterns and statistical differences in the cerebral principal functional gradient. (a) Mean gradient pattern in HC. (b) Mean gradient pattern in
SZ. (c) Significant group differences between SZ and HC. Scatterplot represents cerebral gradient of SZ (y axis) v. cerebral gradient of HC (x axis). Scatterplot colors
correspond to significant group differences map as shown in top left corner of Fig. 2c: higher gradient value in SZ (red), and lower gradient value in SZ (blue)
compared to HC. Compressed gradient pattern in SZ is shown in density histograms in bottom right corner of Fig. 2c. All results are shown after FDR correction
( p < 0.05). (d) Yeo network classification (Yeo et al., 2011).
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increased SFCdegree correlatedwith greater clinical severity. There is
an exception in the left middle frontal gyrus at link-step 4, where
increased SFC degree was associated with greater clinical severity. It
should be noted that, most of these findings were only seen at uncor-
rected levels ( p < 0.05).Given the exploratory nature of these associa-
tions, one should remain cautious when interpreting these results.

Discussion

Recent emerging models and rapidly growing empirical studies
emphasize the impaired function and integration of both the
early sensory and cognitive processing in understanding the
pathophysiology of schizophrenia. Investigating the fundamental
sensorimotor-to-transmodal cortical hierarchy organization in
schizophrenia would provide critical and integrative experimental
evidence for these models. The present study used a novel com-
bination of connectome gradient and SFC analyses to characterize
the macroscale cortical hierarchy organization in schizophrenia.
In summary, the gradient analysis identified a significantly
reduced network differentiation, i.e. gradient compression, in
which there is a prominent compression from the sensorimotor

system of the cortical hierarchy and a less prominent compression
from the higher-level systems such as FPN and DMN. The SFC
approach further suggested reduced network differentiation
related to atypical functional transitions from unimodal to multi-
modal cortical areas in schizophrenia. Altogether, the present
study provided converging evidence for abnormal cortical hier-
archy organization as a system-level substrate underlying the
pathological interaction of early sensory and cognitive function
in schizophrenia. The findings indicated that impairments at dif-
ferent hierarchical processing steps, especially the foci of effects
emphasize that disrupted somatosensory−motor systems may
cascade into the higher-order cognitive deficits, which are the
hallmark characteristic of schizophrenia.

The cascading effects of early sensory deficits along the
sensation-to-cognition continuum

Intriguingly, the present study found a selective gradient com-
pression pattern of the sensorimotor system in the compressed
cortical hierarchy organization. Recently, a significant paradigm
shift in the research field of schizophrenia has begun to emerge,

Table 2. Group differences in principal functional gradient values

Brain regions T value Voxels (k)

MNI coordinates

X Y Z

Patients >Controls

L Middle/inferior temporal gyrus 5.21 42 −48 4 −32

L/R Lingual gyrus/middle occipital gyrus 5.47 895 −8 −60 0

R Middle occipital gyrus/middle temporal gyrus 4.25 39 48 −72 0

L Middle occipital gyrus/middle temporal gyrus 4.38 39 −44 −76 4

R Posterior insula 4.43 26 36 −16 12

L Posterior insula 4.30 21 −44 −24 16

L/R Pre/postcentral gyrus 7.19 1235 48 −16 40

−40 −20 44

Patients <Controls

L Fusiform gyrus/temporal lobe −3.82 25 −20 0 −44

L Middle/inferior temporal gyrus −5.64 96 −68 −24 −16

R Inferior/middle temporal gyrus −5.00 99 60 −20 −20

Medial frontal gyrus −5.91 101 0 36 −24

R Anterior insula/superior temporal gyrus −3.64 20 52 8 −4

R Middle frontal gyrus −6.09 227 32 32 52

R Anterior cingulate gyrus −3.33 27 4 36 20

L Anterior insula −4.25 22 −32 20 12

R Supramarginal gyrus/inferior parietal lobule −4.22 39 68 −32 24

L Inferior parietal lobule/angular gyrus/supramarginal gyrus −5.94 144 −52 −52 56

L Middle frontal gyrus −3.34 22 −40 36 36

R Inferior parietal lobule/angular gyrus/precuneus/supramarginal gyrus −5.87 435 44 −60 56

L Middle frontal gyrus −4.83 39 −28 20 60

L Precuneus −4.47 48 −12 −60 76

R Superior frontal gyrus −3.62 23 32 8 68

Notes: L, left side of brain; R, right side of brain. Results are reported using a voxel-wise FDR threshold of p < 0.05 and an additional cluster-size threshold of k = 20.
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according to which early regions of the sensory pathway may
result in ‘bottom-up’ dysregulation of higher cortical function
(Javitt, 2009a, b; Javitt & Freedman, 2015; Javitt & Sweet, 2015).
Further complementing this view, neurophysiology findings indi-
cate that the bottom-up propagation of deficits from early sensory
to higher-level processes in schizophrenia occurs even when top-
down processes remain intact (Dias et al., 2011). Similarly, some
recent rsFC and structural studies found that the connectivity def-
icits of visual and sensorimotor pathway can be detected even

when the associative regions, like FPN and DMN, failed to
reach statistical significance in schizophrenia (Bordier et al.,
2018; Chen et al., 2015; Guo et al., 2014; Jørgensen et al., 2016;
Liu et al., 2018; Zhang et al., 2019). Our findings of prominent
cortical network compression in the sensorimotor and visual sys-
tems therefore provides an integrative basis to support previous
reports of impaired early sensory processing in schizophrenia.
More importantly, this result extends previous findings by show-
ing that the abnormality of early sensory processing is not purely

Fig. 3. Group patterns and differences in stepwise functional connectivity degree. (a) Stepwise functional connectivity patterns in HC and patients with schizo-
phrenia (one-sample t tests with p < 0.001 uncorrected). In the normalized color scale, 0 represents nonsignificant results ( p < 0.001), and 1 is the maximum
value corresponding to the smallest p value. Given the results of the left hemisphere are similar to those on the right hemisphere, we only show the results of
the right hemisphere for visualization. (b) Group differences between schizophrenia and HC in stepwise functional connectivity degree. All results are shown
after FDR correction ( p < 0.05).
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anchored on local functional circuits but rather affects overarch-
ing hierarchical cerebral organization, which reflects its global
and widespread influence on brain information transitions in
schizophrenia.

Furthermore, the SFC findings strengthened global and wide-
spread influence of the early sensory processing on brain informa-
tion transitions in schizophrenia by demonstrating that the
pattern of hypo-connectivity within visual and sensorimotor sys-
tems across all (early, medium and large) link-step distances along
the sensation-to-cognition continuum. SFC at the 1 (early) link-
step distance corresponded to classic seed-based FC analysis.
Overall, hypo-connectivity within visual and sensorimotor sys-
tems at the 1 link-step distance are largely compatible with the
existing seed-based rsFC as well as more sophisticated network-
based and/or graph theory analyses in schizophrenia (Bordier
et al., 2018; Chen et al., 2015; Duan et al., 2019; Kaufmann
et al., 2015; Liu et al., 2018; Skåtun et al., 2017). In line with
the prominent compression from the sensorimotor and visual sys-
tem, our stable observation of hypo-connectivity within visual
and sensorimotor systems across all link distances suggests an
impaired ability to decode early information coming from early
sensory regions in schizophrenia. Moreover, the degraded quality
of early sensory input would persist, propagate and form the cas-
cading effects along the whole sensation-to-cognition continuum,
affecting higher-order integrative networks at subsequent stage of
the cortical hierarchy in schizophrenia. These findings provide
novel and integrative evidence to support the propagation of sen-
sory deficits to higher cognitive functions in schizophrenia
(Calderone et al., 2013; Dondé, Silipo, Dias, & Javitt, 2019;
Javitt, 2009b; Leitman et al., 2010).

The dys-myelination hypothesis of schizophrenia proposed
that abnormalities in myelination in the central nervous system
may underpin or facilitate the pathogenesis and progress of
schizophrenia (Hakak et al., 2001; Karoutzou, Emrich, &
Dietrich, 2008). Interestingly, a recent study found reduced intra-
cortical myelin in highly myelinated low-level sensory and motor
regions in schizophrenia, which could cause disinhibition of sen-
sory input, resulting in abnormal propagation of degraded quality
of early sensory input to other cortical areas (Jørgensen et al.,
2016). This finding thus provided evidence to further support
the cascading effects of early sensory deficits along the
sensation-to-cognition continuum. Considering both variations
of intracortical myelin and FC across the entire cortex follow
the general principle of macroscopic gradients (Paquola et al.,
2019), future studies integrating the connectomics and myelin
feature within gradients-based framework would be especially sig-
nificant and deepen our understanding of how dysfunctional sen-
sory processing involved in the pathophysiology mechanisms of
schizophrenia.

In addition, although deficit of early sensory processing sys-
tems is not emphasized within prevailing psychiatric models,
our findings are in parallel to the recent neurobiological findings
of abnormal early sensory processing which characterize indivi-
duals’ variability in psychopathology and cognitive impairment
across multiple psychiatric disorders (Elliott, Romer, Knodt, &
Hariri, 2018; Kebets et al., 2019). So far, with some notable excep-
tions in neurophysiological studies, hypothesis-driven fMRI stud-
ies have primarily targeted high-order brain networks. Consistent
with the previous observation of prominent motor pole compres-
sion in cerebellar hierarchy (Dong et al., 2020), the present
data-driven findings encourage future research to expand the
neuroscientific view in schizophrenia and give more attention to

sensory processing deficits characterization. Further investigation
along these lines would deepen our understanding of the patho-
physiology of schizophrenia.

Inefficient integration of bottom-up sensory information with
top-down processes

Wealso found that schizophreniapatients showedhyper-connectivity
between unimodal sensory seeds and frontoparietal−ventral-
attention regions at the early and medium link distances along the
sensation-to-cognition continuum. Several previous seed-based or
ROI-based FC studies provide preliminary evidence for sensory net-
works pathologically interacting with higher-order association sys-
tems in the literature of schizophrenia (Berman et al., 2016;
Hoptman et al., 2018; Kaufmann et al., 2015). In a more holistic
view, we extend the previous studies by showing that this pathological
interaction between sensory networks and higher-order association
systems exists in the hierarchical information flow, not limited in
directed communication (1 link-step). Supporting the cascading
effects of sensory process deficits on subsequent high-order cognitive
process impairment, our hyper-connectivity may further suggest that
the integration of bottom-up sensory information with attentional
demands and executive control processes in the sensation-to-
cognitioncontinuumismoreeffortfulor less efficient inschizophrenia
than in healthy populations.

This inefficient integration process is also characterized by the
overall compression of the principal sensorimotor-to-transmodal
hierarchy organization, which reflects diminished separation
between sensory systems (e.g. visual and sensory regions) involved
in the immediate environment and transmodal cognitive systems
(e.g. frontoparietal regions) that support complex cognitive infer-
ences. The effective brain function is supported by the mainten-
ance of subnetworks segregation as well as their integration
(Wig, 2017). Therefore, the diminished network differentiation
would unavoidably result in ineffective functional specialization,
leading to a blurred boundary between externally oriented imme-
diate environment and internally abstract cognitive processing
(Murphy et al., 2018; Northoff & Duncan, 2016), which further
contributes to the inefficient integration of bottom-up sensory
information with top-down processes. Because functional gradi-
ents analysis provides a very low-dimensional representation of
resting-state connectivity to capture the fundamental corticocorti-
cal connectome hierarchy, the compressed corticocortical con-
nectivity hierarchy organization extended previous observations
of disturbances in corticocortical connectivity (Phillips et al.,
2011), by providing an integrative/holistic neuroscientific per-
spective to understand the disrupted corticocortical connectivity
in schizophrenia.

Critically, these cortical hierarchy abnormalities showed trend
associations with the severity of clinical symptoms. Specifically,
for those regions involved in high-order cognitive function (i.e.
superior frontal gyrus, anterior insular cortex), abnormality of
hierarchy value was associated with less clinical severity.
Accordingly, for those regions involved in sensory processing
function, i.e. pre/postcentral gyrus and visual areas, abnormality
of hierarchy value correlated with greater clinical severity. These
associations might further highlight the importance of cascading
impairments of sensory processing and less efficient integration
between sensory and cognitive processing to understand the clin-
ical profiles of schizophrenia (Javitt, 2009b; Javitt & Freedman,
2015). However, given the exploratory nature of these associa-
tions, one should remain cautious when interpreting these results.
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These results encourage future studies to further verify these
exploratory associations.

Implications for future treatment studies

Finally, results reported here also encourage future studies to
develop novel intervention strategies, such as complementary
sensory-based therapies, which may help to correct early sensory
dysfunction and thus further facilitates the remediation of high-
order function in schizophrenia. Cognitive training must address
limitations in perceptual/pre-attentive processing first (for a
review see Vinogradov, Fisher, & de Villers-Sidani, 2012). This
hope was preliminarily bolstered by some finding of
learning-induced neuroplasticity, in which training in early audi-
tory or visual processes results in substantial gains in verbal or
visual cognitive processes through ‘bottom-up’ tuning of the
neural systems (Adcock et al., 2009; Biagianti et al., 2016; Dale
et al., 2016; Fisher et al., 2009; Hochberger et al., 2019; Surti,
Corbera, Bell, & Wexler, 2011). In addition, considering the
strong associations between audiovisual temporal processing def-
icits and clinical symptomatology (Stevenson et al., 2017), for
example, auditory hallucinations (Hugdahl, 2009), training
aimed at multisensory temporal processing may help relieve clin-
ical symptoms through increasing the individual experience level
of perceptual integration in patients with schizophrenia. This
hope was also preliminarily supported by our recent works (He
et al., 2018; Yang et al., 2018), in which the music intervention
(listening to Mozart music), as a type of the auditory input,
improved the functional integration in VAN and sensorimotor
network in schizophrenia.

Limitation and future direction

Notwithstanding its implications, the main limitations of this
study should be acknowledged. A main limitation in the current
study, as well as many other clinical imaging studies in the
field, is the effect of antipsychotic drugs. While we cannot elimin-
ate completely the potential confounding effects of medication,
chlorpromazine equivalents were not associated with the altered
gradient or SFC scores. Due to the use of the cross-sectional
research design, we did not establish the developmental trajector-
ies of altered cortical hierarchy in schizophrenia. Because altered
sensory-motor FC abnormalities have been consistently observed
in clinical-high risk, early-stage including drug-naive first-
episode, and chronic schizophrenia (Berman et al., 2016; Dong
et al., 2019; Du et al., 2018; Guo et al., 2014; Jiang et al., 2015;
Luo et al., 2020), it is possible that the prominent compression
from the sensorimotor portion of the cortical hierarchy is present
at different stages of the illness, possibly ranging from pre-clinical
to early and late stages of the disorder. Future longitudinal studies
may evaluate the development of cortical hierarchy in schizophre-
nia across time. And, a supplementary exploratory analysis for the
second gradient value in our data showed group differences in the
regions of sensorimotor network and visual network, which was
similar to the findings in principle gradient value (online
Supplementary Fig. S5). This further highlighted the critical role
of disorganization of the sensorimotor and visual system in the
pathophysiology of schizophrenia. Further testing of this differ-
ence is beyond the scope of the current study. However, the find-
ings reported here hint at the possibility of the cerebral cortical
functional gradient alterations in schizophrenia beyond the prin-
cipal gradient of functional connectivity.

Conclusions

The present study provided novel system-level substrate underlying
the pathological interaction of early sensory and cognitive function
in schizophrenia, i.e. the compression of sensorimotor-to-
transmodal cortical hierarchy organization. Within the framework
of the compressed cortical hierarchy organization, a cascade of
impairments stemming from the disrupted somatosensory−motor
system and inefficient integration of bottom-up sensory information
with attentional demands and executive control processes may par-
tially account for high-level cognitive deficits of schizophrenia.
While top-down processing is certainly deficient in schizophrenia,
future investigations of bottom-up dysfunction will further clarify
the underlying causes of cognitive deficits in this disorder and pro-
mote the development of new treatment intervention.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0033291721002129.
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