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Neuroimaging biomarkers define 
neurophysiological subtypes with distinct 
trajectories in schizophrenia
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Nanyu Kuang1,2, Yun-Jun Sun1,2, Jujiao Kang1,2, Jie Zhang1,2, Huan Huang8, Hui He8, 
Mingjun Duan8, Yingying Tang    3, Tianhong Zhang    3, Chunbo Li3, Xin Yu4, 
Tianmei Si4, Weihua Yue4,16,17, Zhening Liu12, Long-Biao Cui    18, Kai Wang19,20,21,22,23,  
Jingliang Cheng24, Ching-Po Lin25, Dezhong Yao8,9,10, Wei Cheng1,2,26,27,28 ,  
Jianfeng Feng    1,2,28,29,30,31,32  & the ZIB Consortium*

Technical developments and improved access to neuroimaging  
techniques have brought us closer to understanding the neuropathological 
origins of schizophrenia. Using data-driven disease-progression  
modelling on cross-sectional magnetic resonance imaging (MRI)  
from 1,124 patients with schizophrenia, we characterize two distinct  
but stable ‘trajectories’ of brain atrophy, separately beginning in the  
Broca’s area (subtype1) and the hippocampus (subtype2). The two 
trajectories are replicated in cross-validation samples. Individuals  
within each subtype are further classified into two stages (‘pre-atrophy’ 
and ‘post-atrophy’). These subtypes show different atrophy patterns and 
symptom profiles. Longitudinal data from 523 patients with schizophrenia 
treated by antipsychotics only or adjunct transcranial magnetic stimulation 
(TMS) reveal that antipsychotics-only effects relate to phenotypic 
subtype (more effective in the subtype1) while adjunct transcranial-
magnetic-stimulation effects relate to the stage (superior outcomes in the 
pre-atrophy stage). These findings suggest distinct pathophysiological 
processes underlying schizophrenia that potentially yield to stratification 
and prognostication—a key requirement for personalizing treatments in 
enduring illnesses.

Schizophrenia is a highly disabling psychiatric disorder with a life-
time prevalence of 1%, affecting about 26 million people worldwide1. 
The pathophysiological basis of schizophrenia is unclear, but more 
than one mechanism is suspected to play a role, given the substantial 
heterogeneity in clinical course2, treatment efficacy3 and the levels 

of putative biological markers4,5. Given this unsolved heterogeneity, 
currently available treatments cannot be matched to pathophysiologi-
cal pathways, leading to limited long-term benefits. For more than a 
century, attempts have been made for clinical subtyping based on 
signs and symptoms6, but this has been either unreliable or of limited 

Received: 28 May 2022

Accepted: 23 January 2023

Published online: 22 March 2023

 Check for updates

A full list of affiliations appears at the end of the paper.  e-mail: wcheng@fudan.edu.cn; jffeng@fudan.edu.cn

http://www.nature.com/NatMentHealth
https://doi.org/10.1038/s44220-023-00024-0
http://orcid.org/0000-0001-7012-0559
http://orcid.org/0000-0003-1640-7182
http://orcid.org/0000-0002-9987-022X
http://orcid.org/0000-0001-5620-9020
http://orcid.org/0000-0002-4705-3682
http://orcid.org/0000-0002-5379-7119
http://orcid.org/0000-0002-0784-181X
http://orcid.org/0000-0001-5987-2258
http://crossmark.crossref.org/dialog/?doi=10.1038/s44220-023-00024-0&domain=pdf
mailto:wcheng@fudan.edu.cn
mailto:jffeng@fudan.edu.cn


Nature Mental Health | Volume 1 | March 2023 | 186–199 187

Article https://doi.org/10.1038/s44220-023-00024-0

of pathophysiological progression in schizophrenia (Fig. 1b). Regional 
volume loss at each stage for each subtype is visualized in Fig. 1c, which 
shows a progressive pattern of spatial extension that is distinct for each 
trajectory. Briefly, trajectory 1 exhibited a cortical-predominant pheno-
type (cortical primacy) where atrophy began in the Broca’s area while 
trajectory 2 exhibited a subcortical-predominant phenotype (subcortical 
primacy) where atrophy began in the hippocampus (Fig. 1b and Sup-
plementary Tables 5 and 6). Supplementary Fig. 7 also displays the tra-
jectories of cortex and subcortex across SuStaIn stages. The differences 
of trajectories of atrophy in specific brain regions highlight potential 
phenotypic heterogeneity, suggesting there may be two different neu-
ropathological pathways with distinct sites of origin in schizophrenia.

Stability of SuStaIn subtypes
Cross-validation shows that the pathophysiological progression of 
GMV changes in the two subtypes are reproducible. This reveals a high 
consistency of the observed trajectory (Supplementary Fig. 4) and 
SuStaIn stability for the individual subtyping using different features 
(Supplementary Method 6).

Subtype-specific atrophy patterns
By disentangling both temporal heterogeneity and phenotypic hetero-
geneity, we further defined four subtypes (Fig. 2a). A total of 631 (56.1%) 
patients with schizophrenia were assigned to trajectory 1 and further 
classified into two phases: ‘pre-atrophy’ (S1pre, n = 259) or ‘post-atrophy’ 
(S1post, n = 372). The remaining 593 patients (43.9%) were assigned to 
trajectory 2 with pre-atrophy (S2pre, n = 212) and post-atrophy (S2post, 
n = 281). The z scores of GMV images were mapped to a glass brain tem-
plate for visualization of atrophy patterns in each subtype (Fig. 2a). 
Comparisons of region-of-interest (ROI)-wise z scores between S1post 
and S2post showed significantly higher z scores of cortical regions and 
significantly lower z scores of subcortical regions in S1post compared 
with S2post (P < 0.001, Bonferroni correction) (Fig. 2b). In addition, 
comparisons between subtypes (S1pre versus S2pre, S1 versus S2) are 
shown in Supplementary Fig. 8. These results indicated more cortical 
reductions in subtype1 and more subcortical reductions in subtype2.

Longitudinal examination of SuStaIn trajectories
In the preceding analyses, we used SuStaIn on cross-sectional indi-
vidual MRI data to make pseudo-longitudinal inferences about the 
pathophysiological trajectories of brain atrophy. To verify the find-
ings, we collected longitudinal samples from our previous study14 that 
included a total of 127 individuals who were drug-naive first-episode 
schizophrenia (FES) and scanned MRI at both baseline and 12 weeks 
follow-up (Supplementary Methods 7). Longitudinal data show that 
the fastest GMV reduction in Broca’s area and the insula occured in 
the S1pre (patients with schizophrenia whose baseline GMV belongs 
to the earliest stage of trajectory 1 (before stage I)) (Supplementary  
Fig. 9). On the other hand, the fastest GMV reduction occurred in the 
hippocampus for the S2pre individuals (their baseline GMV belongs to 
the earliest stage of trajectory 2) (Supplementary Fig. 9). These findings 
are consistent with the expectation that these S1pre/S2pre individuals 
were going from before stage I to stage I. Remarkably, mirroring the 
cross-sectional findings, the longitudinal observations support the 
concept of SuStaIn trajectories, mainly in the early part of the trajec-
tory of brain atrophy in schizophrenia.

Relationships between regional atrophy and clinical symptoms
We examined the relationships between regional atrophy and clini-
cal symptoms for each subtype. As expected, a higher z score of GMV 
(more reduction of GMV) was positively associated with an increasing 
Positive and Negative Syndrome Scale (PANSS) negative subscale score 
(worse negative symptoms) in many cortical, subcortical and cerebel-
lar regions (Extended Data Fig. 2 and Supplementary Tables 7 and 8). 
Negative relationships among GMV z scores, positive symptoms and 

therapeutic utility7. Biological stratification that maps on prognostic 
trajectories is urgently needed to promote individualized treatment 
decisions in schizophrenia.

At a group level, individuals with schizophrenia display com-
promised brain structure characterized by ventricular enlargement, 
cortical thinning and reduced subcortical volumes in the thalamus, hip-
pocampus and amygdala8,9, with notable worsening of these structural 
aberrations being reported in the early stages10. However, substantial 
inter-individual differences exist among individuals with schizophre-
nia, with no consistent abnormalities at an individual level, evident 
in radiological examinations5,11. These inter-individual differences 
in brain structure result from two distinct sources of variation: first, 
mechanistic differences that result in subtly different clinical features 
(mechanistic heterogeneity) and second, relative differences between 
individuals in the stage of dynamic progression (temporal heterogene-
ity). For example, progressive reductions in grey-matter volume (GMV) 
are associated with longer disease duration in schizophrenia12. Degree 
of cortical thinning is linked with different illness stages13. First-episode 
patients with schizophrenia showed subtle cortical thinning mainly in 
frontotemporal lobes14, whereas chronic patients showed pronounced 
reductions spread across the parietal and occipital cortices13. Further-
more, brain atrophy associated with a range of clinical syndromes in 
schizophrenia has also been postulated to uncover underlying distinct 
pathophysiological processes15,16. Altogether, this evidence suggests 
that the complex pathological progress of schizophrenia may not 
be explained by a single unifying pathophysiological process but by 
a multitude of partially independent pathophysiological profiles. 
Hence, a systematic characterization of brain-atrophy progression, 
which accounts for variability on an individual level, is an urgent need.

Machine-learning approaches are increasingly used to parse the 
heterogeneous features of mental disorders17–20. Of these, unsupervised 
clustering techniques and semi-supervised methods, such as hetero-
geneity through discriminative analysis21, provide powerful tools for 
disease subtyping17–19,22. In schizophrenia, previous subtyping stud-
ies have focused exclusively on either phenotypic heterogeneity23,24 
(individuals are clustered into distinct subgroups without considering 
disease stage) or temporal heterogeneity13,25 (individuals are in different 
stages of disease progression without subtype differences), but not 
both. A new data-driven disease-progression model named Subtype 
and Stage Inference (SuStaIn), that requires only cross-sectional data, 
was proposed to identify subtypes with common patterns of disease 
progression and achieve individualized inference26. Using SuStaIn, a 
recent neuroimaging study successfully detected four distinct ‘trajec-
tories’ of tau deposition in Alzheimer disease27.

This work investigated a systematic characterization of heteroge-
neity in brain-atrophy patterning using structural magnetic resonance 
imaging (MRI) from 1,124 patients with schizophrenia (Supplementary 
Table 1). The aims (Extended Data Fig. 1) were (1) to identify distinct 
trajectories of brain atrophy in schizophrenia using SuStaIn and assign 
individuals to biological subtypes on the basis of their atrophy pattern-
ing, (2) to examine the associations of specific subtypes with clinical 
symptoms and (3) to examine treatment response to antipsychotic 
medication (APM) and transcranial magnetic stimulation (TMS) in 
subtypes. Supplementary Fig. 2 provides a flow of statistical analy-
ses. Such brain subtyping may provide meaningful insights into the 
putative pathophysiological mechanisms in subsets of patients with 
schizophrenia. Ultimately, accurate stratification of this enduring 
illness requires addressing both temporal and phenotypic heteroge-
neity; if successful, this approach may inform designing clinical trials 
differently in the future.

Results
Two distinct pathophysiological pathways of brain atrophy
Using twofold cross-validation, the optimal clusters were determined 
at k = 2 (Supplementary Figs. 3–5), indicating two distinct trajectories 
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general psychopathology were observed in subtype1, indicating a lower 
burden of non-negative symptoms in individuals with more atrophy. 
Interestingly, this pattern of relationship with non-negative symptoms 
was reversed in individuals within subtype2 (Extended Data Fig. 2 and 
Supplementary Tables 7 and 8), suggesting that associations between 
brain atrophy and symptoms are subtype-specific in schizophrenia.

Different clinical profiles among subtypes
We compared demographic, clinical and brain variables (Table 1) across 
the two stages and the two subtypes. The pre-atrophic patients with 

subcortical-primacy subtype2 (S2pre) had shorter illness duration com-
pared with all other individuals, including the S1post and S2post (Fig. 3a). 
The pre-atrophic patients with cortical-primacy subtype1 (S1pre) had 
worse positive symptoms compared with all other individuals, includ-
ing the S1post and S2post (Fig. 3b). Further, as expected, the S1post and S2post 
showed smaller total GMV and larger total cerebrospinal fluid (CSF) 
volume compared with S1pre and S2pre (Table 1). We also compared the 
differences between the subtype1 (S1pre and S1post) and subtype2 (S2pre 
and S2post) and found worse positive symptoms in subtype1 compared 
with subtype2 (Supplementary Table 9).

A model of brain pathophysiological progression
based on individual di	erences
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Fig. 1 | Pathophysiological progression of brain atrophy in schizophrenia. 
a, Data-driven disease-progression model (SuStaIn) was used to identify 
population subtypes with a common pattern of pathophysiological trajectory 
by disentangling phenotypic heterogeneity and temporal heterogeneity 
on cross-sectional individual data. b, Atrophy sequences of specific brain 
regions obtained using SuStaIn. The positional variance diagrams visualize the 
cumulative probability that each brain region has reached a particular z score 
using different colours. The colour indicates the level of severity of GMV loss: 
red is mildly affected (z score = 1, that is, 1 s.d. from healthy control average), 
magenta is moderately affected (z score = 2) and blue is severely affected  
(z score = 3). Colour density represents the proportion of the posterior 
distribution in which events (y axis) appear in a particular position in the 
sequence (x axis); f is the proportion of individuals assigned to each phenotype. 
Arabic numbers 1–10 marked against brain regions in the variance diagram 
indicate the order of the first ten events with brain-region atrophy, estimated by 

the SuStaIn. c, Pathophysiological trajectory. The mean z score images of  
GMV were derived across patients with schizophrenia belonging to stage bins  
(I, II, III, V, IV and VI) and mapped to a glass brain template for visualization using 
BrainNetViewer (https://www.nitrc.org/projects/bnv/). Regional volume loss at 
each stage bin shows a progressive spatial expansion pattern but differs between 
trajectories. In trajectory 1, volume loss is observed first in Broca’s area and the 
insula (stage I), then in the anterior cingulate, prefrontal and lateral temporal 
cortices (stage II), then in the orbitofrontal and sensorimotor cortices (stage III), 
then in the occipital, parietal and temporal cortices (stages IV and V) and finally 
in the cerebellum and subcortical regions (stage VI). In trajectory 2, volume 
losses occur first in the hippocampus and amygdala (stage I) and then involve 
the parahippocampus, thalamus and accumbens (stage II), then the caudate and 
insula (stage III), followed by the putamen, cingulate, frontal and temporal lobes 
(stages IV and V) and finally the other cortical areas (stage VI). L, left; R, right.
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Fig. 2 | Atrophy patterns in four subtypes of schizophrenia. a, All individuals 
with schizophrenia were first classified into two phenotypes by distinct 
trajectories from SuStaIn on the basis of the inter-phenotypic differences 
(phenotypic heterogeneity). Individuals within each phenotype were further 
assigned into two subgroups according to which stage of the trajectory 
they belong to on the basis of the intra-phenotypic differences (temporal 
heterogeneity). By disentangling temporal heterogeneity and phenotypic 
heterogeneity, we identified four subtypes: trajectory 1 pre-atrophy (S1pre, 
n = 259), trajectory 2 pre-atrophy (S2pre, n = 212), trajectory 1 post-atrophy (S1post, 
n = 372) and trajectory 2 post-atrophy (S2post, n = 281). The atrophy pattern of 
whole grey matter (revealed by the mean z score of GMV) in four subgroups was 
mapped to a glass brain template for visualization. b, Comparison of the mean 

z score of GMV across all ROIs after adjusting for sex, age, the square of age, 
TIV and sites. The adjusted GMV values were normalized relative to the control 
population to derive z scores (a value of z = 0 represents the normal level in the 
control population). These z scores were multiplied by −1 so that the z scores 
would increase as the regional volumes decrease in patients with schizophrenia. 
Note that a higher z score (or T value) indicates a larger reduction of GMV; 
cortical GMV is more extensively reduced in S1post than in S2post, but subcortical 
GMV reduction is more pronounced in S2post than in S1post. Data are presented as 
mean values ± s.e.m. *Significant difference between the S1post (n = 372) and S2post 
(n = 281) using two-sample t test (two-sided P < 0.001, Bonferroni correction). 
Exact P values are provided in Supplementary Table 14. CING, cingulate cortex; 
INS, insula; SM, sensorimotor; BA, Broca’s area.
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We also found a relationship between SuStaIn stage scores and 
illness duration, symptoms, and GM and CSF volumes. As expected, 
increasing SuStaIn stage scores were positively associated with longer 
illness duration (r = 0.208, P < 0.001; Fig. 3c), higher burden of negative 
symptoms (r = 0.127, P = 0.008; Fig. 3d), larger CSF volume (r = 0.353, 
P < 0.001; Fig. 3e) and smaller GM volume (r = −0.250, P < 0.001; Fig. 3f).

In addition, we compared the differences of positive and negative 
symptoms among individuals belonging to different SuStaIn stages 
using the analysis of variance (ANOVA) and post hoc tests. In the corti-
cal-primacy subtype, individuals belonging to the later stage VI (higher 
atrophy) showed a higher score of negative symptoms compared with 
individuals in stages I, II, III and pre-stage I (individuals without atrophy 
in any region) (corrected P < 0.05) (Fig. 3g). In subcortical-primacy 
subtype, individuals belonging to pre-stage I (no atrophy) showed a 
higher score of positive symptoms compared with individuals in stage 
I (corrected P < 0.05) (Fig. 3h).

Treatment outcomes and subtypes
We examined whether subtype classification relates to differential 
treatment response to APM and TMS using a longitudinal independent 
cohort. As for the APM sample, we found a significant positive cor-
relation between the probability of belonging to subtype1 and PANSS 
positive score reduction ratio (r = 0.127, P = 0.014; Fig. 4a), indicating 
that individuals who have a higher probability of being assigned to 
subtype1 showed better treatment outcomes. This significant corre-
lation remained consistent even when controlling the factors, includ-
ing baseline PANSS scores, sites, education, sex, age, illness stage and 
chlorpromazine equivalents (CPZ) (Supplementary Table 11). As for the 
TMS follow-up sample, we observed a significant negative correlation 
between the SuStaIn stages and PANSS reduction ratio in terms of posi-
tive score (r = −0.370, P < 0.00001; Fig. 4b), general score (r = −0.237, 
P = 0.003) and total score (r = −0.279, P < 0.001), indicating that indi-
viduals with an earlier SuStaIn stage showed better treatment out-
comes. The significant correlation between SuStaIn stage and symptom 
remission remained consistent when even controlling the factors, 

including baseline PANSS scores, sites, education, sex, age and illness 
stage (Supplementary Table 12), and was observed in both subtype1 
(r = −0.351, P = 0.001) and subtype2 (r = −0.395, P < 0.001).

We also compared the differences of follow-up PANSS between 
subtype1 and subtype2. For individuals who were treated with APM, we 
found that compared with subtype2, subtype1 showed significant bet-
ter positive symptoms remission after controlling the baseline PANSS 
(Fig. 4c and Supplementary Table 10). This difference remained consist-
ent even after controlling the effects of CPZ and illness stage. However, 
for the individuals who were treated with TMS, we did not observe a 
significant difference in symptom reduction between two subtypes.

In addition to the two phenotypic subtypes, we compared the 
differences of follow-up PANSS among the four subgroups (S1pre, S1post, 
S2pre and S2post). For APM, S1pre exhibited better treatment outcomes, 
especially with regard to the positive and general symptoms (Table 2 
and Fig. 4d), compared with the other subgroups after controlling the 
baseline PANSS, CPZ and illness stage. For TMS, S1pre and S2pre showed 
more PANSS positive score reduction compared with S1post and S2post 
(Supplementary Table 13 and Fig. 4e), indicating better TMS outcome 
from treating positive symptoms for these individuals with less brain 
atrophy. These findings remained consistent even when controlling the 
factors of baseline PANSS, illness stages and TMS targets. We observed 
that in S2pre, TMS exhibited better improvement in treating negative 
symptoms (Supplementary Table 13 and Fig. 4e).

All together, antipsychotics are more effective in the cortical-
primacy type (subtype1) while superior outcomes with TMS are seen 
in pre-atrophic stages (for both S1pre and S2pre). One specific case where 
TMS may be of benefit is the treatment of negative symptoms in the 
subcortical-primacy type before atrophy sets in (S2pre). Once atrophy 
sets in, antipsychotics work better for reducing positive symptoms.

Discussion
Using a data-driven modelling technique, we show that pathological 
atrophy of schizophrenia is better characterized by two distinct patho-
physiological trajectories: a cortical-predominant phenotype that 

Table 1 | Comparison of variables between subtypes in the cross-sectional discovery sample

Subtype1 (n = 631) Subtype2 (n = 493)

S1pre S1post S2pre S2post

Number 259 372 212 281

Age (yr) 31.1 (12.1) 31.8 (13.1) 30.0 (12.2) 31.1 (13.3)

Sex (female/male) 115/144 155/217 94/118 115/166

Ethnicity (Han Chinese/
Hispanic/not Han Chinese 
and not Hispanic/unknown)

187/8/38/26 251/20/69/32 163/8/33/8 213/8/43/17

Race (Black or African 
American/Asian/White/
other/unknown)

14/188/38/3/16 36/252/57/3/24 13/163/28/2/6 18/215/33/2/13

Illness duration (yr) (n = 388) 9.1 (10.2) 12.2 (11.7)c 7.4 (10.5)*b,d 11.1 (11.7)c

PANSS scores (n = 750)

  Positive scale 18.5 (6.8)*b,d 16.9 (7.0)a 17.2 (6.7) 16.1 (7.0)a

  Negative scale 15.1 (7.4) 16.3 (7.7) 15.9 (7.8) 16.0 (8.1)

  General scale 34.2 (11.1)*b,d 33.3 (10.4)a 33.8 (10.8) 32.7 (11.3)c

  Total score 67.9 (22.0)*d 66.5 (20.80) 66.9 (21.0) 64.9 (22.1)a

TIV (cm3) 1,500.8 (163.1) 1,498.6 (162.6) 1,500.1 (168.3) 1,488.4 (177.2)

Total GMV (cm3) 674.2 (72.4)*b,d 635.3 (72.2)*a,c 687.3 (82.6)*b,d 643.8 (74.2)*a,c

Total WM volume (cm3) 516.6 (59.6)*d 509.6 (65.6) 512.4 (59.5)d 500.7 (64.4)*a,c

Total CSF volume (cm3) 308.0 (65.7)*b,d 354.2 (71.8)*a,c 299.3 (62.8)*b,d 343.6 (79.9)*a,c

Standard deviations are given in parentheses where relevant. P values are two sided and corrected by multiple comparisons. For PANSS scores, variables are statistically compared among 
four groups after controlling sex, age, age2, site and illness stage. WM, white matter. *Corrected P < 0.05 (versus all other subtypes). aCorrected P < 0.05 (versus S1pre). bCorrected P < 0.05 (versus 
S1post). cCorrected P < 0.05 (versus S2pre). dCorrected P < 0.05 (versus S2post).
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begins in the Broca’s area/frontoinsular cortex and a subcortical-pre-
dominant phenotype that begins in the hippocampus. These subtypes 
showed different illness durations, symptom profiles and treatment 
outcomes. These findings raise critical research questions for stratified 
clinical trials in schizophrenia and indicate biological plausibility and 
therapeutic relevance of the identified subtypes.

Two distinct pathophysiological trajectories of brain atro-
phy were identified as cortical-predominant phenotype and 

subcortical-predominant phenotype. This indicates two possible sites 
of pathophysiological origin: cortical atrophy begins in the Broca’s 
area and the frontoinsular cortex while subcortical atrophy begins 
at the hippocampus. Abnormalities in Broca’s area have been found 
widely in schizophrenia28. Further, our previous studies found that 
individuals at high risk of psychosis exhibited functional connectivity 
changes primarily in the Broca’s area29, suggesting that dysfunction 
of Broca’s area, possibly influenced by distinct genetic pathways30, 
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Fig. 3 | Subtypes characterized by clinical variables. a, Subtype differences 
of disease duration among the S1pre (n = 77), S1post (n = 124), S2pre (n = 83) and 
S2post (n = 104). Data are presented using a box plot (centre line, median; box 
limits, upper and lower quartiles; whiskers, 1.5 × interquartile range; points, 
outliers). b, Subtype differences of positive symptom burden among the S1pre 
(n = 167), S1post (n = 242), S2pre (n = 153) and S2post (n = 188). Data are presented 
as mean values ± s.d. c–f, Increasing SuStaIn stage was associated with longer 
illness duration (r = 0.208, P = 4.6 × 10−4) (c), worse negative symptoms 
(r = 0.127, P = 0.008) (d), larger CSF volume (r = 0.353, P = 1.7 × 10−22) (e) and less 
GMV (r = −0.250, P = 1.1 × <10−11) (f) across all subtypes, by false discovery rate 
correction. g, In trajectory 1 (pre-stage I, n = 167; stage I, n = 71, stage II, n = 39, 

stage III, n = 37, stage IV–V, n = 46, stage VI, n = 49), individuals belonging to stage 
VI showed a higher score of negative symptoms compared with individuals 
belonging to stage I, II, III and pre-stage I (individuals without obvious atrophy 
in any regions) (corrected P < 0.05). Data are presented as mean values ± s.e.m. 
h, In trajectory 2 (pre-stage I, n = 153; stage I, n = 62, stage II, n = 39, stage III, 
n = 24, stage IV–V, n = 35, stage VI, n = 28), individuals belonging to later stages 
(especially stage I; corrected P < 0.05) showed a lower score of positive symptoms 
compared with the stage before any atrophy is detectable. Data are presented as 
mean values ± s.e.m. The asterisks (*) in a,b,g,h indicate significant differences 
between the two subgroups using ANOVA with post hoc tests (two-sided P < 0.05, 
correction for multiple comparisons).
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had emerged even before the first psychotic episode. Current results 
also provide direct structural imaging evidence that the Broca’s area 
and adjacent frontoinsular cortex may be one of the ‘sites of origin’ of 
brain abnormalities in schizophrenia. These findings contribute to a 
key neuropathological role of Broca’s area, in line with Crow’s linguistic 
primacy hypothesis31 and the frontoinsular-cingulate cortex, in line 
with the salience network model32.

In subtype2, subcortical atrophy began at the hippocampus, 
another possible site of origin identified here. Some studies have 
highlighted hippocampal atrophy as one of the first regions to show 
volumetric loss in schizophrenia8,33. Recently, a longitudinal clinical 
high-risk psychosis study reported that for individuals who experience 
a prodromal stage to syndromal psychosis, hippocampal pathology 
(such as glutamate excess and hypermetabolism) leads to volume loss 
and expands to other regions of the hippocampal circuit and other 
connected areas along with illness progress34. Together, these findings 
challenge the notion that there is a single unifying pathophysiological 
process in schizophrenia, although this will require validation.

We note that as the degree of atrophy progresses with longer 
illness, individuals exhibited worse negative symptoms irrespective 
of their subtypes. Interestingly, both the cortical- and subcortical-
primacy subtypes showed worse positive symptoms when atrophy 
was limited (positive symptom correlation in subtype1 (Extended Data  
Fig. 2); pre-stage I versus stage I comparison for subtype2 (Fig. 3h)). 
While this may appear counterintuitive at the outset, this lends sup-
port to the emerging notion that the progressive grey-matter changes 

in schizophrenia may indeed be a feature of cortico-subcortical reor-
ganization in response to positive symptoms10,14. Thus, unlike a degen-
erative process in which tissue reduction will predict worse clinical 
symptoms, such reduction in schizophrenia may alleviate the positive 
symptoms, at the cost of worsening negative symptoms35. This notion 
may also contribute to understanding why, in general, antipsychotic 
exposure hastens brain tissue loss in schizophrenia14,36, although it is 
still a complex and fiercely debated topic. We also found that patients 
with longer illness duration had lower positive subscale and higher 
negative subscale. It was consistent with a previous longitudinal work37, 
revealing that the positive symptoms exhibited a general pattern of 
improvement while negative symptoms showed less reduction over 
time. We also noticed the inconsistency of inter-subtype symptom 
difference between the cross-sectional and longitudinal samples, 
which may be due to the heterogeneity of psychotic symptoms and 
stages of illness38,39.

The combined subtyping and staging approach employed here 
also highlights the prognostic potential of MRI. By MRI subtyping, 
we found ‘what kind of brain’ and ‘at which stage’ is more likely to 
benefit from specific treatments, providing preliminary support for 
the prognostic potential of schizophrenia biotypes. Our data revealed 
that antipsychotics outcome is related to phenotypic subtype while 
TMS is associated with stage subtype. These results are consistent 
with studies reporting that schizophrenia patients with specific 
brain features may benefit from specific interventions. For example, 
volume increase in the hippocampus predicted negative symptom 
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Fig. 4 | Treatment outcome and subtypes of schizophrenia in patients with 
follow-up data. a, The SuStaIn probability of belonging to subtype1 correlates 
significantly with the reduction ratio of PANSS positive symptoms scores when 
using APMs by Spearman correlation test (r = 0.127, P = 0.014, two sided).  
b, The progressive SuStaIn stages relate to a significantly lower PANSS positive 
symptoms reduction ratio when administering TMS by Spearman correlation 
test (r = −0.370, P = 3.1 × <10−6, two sided). c, Differences in APM-related PANSS 
reduction ratio across domains (P = 0.003 for PANSS positive scale; P = 0.019 
for PANSS total score) between subtype1 (n = 202) and subtype2 (n = 171) in 
schizophrenia. d, Differences in APM-related PANSS reduction ratio among the 
S1pre (n = 96), S1post (n = 106), S2pre (n = 70) and S2post (n = 101). From left to right, 
the significant differences are marked by the asterisk (PANSS positive subscale: 
P = 0.033 for S1pre > S2pre, P = 0.005 for S1pre > S2post, P = 0.037 for S1post > S2post; 

PANSS general subscale: P = 0.038 for S1pre > S2pre, P = 0.017 for S1pre > S2post; PANSS 
total score: P = 0.028 for S1pre > S2pre, P = 0.006 for S1pre > S2post). e, Differences 
in TMS-related PANSS reduction ratio among the S1pre (n = 47), S1post (n = 38), 
S2pre (n = 29) and S2post (n = 36) for patients with schizophrenia receiving TMS. 
From left to right, the significant differences are marked by the asterisk (PANSS 
positive scale: P = 0.0004 for S1pre > S1post, P= 0.0006 for S1pre > S2post, P = 0.004 
for S2pre > S1post, P = 0.005 for S2pre > S2post; PANSS negative scale: P = 0.037 for 
S2pre > S1pre; P = 0.003 for S2pre > S2post; PANSS total score: P = 0.019 for S1pre > S2post, 
P = 0.037 for S2pre > S1post, P = 0.005 for S2pre > S2post). Data in c,d,e are presented 
as mean values ± s.d. The asterisks (*) in c,d,e represent significant differences 
between the two subgroups using ANOVA with post hoc tests (two-sided P < 0.05, 
correction for multiple comparisons). P, PANSS positive subscale; N, PANSS 
negative subscale; G, PANSS general subscale; T, PANSS total score.
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improvement for TMS40. Our study observed that patients who better 
respond to APM had stronger cortico–cortical connectivity compared 
with non-responders14. It should be noted, however, that medication 
use of the current sample is highly heterogeneous, involving mono-
therapy and combined therapy and including up to ten antipsychotic 
drugs. Although identifying potential mechanisms is still challenging, 
the subtypes we report parse the heterogeneity of the brain features 
and map them to specific treatments. These results suggest that pre-
diction of treatment outcome may benefit from stratification based 
on biological subtypes of schizophrenia.

This study has several limitations. First, the SuStaIn creates 
pseudo-longitudinal sequences using cross-sectional data. The fitted 
pathophysiological trajectories do not directly reflect the real illness 
progression. Although longitudinal data support the truth of SuStaIn 
trajectories (mainly the early stage of the trajectory), future work needs 
to verify the pathophysiological trajectories. Not all individuals with 
schizophrenia had quantitative medication information, which limited 
our ability to eliminate the medication impact. Second, it is unclear 
whether MRI-based estimates reflect true tissue atrophy. In addition 
to GMV, cortical thickness or gyrification could also be considered. 
The current mixed sample had confounding factors from different 
cohorts, scanners and sites. Harmonization methods41 should be used 
to alleviate differences across MRI acquisition protocols. Patients 
undergoing TMS also received APM. Ideally, randomizing individuals 
with comparable illness duration to APM or TMS, and reducing varia-
tions in medication choice and the site of TMS stimulation, would have 
improved the out-of-sample generalizability of our findings. Robust 

demonstration of clinical utility of the subtypes requires prospective 
trials in the future. Finally, while clustering/subgrouping may aid in 
stratified interventions, considerable variability may still exist among 
individuals within a cluster; dimensional approaches to personalization 
may be more appropriate to address this issue42. We have not tested 
the extent to which the subtypes identified here could account for 
the heterogeneity; a continuous representation of neurobiological 
changes may be superior in this regard, but this needs to be tested.

In conclusion, we describe two distinct but stable pathophysiologi-
cal trajectories of brain atrophy of schizophrenia, separately beginning 
in Broca’s area and the hippocampus. These subtypes exhibit different 
atrophy patterns, clinical symptom profiles and treatment outcomes. 
Antipsychotics are more effective in the cortical-primacy type while 
superior outcomes with TMS are seen in the pre-atrophic stage of illness 
irrespective of the phenotypic subtype. These findings suggest that 
distinct pathophysiological processes underlie schizophrenia and that 
they potentially yield to stratification and prognostication, which are 
key requirements for personalizing treatments in enduring illnesses.

Methods
Sample characteristics
Cross-sectional sample. The primary sample consisted of cross-
sectional T1-weighted MRI scans from 2,239 individuals (1,168 patients 
with schizophrenia) from 4 hospitals—Shanghai Mental Health Centre 
(dataset #1), First Affiliated Hospital of Zhengzhou University (dataset 
#2), Taipei Veteran General Hospital (dataset #3) and Clinical Hospital 
of Chengdu Brain Science Institute in Chengdu (dataset #4)—and from 

Table 2 | Comparisons of treatment outcomes among four SuStaIn subgroups in a longitudinal sample of 373 patients with 
schizophrenia treated with APMs

Subtype1 (n = 202) Subtype2 (n = 171)

S1pre S1post S2pre S2post

Number 96 106 70 101

Age (yr) 25.0 (7.5)d 26.4 (9.0) 25.1 (7.7)d 28.5 (10.6)a,c

Sex (female/male) 49/47 54/52 36/34 51/50

Education (yr) 12.9 (2.7) 13.2 (2.8) 12.6 (2.7) 12.8 (3.0)

Illness duration (yr) 2.8 (4.7)d 4.7 (7.3) 3.3 (5.1) 5.2 (8.3)a

CPZ (mg d–1) 384.8 (219.3) 383.9 (200.6) 368.9 (229.7) 375.3 (207.1)

Responders (%) 79.17 66.98 71.43 69.31

Baseline PANSS

  Positive subscale 22.5 (5.1) 22.4 (7.0) 23.3 (4.7) 22.6 (6.4)

  Negative subscale 17.9 (6.1)*c,d 19.4 (7.4) 20.1 (6.5)a 21.1 (6.9)*a

  General subscale 38.2 (6.8) 38.8 (8.6) 39.9 (7.2) 40.2 (8.4)

  Total score 78.6 (12.9)*c,d 80.5 (18.3) 83.3 (12.7)a 84.2 (15.5)*a

Follow-up PANSS

  Positive subscale 11.6 (4.6) 11.3 (4.7)c 13.1 (4.5)*b 12.5 (4.5)

  Negative subscale 13.2 (5.4)*c,d 14.8 (8.4) 15.0 (5.2)a 16.3 (6.4)*a

  General subscale 25.3 (6.0)*c,d 26.3 (6.6) 27.8 (6.4)a 27.6 (5.9)a

  Total score 50.1 (13.3)*c,d 52.1 (14.5)d 56.0 (13.5)a 56.2 (13.6)*a,b

PANSS reduction ratio (%)

  Positive subscale 46.7 (20.1)*c,d 45.2 (23.4)d 42.3 (20.7)a 41.1 (22.1)*a,b

  Negative subscale 22.1 (30.8) 15.5 (46.1) 23.1 (20.3) 19.9 (28.5)

  General subscale 32.7 (15.6)*c,d 29.6 (20.3) 29.6 (14.0)a 29.5 (16.4)a

  Total score 35.6 (15.5)*c,d 32.9 (20.5) 32.4 (14.2)a 31.9 (16.5)a

Standard deviations are given in parentheses where relevant. P values are two sided and corrected by multiple comparisons. At follow-up, patients whose symptom burden, measured as 
percentage reduction ratio in PANSS total score, dropped >25% were defined as responders. *Corrected P < 0.05 (versus all other subtypes). aCorrected P < 0.05 (versus S1pre). bCorrected P < 0.05 
(versus S1post). cCorrected P < 0.05 (versus S2pre). dCorrected P < 0.05 (versus S2post).
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another 5 publicly available datasets: COBRE (dataset #5), NMorphCH 
(dataset #6), FBIRN (dataset #7), NUSDAST (dataset #8) and DS000115 
(dataset #9). All individuals with schizophrenia were diagnosed accord-
ing to the Diagnostic and Statistical Manual of Mental Disorders, fourth 
edition (DSM-IV). Individuals were excluded from the study if they 
(1) were diagnosed with schizoaffective disorder, mood disorders or 
other major medical or neurologic disorders; (2) had alcohol/drug 
dependence; (3) had a history of electroconvulsive therapy within six 
months; (4) had other contraindications to MRI scanning. Individuals 
with illness duration less than two years were defined as FES. The data 
quality-control steps are described in Supplementary Method 4. After 
data quality control, 2,170 individuals were included, of which 1,124 
were patients with schizophrenia (479 women, age = 31.1 ± 12.8 yr) 
and 1,046 were healthy participants (498 women, age = 32.6 ± 12.4 yr). 
Symptom severity was assessed with the PANSS for individuals from 
datasets #1, #2, #3, #4 and #5, with the Brief Psychiatric Rating Scale 
for individuals from dataset #8, and with the Scale for the Assessment 
of Positive Symptoms and Scale for the Assessment of Negative Symp-
toms for individuals from datasets #6, #8 and #9. Detailed information 
of each cohort is provided in Supplementary Method 1. A summary of 
demographics of subjects is given in Supplementary Table 1.

Longitudinal sample. A total of 373 patients with schizophrenia (190 
women, age = 26.4 ± 9.0 yr) from four hospitals (Shanghai Mental 
Health Center (Shanghai), N = 180; Peking University People’s Hos-
pital (Beijing1), N = 102; Peking University Sixth Hospital (Beijing2), 
N = 65; Clinical Hospital of Chengdu Brain Science Institute (Chengdu), 
N = 26) were treated with APM and included in the longitudinal analy-
ses (Supplementary Table 2). All individuals met DSM-IV diagnostic 
criteria for schizophrenia and no comorbid Axis I disorders. Inclusion 
and exclusion criteria of subjects are provided in our previous study14. 
At baseline, 294 participants were treatment-naïve FES. Following 
baseline MRI, 373 patients with schizophrenia received APM. Of these, 
300 received monotherapy: amisulpride (n = 26), aripiprazole (n = 58), 
blonanserin (n = 3), clozapine (n = 7), olanzapine (n = 85), paliperidone 
(n = 15), paliperidone palmitate injection (n = 4), quetiapine (n = 8), risp-
eridone (n = 87), ziprasidone (n = 3) and unknown (n = 4). The remaining 
73 patients received combined therapy (≥two antipsychotic drugs). 
The daily dosage of drugs was converted to CPZ. The mean CPZ during 
medication was 378.9 ± 210.0 mg d–1. The severity of symptoms was 
evaluated on the basis of PANSS administered by the same psychiatrist. 
Symptom relief indicated in PANSS total and subscale scores (reduction 
ratio = (baseline – follow-up)/baseline × 100%) was used to measure 
treatment response. The average duration of PANSS follow-up was 
9.6 weeks. At follow-up, 267 of 373 (71.6%) patients with schizophrenia 
were considered as APM responders, whose symptom relief (percent-
age of reduction ratio in PANSS total score) was >25%. Information on 
antipsychotic medication usage is provided in Supplementary Table 3.

A total of 150 patients with schizophrenia (66 women, 
age: = 30.1 ± 12.3 yr) from four hospitals (First Affiliated Hospital of 
Anhui Medical University (Anhui), N = 38; Fourth Military Medical 
University (Xi’an), N = 36; Clinical Hospital of Chengdu Brain Science 
Institute (Chengdu), N = 27; Harbin First Specialized Hospital (Harbin), 
N = 49) were treated with TMS under stable dosage of antipsychotics 
and included in the longitudinal analyses. At baseline, 100 of them were 
treatment-naïve FES. The inclusion criteria and TMS parameters are 
detailed in Supplementary Method 3. In brief, the stimulation target 
was set at the left temporoparietal junction for 74 individuals, at the left 
dorsolateral prefrontal cortex for 27 individuals and at the right orbito-
frontal cortex for 49 individuals. PANSS assessments were performed 
at baseline and at follow-up by the same psychiatrist. The average dura-
tion of PANSS follow-up was 4.0 weeks. At follow-up, 82 of 150 (54.7%) 
patients with schizophrenia were considered as TMS responders, 
whose percentage of reduction ratio in PANSS total score was >25%. A 
summary of demographics of participants who were treated by APM or 

TMS is provided in Supplementary Table 2. We use the naturalistic data 
from APM and TMS samples collected during routine clinical care; this 
is not a report of a randomized trial. The TMS study was registered in 
the Chinese Clinical Trials Registry (number ChiCTR2000041106) and 
the TMS protocol was available (http://www.chictr.org.cn/showproj.
aspx?proj=65566). Written informed consent was obtained from all 
participants and/or their legal guardians. Participants received travel 
compensation and remuneration up to 300 Chinese Yuan depending 
on the study they participated in.

Ethics and inclusion statement. The study included local researchers 
throughout the research process—study design, study implementation, 
data ownership, intellectual property and authorship of publications. 
The relevant roles and responsibilities were agreed among collabora-
tors ahead of the research. The study has been approved by the Medical 
Research Ethics Committees of the local hospitals (ethics numbers 
2017-36R (dataset#1), 2018-KY-88 (dataset#2), YM105091F (dataset#3), 
CDFH2014030501 (dataset#4), 2017-36R (Shanghai), 2008-2 (Beijing1), 
2017-16 (Beijing2), CDFH2014030501 (Chengdu), 2016003 (Anhui), 
XJYYLL-2015047 (Xi’an) and IRB2019-004 (Harbin)).

Image acquisition and processing
The T1-weighted MRI acquisition procedures (including the longitudi-
nal sample) for each cohort have been described previously12,14,43,44. The 
T1-weighted images were processed using the Computational Anatomy 
Toolbox (http://www.neuro.uni-jena.de/cat/) within SPM12 (https://
www.fil.ion.ucl.ac.uk/spm/software/spm12/). Briefly, a fully automated 
procedure for standard voxel-based morphometry (including spatial 
registration, tissue segmentation and bias correction of intensity 
non-uniformities) was conducted, resulting in GMV images. The GMV 
images were parcellated on the basis of the automated anatomical 
(AAL) atlas. These parcellations were used to extract mean GMV values 
within different ROIs for each subject.

SuStaIn
Traditional data-driven subtyping of brain imaging in schizophrenia 
has low replicability due to the confounding effect of illness stage. 
Most clustering methods classify individuals on the basis of their 
symptoms, cognitive scores or structural or functional neuroimag-
ing features. All of these features change with disease progression; 
thus, the assumption that all individuals are at the same stage of illness 
when measurements are obtained is fallacious. Here we model disease 
progression in schizophrenia as a linear deviation from normality of 
brain structure (see Supplementary Method 5 for further discussion 
on this assumption). A new approach, SuStaIn generates clustering 
solutions across participants while accounting for disease progres-
sion26 (Fig. 1a). SuStaIn has demonstrated the ability to identify diverse 
but distinct progression patterns using cross-sectional neuroimaging 
data for brain disorders26,27.

The SuStaIn approach has been presented in detail in a previous 
publication26; we briefly describe the major features here. The z score 
model underlying SuStaIn is a development of the original event-based 
model45. The event-based model regards disease progression as a series 
of events, where each event corresponds to a switch from a normal to 
an abnormal level for a biomarker/feature45. The linear z score SuStaIn 
model reformulates the events that represent the continuous linear 
accumulation (more biologically plausible) of a biomarker/feature 
from one z score to another rather than a discrete event-related transi-
tion towards an abnormal state26. See Supplementary Method 5 for a 
discussion on the validity of this assumption in schizophrenia.

z scores. The data for SuStaIn need to be z scored relative to a control 
population. The z scores represent the severity of an abnormality for a 
specific feature/biomarker of interest, in this case, MRI-derived GMV. 
Higher z scores represent larger deviations from the normal (more 
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severe atrophy, in this case). In this study, the ROI-wise GMV values 
were first adjusted by regressing out the effects of sex, age, age2, total 
intracranial volume (TIV) and sites as dummy covariates using a regres-
sion model. We did not include ethnicity in the regression model due 
to similar covarying tendencies of ethnicity and site (dataset#1–data-
set#4 for Han Chinese; dataset#5–dataset#9 for not Han Chinese). 
Subsequently, the adjusted GMV values were normalized relative to the 
control population using z scores. Finally, these z scores representing 
normative deviations were multiplied by −1 so that as the regional brain 
volumes decrease in patients with schizophrenia, the z scores increase.

Input features. Input for SuStaIn requires an M × N z score matrix, 
where M represents the number of patients with schizophrenia 
(M = 1,124 in this study) and N represents the number of SuStaIn fea-
tures/ROIs (N = 17 here). In this case, SuStaIn features represent the 
mean z scores of GMV within different ROIs. Due to computational 
complexity (Supplementary Method 6) and sufficient power of sample 
size, SuStaIn models typically used approximately 15 ROIs in previous 
studies26,27. Here, all of the AAL ROIs of whole brain were separated 
into 17 features (frontal lobe, temporal lobe, parietal lobe, occipital 
lobe, insula, cingulate, sensorimotor, Broca’s area, cerebellum, hip-
pocampus, parahippocampus, amygdala, caudate, putamen, pallidum, 
nucleus accumbens and thalamus) (Supplementary Fig. 1a). See Sup-
plementary Table 4 for a summary of the features used in the SuStaIn 
modelling. On the basis of previous literature26, we used z scores = 1 
(1 s.d. from normal), 2 and 3 as severity cut-offs indicating waypoints 
of disease progression for the included features.

Sequence estimation. We imported 17 ROIs, each ROI having 3 severity 
cut-offs (z = 1, 2, 3), to the model of SuStaIn, yielding a total of 51 events 
to be sequenced. The most probable sequence (Sk = (e1, e2, …, e51)) of 
spatial progression (trajectory) for each subtype was then evaluated 
using SuStaIn (see details in ref. 26). SuStaIn assumes a uniform prior 
that all combinations of subtype and stage are equally probable. The 
model is initialized with an expectation–maximization algorithm and 
repeated for 25 different random start points to find the maximum 
likelihood solution. The number of all possible sequences is too large, 
so we evaluated the relative probability (uncertainty) of all possible 
sequences for each subtype using a 10,000 Markov chain Monte Carlo 
(MCMC) sampling (see details in ref. 26). The cumulative probability for 
each feature/ROI to reach a particular z score over time is presented 
in Fig. 1b.

Number of subtypes. To establish the clustering tendency within the 
data, we employed Hopkins statistics46, which provided a robust sup-
port for the existence of clusters (H = 0.8026, indicating a high cluster-
ing tendency at the 90% confidence level). SuStaIn could identify the 
potential distinct trajectories of pathophysiological progression with a 
given subtype number k. Previous clustering studies without progres-
sion-based modelling have reported two to six morphological subtypes 
of schizophrenia19,47,48. We used this range to estimate SuStaIn models 
separately. To determine the optimal number of subtypes with distinct 
trajectories, we measured the reproducibility of SuStaIn subtype by a 
twofold cross-validation method. Specifically, the cohort was randomly 
split into two non-overlapping subfolds (50% of the patients as one 
subfold and 50% as the other subfold). This procedure was repeated ten 
times to avoid the occasionality of one split. For each non-overlapping 
subfold, the SuStaIn model was trained on one of the non-overlapping 
folds, separately for each k = 1–6 subtypes, and further tested using 
the other non-overlapping subfold. The optimal subtype number was 
determined using three metrics. (1) Consistency of individual subtype 
assignment (Supplementary Fig. 3). For each individual, the subtype 
label was estimated separately in two non-overlapping subfolds. As 
the classification label may change for independent SuStaIn modelling 
(for example, Label 1 of train set may correspond to Label 6 of test set), 

the subtype label vector was transformed to an adjacent matrix. Dice 
coefficient was used to measure the consistency of the adjacent matrix 
between two non-overlapping subfolds. (2) Consistency of the SuStaIn 
trajectory (Supplementary Fig. 4). In each non-overlapping subfold, 
SuStaIn estimated the trajectory (the most probable sequence (Sk) of 
regions) for each subtype. The mean Kendall’s tau coefficient between 
the Sk from paired subfolds was used to quantify the consistency in the 
SuStaIn trajectory. (3) Silhouette clustering evaluation criterion (Sup-
plementary Fig. 5). In each non-overlapping subfold, Silhouette value 
was used as another evaluation indicator for subtype number range 
from 2 to 6. Supplementary Figs. 3–5 show that the optimal subtype 
number k = 2 is consistent by cross-validation, indicating the best fit to 
the data included two subtypes with two distinct pathophysiological 
progressions of GMV changes in schizophrenia. The two-cluster model 
of SuStaIn was fitted to the whole sample.

Visualization of distinct trajectories of grey-matter atrophy. To 
visualize the pathophysiological progression of grey-matter atro-
phy across SuStaIn stages, we calculated the mean z score images for 
individuals belonging to the following stage bins: I (e1, e2), II (e3, e4), III 
(e5, e6) and IV (e7, e8) for both subtypes; V(e9, e10) and VI (e11 to e51) for 
subtype1; and V (e9 to e12) and VI (e13 to e51) for subtype2. Regions with 
mean z score > 0.7 for regional volume loss are displayed. Two distinct 
trajectories of grey-matter atrophy are displayed in Fig. 1c.

Subtyping and staging at the individual level. For each individual 
with schizophrenia, SuStaIn calculated the likelihood of belonging 
to a subtype and a stage on the basis of the average position over the 
posterior distribution on the sequence via 10,000 Markov chain Monte 
Carlo iterations. Individuals were assigned to their maximum likeli-
hood subtype first, and then the stage with the highest likelihood was 
determined. The proportion in each subtype and stage is provided as 
Supplementary Fig. 1b. Note that SuStaIn assigned individuals who 
do not display deviant GMV in any feature/ROI (here, z scores of all 
features are <1) into ‘stage 0’, which was defined as a pre-atrophy stage. 
As the SuStaIn classifies all individuals into clusters according to dis-
tinct sequences of GMV reductions in different brain regions, rather 
than clustering the individuals on the basis of their current atrophy 
degree, SuStaIn can categorize these individuals with similar atrophy 
sequences, even if the brain of some of these individuals has not atro-
phied to a notable degree (defined as z = 1 in this study). Supplementary 
Fig. 6 provides an example showing how pre-atrophy and post-atrophy 
individuals could be classified into the same subtype.

Subtype characterization
Subtype-specific atrophy patterns. To visualize atrophy patterns of 
whole grey matter for each subtype, we calculated the mean z score 
of GMV for each AAL atlas ROI. We compared the ROI-wise z scores 
between subtypes using independent samples t test (two sided). Mul-
tiple comparisons were corrected by Bonferroni correction P < 0.001. 
The ROI-wise z score images were further mapped to a glass brain 
template for visualization using BrainNetViewer (https://www.nitrc.
org/projects/bnv/).

Association between regional atrophy and clinical symptoms. 
Within each subtype, we examined the relationships between regional 
atrophy and symptoms by deriving the Spearman coefficient between 
PANSS (positive, negative and general psychopathology subscales) and 
mean z score of GMV for each ROI, after adjusting for sex, age, age2, TIV 
and sites. To correct for multiple comparisons, a permutation-based 
procedure was applied to control the family-wise error rate49.

Distinct clinical profiles between subtypes. Demographic, clinical 
and global brain variables available for our discovery cohort included 
age (n = 1,124), sex (n = 1,124), illness duration (n = 388), PANSS (n = 750), 
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TIV (n = 1,124), total GMV (n = 1,124), total white-matter volume 
(n = 1,124) and total CSF volume (n = 1,124). To determine subtype-
specific characteristics, these variables were statistically compared 
between subtype1 and subtype2 by using a regress model with sex, 
age, age2, site and SuStaIn stage as covariates. Furthermore, individuals 
within each subtype were further divided into two subgroups (pre-
atrophy and post-atrophy) on the basis of the degree of atrophy. Thus, 
the statistical comparison among the four subgroups (S1pre, S1post, S2pre 
and S2post) involved two steps: (1) comparison with all other subgroups 
(one-versus-all comparison; a one-versus-all approach was used to com-
pare each subgroup with all individuals of the other three subgroups to 
determine the subgroup-specific characteristics), and (2) comparison 
directly with each other subgroup (one-versus-one comparison) to 
assess the differences between subgroups. After testing for assump-
tions of normality and equal variances using the Kolmogorov–Smirnov 
test, quantile–quantile plot and Levene test (Supplementary Method 
10), the statistical comparisons were conducted using ANOVA with 
appropriate post hoc tests (two sided), with false discovery rate (FDR) 
correction for the number of variables assessed.

We also investigated the relationship between the staging scores 
from SuStaIn and age, illness duration, symptoms, total GMV and total 
CSF volume using Spearman’s correlation across the whole sample and 
stratified by subtype. Two-sided P values were FDR-corrected for the 
number of variables assessed.

Treatment outcomes across subtypes
In this exploratory analysis, we examined whether subtype classifica-
tion based on baseline brain features will relate to differential treatment 
response to APM and TMS. A total of 373 patients with schizophrenia 
treated by APM and 150 patients with schizophrenia treated by TMS 
were included in the longitudinal analyses (Supplementary Table 2).

On the basis of the baseline MRI data, the SuStaIn model first 
assigned each individual with schizophrenia to one of two subtypes 
(phenotypic subtype1 or subtype2) according to the probability of 
belonging to which trajectory. Then individuals within each phenotype 
were further assigned to one of the stages on the basis of the SuStaIn 
trajectory. The SuStaIn probability score of subtype1 membership and 
the estimated SuStaIn stages were used as two quantitative indicators 
to measure their association with follow-up treatment outcomes. Fol-
lowing baseline MRI, individuals with schizophrenia received APM or 
TMS (details in the Supplementary Method 3). At follow-up, treatment 
outcome was measured by the reduction ratio (reduction ratio = (base-
line – follow-up)/baseline × 100%) for PANSS total and subscale scores. 
Spearman correlation analysis between the preceding SuStaIn quanti-
tative indicators and treatment outcomes was performed after control-
ling the baseline PANSS. We also compared the differences of follow-up 
treatment outcomes between the two phenotypic subtypes (subtype1 
and subtype2) using the one-versus-all and one-versus-one statistical 
comparisons. In addition to the two phenotypic subtypes, we fur-
ther classified individuals within each phenotype into two subgroups 
(pre-atrophy and post-atrophy) on the basis of the intra-phenotypic 
differences (temporal subtype). By disentangling both temporal het-
erogeneity and phenotypic heterogeneity, we further obtained four 
subgroups (S1pre, S1post, S2pre and S2post). After testing for assumptions 
of normality and equal variances using the Kolmogorov–Smirnov 
test, quantile–quantile plot and Levene test (Supplementary Method 
10), we compared the differences of follow-up treatment outcomes 
among the four subgroups using ANOVA with appropriate post hoc 
tests (two sided). A permutation-based family-wise error procedure 
was employed for controlling for multiple comparisons49.

Replication analysis
To establish the SuStaIn validity for an alternative atlas, another three 
commonly used atlases (BN246 atlas, Schaefer200 atlas and HCP-
MMP360 atlas) were applied for ROI extraction and SuStaIn modelling. 

To evaluate the stability of SuStaIn at a relative higher spatial resolution, 
the 17 AAL features were expanded to 22 and 27 features (AAL22 and 
AAL27) by a data-driven hierarchical clustering procedure. A total of 
five validation sets of features were generated to further verify the sta-
bility of SuStaIn (Supplementary Method 6). In addition, we examined 
the stability of SuStaIn trajectories using leave-one-site-out resampling 
(Supplementary Fig. 10). Finally, we performed post hoc power analy-
ses for the primary results of this study using G*Power (https://www.
psychologie.hhu.de/arbeitsgruppen/allgemeine-psychologie-und-
arbeitspsychologie/gpower) (Supplementary Method 9).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Data of COBRE, NMorphCH, FBIRN and NUSDAST were obtained from 
the SchizConnect, a publicly available website (http://www.schiz-
connect.org/documentation#by_project). The NMorphCH dataset 
and NUSDAST dataset were download through a query interface at 
the SchizConnect (http://www.schizconnect.org/queries/new). The 
COBRE dataset was download from the Center for Biomedical Research 
Excellence in Brain Function and Mental Illness (COBRE) (https://coins.
trendscenter.org/). The FBIRN dataset was download from https://
www.nitrc.org/projects/fbirn/. The DS000115 dataset was download 
from OpenfMRI database (https://www.openfmri.org/). Data from the 
other datasets (cross-sectional datasets #1, #2, #3, #4, longitudinal 
AMP and TMS data) are not publicly available for download, but access 
requests can be made to the respective study investigators: cross-
sectional data (datasets #1, #2, #3, #4)—corresponding author J. Feng; 
APM data—J. Wang ( jijunwang27@163.com), X. Yu (yuxin@bjmu.edu.
cn), W. Yue (dryue@bjmu.edu.cn) and C. Luo (chengluo@uestc.edu.
cn); TMS data—J. Wang ( jijunwang27@163.com), G. Ji ( jigongjun@163.
com), L. Cui (cui_fmmu@163.com) and C. Luo (chengluo@uestc.edu.
cn). Requests for raw and analysed data can be made to the corre-
sponding author J. Feng and will be promptly reviewed by the Fudan 
University Ethics Committee to verify whether the request is subject 
to any intellectual property or confidentiality obligations.

Code availability
Python of the SuStaIn algorithm is available on the UCL-POND GitHub 
(https://github.com/ucl-pond). The T1-weighted images were pro-
cessed using the Computational Anatomy Toolbox (http://www.neuro.
uni-jena.de/cat/) within SPM12 (https://www.fil.ion.ucl.ac.uk/spm/
software/spm12/). The visualization of ROI-wise z score images was 
conducted using BrainNetViewer (https://www.nitrc.org/projects/
bnv/). Statistical analyses, including correlation analysis, t test and 
ANOVA, were conducted using MATLAB (version: R2018b) and SPSS 
Statistics (version: 26.0). Other custom codes developed in the cur-
rent study are available at GitHub (https://github.com/YuchaoJiang91/
Disease-Progress-Model).
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Extended Data Fig. 1 | A flowchart of systematic characterization of 
heterogeneity in brain atrophy patterning. (a) A total of cross-sectional MRI 
from 2170 individuals (1124 patients with schizophrenia) was used to characterize 
heterogeneity in brain atrophy patterning of schizophrenia. (b) Brain images 
were processed using voxel-based morphometry. GMV was extracted from 
ROIs based on the Automated Anatomical Labeling (AAL) atlas and adjusted by 
regressing out the effects of sex, age, the square of age, TIV and site effects.  
(c) Adjusted GMV values were normalized relative to control population using z 
scores. Higher z scores represent larger deviations from the normal (that is, more 
severe atrophy in patients with schizophrenia). (d) Brain pathophysiological 
model (that is, SuStaIn [31]) requires both spatial (brain regions) and temporal 

(z scores representing advancing atrophy severity) features as input (that is, 
an M × N z score matrix). Here, N represents the number of individuals with 
schizophrenia (N = 1124 in this study). M represents the number of ROIs (M = 17). 
(e) SuStaIn was used to identify diverse but distinct patterns of progression using 
cross-sectional neuroimaging data and to cluster individuals while accounting 
for disease progression. (f ) Individuals with schizophrenia were classified 
according to the sequence of atrophy in different brain regions. For each 
subtype, brain-based staging was assessed from progressive spatial patterns with 
distinct origins. (g) Using a longitudinal sample, we examined whether subtype 
classification based on baseline brain features predict differential treatment 
response to antipsychotic medications and TMS.
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Extended Data Fig. 2 | Association between regional atrophy and clinical 
symptoms. Spearman correlation analysis between PANSS (positive, negative 
and general psychopathology subscales) and GMV z scores were performed after 

adjusting for sex, age, the square of age, TIV and sites. Colored bar represents the 
r value after controlling the FWE corrected P < 0.05. L, left hemisphere; R, right 
hemisphere.
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