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Abstract
Objective. The anti-correlation between the default mode network (DMN) and task-positive
network (TPN) is a stable characteristic of normal brain activity. However, in idiopathic
generalized epilepsy (IGE), this anti-correlation is often disrupted and strongly associated with
epileptic seizures. This study aims to use periodic spatiotemporal patterns (PSTP) analysis to
elucidate the relationship between the DMN-TPN anti-correlation and epileptic activity, providing
new insights into the neural mechanisms underlying IGE. Approach. Resting-state functional
magnetic resonance imaging was used to analyze PSTP in both healthy controls and IGE patients.
A pattern-finding algorithm was initially applied to identify repeated spatiotemporal patterns,
followed by a novel PSTP-finding algorithm to uncover dynamic periodic patterns through analysis
of fluctuations in the DMN-TPN anti-correlation. The Hilbert transform was applied to capture
the underlying basic states of these periodic patterns. Additionally, the relationship between period
length and intrinsic neural timescales (INT) was explored.Main results. IGE patients exhibited a
reduced DMN-TPN anti-correlation, particularly during TPN-dominant states. Additionally, IGE
patients exhibited greater dynamic instability in basic states, marked by more frequent transitions
between transitional states. Furthermore, lower correlations between period length and INT were
observed in cognitive regions of IGE patients. Significance. These findings suggest that dynamic
switching between the DMN and TPN in IGE is weaker and less balanced, with disruptions in
periodic rhythms linked to cognitive impairments. The proposed PSTP framework provides new
insights into the abnormal rhythms of IGE from a spatiotemporal perspective.

1. Introduction

A generalized tonic–clonic seizure (GTCS) is themost
clinically prominent subtype of idiopathic general-
ized epilepsy (IGE), typically characterized by 2.5–
5 Hz generalized spike-wave discharges (GSWDs),
tonic–clonic movements, and loss of consciousness
[1]. These seizures arise fromabnormal neuronal syn-
chrony driven by imbalances in excitation and inhib-
ition, disrupted neuronal function, and impaired

network connectivity [2]. Increasing evidence
suggests that epileptic electrical activity originates
from the behavior of propagated brain networks
[3–5]. Electroencephalogram-functional magnetic
resonance imaging (EEG-fMRI) study has demon-
strated suspension of default mode network (DMN)
activity during GSWD generation and propagation,
implicating DMN involvement in seizure dynamics
[6]. However, previous research has largely relied on
static connectivity or time-domain analyses [7–9],
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overlooking the spatiotemporal dynamics and peri-
odic evolution of DMN activity in IGE. The metasta-
bility of brain states maintains spontaneous activity
most of the time, with sudden bursts into periods of
GSWDs at certainmoments. Therefore, it is crucial to
study the dynamic spatiotemporal characteristics of
brain function in epilepsy patients during the resting
state. Furthermore, disrupted interaction between
the DMN and task-positive network (TPN) has also
been reported [10–12], which was related to cognitive
impairment in epilepsy patients [13, 14]. The explor-
ation of the abnormal interactions between DMN
and TPN in epilepsy is crucial for a better under-
standing of the underlying mechanisms of seizures
and behavioral disorders.

Studies have suggested that electrophysiological
signals exhibit periodic characteristics [15] and that
neuronal activity also undergoes slow and periodic
modulation on time scales of 1–100 s [16]. These
inherent temporal rhythms are accompanied by non-
stationary dynamics in large-scale brain networks,
including time-varying interactions between core
nodes of the DMN and TPN [17, 18]. However,
it remains unclear whether there is a dynamic bal-
ance (reaching a steady state over time or chan-
ging periodically) for this unstable phenomenon.
Prior studies have primarily focused on temporal
characteristics, while the spatiotemporal evolution
of brain dynamics remains underexplored. Yousefi
and Keilholz reported a quasi-periodic feature of
low-frequency spatiotemporal pattern in the brain
[19], which reflects the spatial pattern of infra-
slow electrical activity (<0.1 Hz) embedded in the
blood–oxygen-level-dependent (BOLD) signal. This
might illuminate coordination mechanisms within
and between the brain’s large-scale networks [20,
21]. The pattern involves dynamic changes in the
anti-correlation between DMN and TPN (∼20 s) in
BOLD. However, applying a fixed temporal window
may obscure individual differences in periodicity.
Personalized periodic length may reflect individual
variability in DMN-TPN switching speed, potentially
linked to regional information retention capacity.
Given the periodicity of these patterns, this study
could reasonably assume that spatiotemporal pat-
terns might be composed of different basic states of
the brain. Basic states of the brain reflect the spatially
invariant basis of the brain, involving different brain
network interactions.

The ‘basic state’ proposed in this study is the-
oretically distinct from traditional transient-state
models, such as the hidden Markov model [22] and
co-activation patterns [23]. These traditional
approaches characterize instantaneous ‘snapshots’
of brain activity at specific time points, emphas-
izing transience and discreteness [24, 25]. In con-
trast, the basic state is grounded in low-frequency
(<0.1 Hz), periodic spatiotemporal dynamics of
the brain, and captures a more fundamental,

spatially invariant basis underlying complex pat-
terns, including the anti-correlated DMN-TPN fluc-
tuations. Rather than focusing on short-lived events,
the basic state emphasizes continuous transitions and
the global organization of brain dynamics. The basic
state recapitulates hallmark features of the default
mode-namely, sustained activity fluctuations and a
stable spatial configuration-within the broader con-
tinuum of whole-brain dynamics [26–28]. This per-
spective holds promise for unraveling the core mech-
anisms underlying dynamic balance in the brain,
offering a novel perspective for understanding func-
tional network coordination.

To investigate the dynamic periodic spatiotem-
poral characteristics of IGE, this study first identi-
fied personalized periodic spatiotemporal patterns
(PSTP) for each participant. Since PSTP reflects the
spatiotemporal architecture in the BOLD signal, the
study examined its contribution to the BOLD sig-
nal. Additionally, the relationship between period
length and the intrinsic neural timescales (INT) was
also explored. Subsequently, the study explored the
basic states of PSTP through phase synchroniza-
tion (PS) and leading eigenvector analysis, and stud-
ied the feature changes of states in IGE. The trans-
ition between epileptic states and normal brain states
makes the study of dynamics in epilepsy particularly
important [29]. An overview of this study is shown in
figure 1(A). This study provides a new perspective for
exploring the brain mechanisms underlying epilepsy.

2. Materials andmethods

2.1. Participants
A total of 100 patients (age = 24.64 ± 8.70 years,
43 females) with GTCS were recruited from the
neurology department, the Affiliated Hospital of
University of Electronic Science and Technology
of China. According to the International League
Against Epilepsy [30], the diagnosis of all patients
was established by two neurologists. Thirty-three
of the 100 patients were drug-naïve first-episode
patients. All subjects in this study stopped taking
antiseizure medications within 24 h before scanning.
None of the patients had seizures before scanning.
To provide a neuroimaging reference, 104 demo-
graphically matched healthy control (HC) subjects
(age = 25.85 ± 7.87 years, 44 females) were also
recruited as the HC group. Written informed con-
sent was obtained from all subjects. All study meth-
ods and the process design were approved by the local
Ethics Committee of University of Electronic Science
and Technology of China and followed the declara-
tion of Helsinki (2022LLYJ08). Detailed material on
the subjects is shown in table 1.

2.2. Image data acquisition
MRI data were acquired using a 3.0 T MRI scan-
ner (Discovery MR750, GE). All participants were
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Table 1. Demographic characteristics of IGE patients and healthy controls.

Characteristic IGE HC P-value

Number 100 104 —
Age (year) 24.64± 8.70 25.85± 7.87 0.296a

Sex (M: F) 57:43 60:44 0.920b

ASMs (with: without) 67:33 — —
Age at onset(year) 19.85± 9.24 — —
Illness duration(year) 4.81± 6.75 — —
mFD (mm) 0.113± 0.05 0.088± 0.04 —

Abbreviations: ASMs: antiseizure medications; mFD: mean frame-wise

displacement.
a The p-value was obtained by a two-sample t-test.
b The p-value was obtained by a χ 2 test.

given foampadding to reduce headmotion. The fMRI
images were collected using an echo-planar imaging
sequence. The scanning parameters were as follows:
slices= 35, TR/TE= 2000ms/30ms, flip angle= 90◦,
FOV = 240 mm × 240 mm, matrix size = 64 ×
64, thickness = 4 mm, and 255 volumes in each run
(each scan takes 8min and 30 s). Axial anatomical T1-
weighted images were attained using a 3-dimensional
fast spoiled gradient echo (T1-3D FSPGR) sequence:
TR = 6.012 ms, TE = 1.968 ms, FA = 9◦, mat-
rix = 256 × 256, FOV = 256 mm × 256 mm, slice
thickness = 1 mm, 152 slices without a gap. During
scanning, the subjects were instructed to keep their
eyes closed and not to fall asleep.

2.3. Image processing
The preprocessing pipelines were consistent with the
previous study [31], including the removal of the first
five time points, estimation of head motion, slice-
timing correction, and boundary-based registration
to T1w image. All functional images were then res-
ampled onto the fsaverage surface space. The follow-
ing pre-processing steps were additionally performed.
(1) To further reduce physiological noise and arti-
facts, the head motion, white matter, cerebrospinal
fluid, and global signals were regressed. (2) A band-
pass filter (0.01–0.1Hz)was employed. (3) The spatial
dimension was reduced to N (where N is the dimen-
sion of the parcellation) cortical parcels, and the time
series for each parcel was normalized to zero mean
and unit standard deviation. The study used a mul-
timodal brain atlas to parcellate cortical vertices into
360 (N = 360) parcels [32].

2.4. Algorithm for finding PSTP
2.4.1. Step 01: detection of repeated spatiotemporal
patterns (RSTP)
The pattern-finding algorithm detected the RSTP,
which consists of three-dimensional spatial patterns
persisting over a continuous period ofW timepoints
(where W denotes the number of timepoints form-
ing the RSTP). Thus, it captures brain functional
spatiotemporal information in a four-dimensional
representation (figure 1(B)). The algorithm involves

five procedures. (1) The window length was set to
W, and a random window was selected as an initial
template. The maximum number of possible selec-
tions does not exceed L (L = M−W + 1, where M
denotes the length of the preprocessed time series). To
minimize bias, all possible selections were performed,
yielding L initial templates for subsequent analyses.
(2) To ensure the stability of the final RSTP, the time
point with the highest DMN signal in the template
was moved to the first position, and the signals of
the remaining timepoints were shifted accordingly.
The DMN mask was derived from a pre-established
group-level mask (see supplementary material). (3)
The correlation between the template and each seg-
ment was calculated with a step size of 1 TR. Each
segment represents a temporally contiguous signal
epoch of identical duration to the template. The cor-
relation coefficients were concatenated into a one-
dimensional correlation vector. (4) Similar segments
corresponding to local maxima exceeding a preset
threshold in the correlation vector were averaged
to generate a candidate segment. (5) If the simil-
arity between the candidate segment and the tem-
plate reached 0.9999, the candidate segment was des-
ignated as a RSTP. Otherwise, the candidate segment
was used to update the template, and procedures 2–
5 were iterated until convergence was achieved. To
ensure the non-arbitrariness and adaptability of the
preset threshold, the correlation threshold for the first
three iterations was 75%of the correlation vector, and
85% for subsequent iterations, with amaximumof 15
iterations. If convergence was not achieved within 15
iterations, the result based on this initial template was
excluded from further analysis. Consequently, up to
L RSTPs could be obtained, assuming all initial tem-
plates successfully converged.

2.4.2. Step 02: searching for representative repeated
pattern (RRP)
L ′ repeated patterns satisfying predefined screening
criteria were first identified from L RSTPs. Then, a
RRP closest to a DMN-to-TPN transition was selec-
ted from L ′ RSTPs (see supplementary material for
details). In brief, the RRP starts with high DMN
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Figure 1.Workflow and schematic of analytical processing based on periodic spatiotemporal pattern (PSTP). (A) The PSTP
reflects the spatial changes over time of the default mode network (DMN) and task-positive network (TPN). This study assumes
that spatiotemporal dynamic changes are based on a state-invariant spatial foundation. Finally, it was applied to patients with
idiopathic generalized epilepsy (IGE) to explore the spatiotemporal heterogeneity. (B) Looking for a robust PSTP. Firstly, RSTP
were iteratively identified using a pattern-finding algorithm until the candidate segment stabilized and was output as the final
RSTP (Step 01). Each random initial template can result in a RSTP. Next, L′ (L′ < L) repeated patterns were extracted from the L
(L denotes the number of random initial template selections) RSTPs that matched the DMN to TPN switching. Then the mean
correlation between L′ RSTPs was calculated (resulting in L′ correlation coefficients), and the RSTP with the highest correlation
was defined as the representative repeated pattern (RRP). This indicates that the RRP is most like the other RSTPs (Step 02).
Subsequently, the period length was defined by the inverse correlation between the DMN and TPN signals in RRP (Step 03).
Then, if the period length differed from the previous iteration, the window length (W) was updated, and Step 01 was repeated.
When the period length stabilized across iterations, the final individual-tailored PSTP was obtained in Step 04.

activity, which gradually decreases, while TPN activ-
ity increases from a low level. This is followed by a
reversal where DMN activity rises and TPN activity
declines.

2.4.3. Step 03: definition of period length of the RRP
The procedures to define the periodic length of the
RRP were as follows. (1) The average signals of DMN
and TPN in RRP were extracted, and polynomial fit-
ting was performed, respectively. (2) The point where
the fitting signals of DMN and TPN had the smallest
difference and were closest to the first time point of
the pattern was considered the starting point of the
period; meanwhile, the point where the fitting sig-
nals of DMN and TPN had the smallest difference

and were closest to the last time point of the pat-
tern was used as the endpoint of the period (as shown
in figure 1(B), with a detailed description in supple-
mentary figure S1). (3) The period length was defined
as the number of timepoints between the starting
point and the endpoint. For more details, please refer
to supplementary material.

2.4.4. Step 04: robust PSTP detection
Two types of PSTP were explored for each subject by
adjusting the continuous time length W : The fixed
PSTP and the individual-tailored PSTP.

Fixed PSTP: W was set to 10 TRs, and then the
above algorithm was applied to obtain RRP. The RRP
was considered the fixed PSTP.
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Individual-tailored PSTP: The PSTP-finding
algorithm was used to identify a stable individual-
tailored PSTP. (1) The window length W was set to
10 TRs to detect the RRP and estimate its period. (2)
This period was used as the newW, and the pattern-
finding algorithm was applied again to detect the
PPR and period length under this condition. This
process (procedure (2)) was iterated until the period
length of the RRP remained unchanged. The RRP and
period length of RRP obtained from the last iteration
were defined as a robust individual-tailored PSTP
and period length of the individual-tailored PSTP,
respectively. Notably, the final number of timepoints
(W) may vary across individuals, preserving person-
alized periodic features.

For both within-group and between-group com-
parisons of PSTP-related metrics, normality tests
were conducted for each variable. Based on the res-
ults, appropriate statistical methods were selected.
For normally distributed data, the t-test was used. For
non-normally distributed data, the Mann–Whitney
U test was applied for independent samples, and
the Wilcoxon signed-rank test was used for paired
samples.

For fixed PSTP, statistical analysis was performed
within each group. Simultaneously, the squared dif-
ferences between DMN and TPN timecourses were
compared between the control and IGE groups, with
age, sex, and head motion controlled for. Statistical
significance was determined using family-wise error
(FWE) correction with p< 0.05.

Following this, to quantify the variation of the
PSTP over time, the strength, frequency, and inter-
val time of the PSTP occurrence over time were com-
pared between groups. The strength was defined as
the mean of the supra-threshold local maxima in the
correlation vector of the PSTP. The frequency was
defined as how often the supra-threshold local max-
ima occur. Meanwhile, the interval time was con-
sidered as the mean interval time between successive
local maxima.

2.5. Spatiotemporal characteristics of PSTP
2.5.1. Spatial characteristics: the contribution of PSTP
to BOLD
Two approaches were used to examine the contribu-
tion of PSTP to BOLD signals. On the one hand, the
study focused on quantifying the strength of PSTP
while controlling for its occurrence frequency across
participants. Specifically, each participant’s PSTP was
sliding-correlated with the BOLD signal to gener-
ate a correlation vector. To ensure a consistent num-
ber of suprathreshold time windows, thresholds were
defined using individual percentiles of the correlation
vector, ranging from the 15th to 95th percentile in
10% increments. PSTP strength at each threshold was
defined as the mean correlation value of time win-
dows exceeding that threshold. Group differences in
PSTP strength were assessed at each threshold level.

On the other hand, to explore the role of this
spatiotemporal pattern in the process of generating
functional connectivity (FC) in the brain, the rela-
tionship between FC and PSTP was evaluated. First,
the average timecourse of cortical vertices within each
of Yeo’s networks [33] was extracted to calculate FC
between networks using Pearson correlation. Next,
each subject’s FC matrix underwent a Fisher’s z-
transformation. FC was also calculated for the func-
tional scans after regressing the PSTP using scan-wise
regression (see supplementary material). Regression
was necessary as it allows the study of PSTPs’ contri-
bution to FC by attenuating their effect on the BOLD
signal. Finally, within-group analyses and between-
group comparisons were performed (False Discovery
Rate, FDR, p< 0.05), with age, sex, and head motion
as covariates. Notably, the statistical tests were con-
ducted before and after regression to the PSTP.

2.5.2. Temporal characteristics: association analysis
between period length and INT
To explore whether the period length relates to the
ability of brain regions to maintain information,
the relationship between period length and INT was
assessed using Spearman correlation. INT refers to
temporal durations (i.e. timescales) of the brain’s
neural activity [34], calculated here using the method
proposed by Raut et al [35]. Firstly, the autocovari-
ance function (ACF) was computed for each brain
region. ACF assesses the self-similarity of BOLD sig-
nals, as shown in equations (1) and (2):

cxb (∆) =
Nb−∆∑
g = 1

xb (g+∆)×xb (g) (1)

cx (∆) = 1
N∆

B∑
b = 1

cxb(∆) (2)

where ∆ represents the lag time in TRs, b indexes
blocks of consecutive frames within the session, g
indexes frames within the block, and xb (g) denotes
the signal at timepoint g in block b. Nb is the num-
ber of frames within the block, cxb (∆) represents
the autocorrelation function at lag∆ within block b.
Moreover, N∆ is the number of timepoints used for
estimating the ACF at a given lag, B is the total num-
ber of blocks, and cx (∆) is the overall autocorrelation
across all blocks.

In this study, the lag time was set to 12 s (∆ ∈
[− 6, 6]). Then, the exact abscissa corresponding to
the autocorrelation value of 0.5 (i.e. half the full width
at half maximum of ACF) was estimated by calculat-
ing the zero point of the spline curve fitted to ACF.
Next, this coordinate value was then multiplied by
the TR, thus resulting in the INT of a brain region.
Subsequently, Spearman correlation calculation was
performed between INT and the period length of
individual-tailored PSTP. Within-group correlations
were adjusted for false discovery rate (FDR, p< 0.05).
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The correlations were compared between IGE and the
controls by permutation test (5000 times, p < 0.05).
Finally, to further decode the cognitive implications
of the regions exhibiting IGE-related alterations in
correlation between INT and period length, a func-
tional meta-analysis using the Neurosynth database
was performed [36].

2.6. Basic states identification based on PSTP
2.6.1. Instantaneous PS analysis based on Hilbert
transform
The instantaneous PS [37] was estimated to obtain
a time-resolved PS matrix, enabling the analysis of
spatiotemporal interactions between various brain
regions in an extremely short time [38]. To compute
PS, BOLD signals of all parcels in the PSTP (N ×
W ; N, number of parcels;W, number of timepoints)
were first Hilbert transformed into an analytic signal
as shown in equation (3):

X(w)=A(w)× cos(θ (w)) , (3)

where A(w)denotes the instantaneous amplitude,
reflecting the strength of the oscillation, and θ(w)
represents the instantaneous phase, describing the
signal’s position within its oscillatory cycle (e.g.
peak, trough, rising, or falling phase) at time w.
This decomposition enables a fine-grained analysis
of neural dynamics by separating signal magnitude
from its phase timing, allowing subsequent calcula-
tion of PS, phase-amplitude coupling, or temporal
alignment across brain regions.

To compute PS, the phase of each parcel was
extracted from the analytic signal, and the PS mat-
rix was constructed by computing the cosine of the
phase difference between all pairs of parcels n1 and
n2 (n1 = 1, …, N; n2 = 1, …, N) at each timepoint w
(w= 1,…,W). The PS at timew between two parcels
was calculated as shown in equation (4):

iPS(n1, n2, w) = cos(θ (n1, w) − θ(n2, w)), (4)

where θ (n1, w) and θ (n2, w) are the instantaneous
phases of parcels n1 and n2 at time w, respectively.
The resulting PS matrix is a three-dimensional tensor
of shape N × N ×W, capturing pairwise phase rela-
tionships over time.

Each value of PS(n1, n2, w) ranges from−1 to 1: a
value of 1 indicates perfect PS (i.e. parcels oscillating
in-phase), whereas −1 indicates complete anti-PS. A
value near 0 implies no consistent phase relationship
at that timepoint. This formulation enables dynamic
assessment of functional integration or segregation
across brain regions.

2.6.2. Leading eigenvector analysis
To reduce the dimensionality of the phase space
(from N (N−1)

2 to N), the leading eigenvector ana-
lysis method was applied. The leading eigenvector

V1(w) (the dimension was N ×1) of each PS mat-
rix was extracted from the matrix that was the eigen-
vector corresponding to the maximum eigenvalue.
TheV1(w) captures the main orientation of the fMRI
signal phase overall anatomical areas, and focuses on
the dominant connectivity pattern of PS at time w,
rather than the whole upper triangle, it is more robust
to high-frequency noise [39].

To determine the discrete number of basic brain
states, clustering analysis was applied to all leading
eigenvectors (S ×W, where S is the number of parti-
cipants) across participants and frames of the PSTPs
using K-means clustering. K (the number of clusters)
ranged from 2 to 10, with 300 repetitions. Each clus-
tering centroid (N × 1) represents a basic state of
the brain, with positive weight indicating positive co-
modulation and negative weight indicating negative
co-modulation between cerebral regions. Hence, each
frame of the PSTP was assigned a cluster (or a basic
state), resulting in a discrete time series x(w) for each
subject, wherew= 1,…,W, where each discrete value
(between 1 and K) indicates the active state at that
frame of the PSTP [40].

To investigate the changes in basic states with
PSTP, the three indicators were included in this
study. (1) The fraction time f state k of each state was
defined as the percentage of frames during which
the state was active to the total time (W). (2) The
dwell time dstate k of each state was defined as the
average length of frames of all segments in which
the state occurred continuously or remained active.
(3) Finally, the transition probability Tstate i→j was
given by the proportion of the number of transitions
from basic state i to j to the total number of pos-
sible transitions (W − 1). Significant differences in
these measures were tested between the controls and
IGE.

Additionally, the current study used the intraclass
correlation coefficient to determine the homogeneity
of states between individual-tailored and fixed PSTP.
Finally, significance testing of correlations between
states was assessed via spin permutation tests with
1000 repetitions.

2.7. PSTP validation and comparison with
traditional approaches
To validate and evaluate the specificity of the pro-
posed PSTP method, this study conducted the fol-
lowing analyses: (1) to ensure that the observed
PSTP arises from the intrinsic temporal structure
rather than random phenomena, a surrogate data-
set was generated with the same mean, variance,
and frame count as the real data; (2) to better
characterize and validate the PSTP method, quasi-
PSTP [19] was calculated in both the HC and IGE
groups, and compared with the PSTP. (3) a compar-
ison was made with the traditional sliding window
dynamic FC (dFC) method to evaluate its perform-
ance in terms of time resolution, noise tolerance, and
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pathological specificity. Detailed descriptions can be
found in supplementary material.

2.8. Sensitivity and stability analysis
To assess whether the basic brain states derived from
the fixed PSTP were influenced by the time series
length, a sensitivity and stability analysis was per-
formed. Specifically, the time series was first halved
and then progressively extended in increments of 5
or 10 time points. At each length, the fixed PSTP
and corresponding basic brain states were recalcu-
lated using the same analytical pipeline. Details of
the sensitivity and stability analysis were provided in
supplementary material.

3. Results

3.1. PSTP
DMN and TPN maps were generated by locat-
ing areas strongly correlated or anti-correlated with
the posterior cingulate cortex, respectively (supple-
mentary material, figure S2). Robust, individual-
tailored PSTPs were identified in 88 HC and 74 IGE
patients. Moreover, each subject exhibited unique
period lengths (supplementary material, figure S3),
with a median duration of 20 s (10 timepoints).

One-sample t-test within each group revealed
similar fixed PSTPs (W = 10 TRs) in IGE and HC
(figure 2(A)), demonstrating consistent patterns of
network activation and deactivation (see supple-
mentary videos 1 and 2). The resulting T values
were normalized for visualization and group-level
comparison. The spatiotemporal patterns in both
groups revealed a DMN/TPN switch (figure 2(B)).
Interestingly, the switching process in the con-
trol group could be characterized by four tempor-
ally ordered states, representing distinct phases of
network dominance: TPN-ascendant (timepoints
1–3), TPN-dominant (timepoints 4, 5), DMN-
ascendant (timepoints 6–9), and DMN-dominant
(timepoints 10).

Although the PSTPs were similar between groups,
the DMN-TPN relationship within each state differs.
The squared difference between their time courses
at each time point revealed significant differences
in magnitude (two-sample t-test, FWE corrected,
p < 0.05) (figure 2(B)). There was one phase where
the square variance of IGE and HC was signific-
antly decreased, namely the TPN-dominant states
(timepoint 4: t = −4.46, p < 0.001). Additionally,
DMN-ascendant states were significantly increased
(timepoint 6: t = 3.72, p < 0.001; timepoint 7:
t = 4.19, p< 0.001).

To evaluate the disturbance of PSTPs in dis-
eases, this study quantified PSTPs and conducted
between-group statistical comparisons using a non-
parametric Mann–Whitney U test (figure 3(A) and
(B)). The results of exploring two spatiotemporal

patterns were consistent, showing a decreased
frequency of PSTPs in the patients with IGE rel-
ative to HCs (fixed PSTP: z = −4.96; p < 0.001;
individual-tailored PSTP: z = −4.73; p < 0.001).
However, the strength of PSTPs in IGE patients (fixed
PSTP: z = 3.81; p < 0.001; individual-tailored PSTP:
z= 3.38; p< 0.001) and interval time increased (fixed
PSTP: z = 5.27; p < 0.001; individual-tailored PSTP:
z = 4.44; p< 0.001).

3.2. Spatiotemporal characteristics of PSTP
3.2.1. Spatial characteristics: the impact of PSTPs on
BOLD
To assess the contribution of PSTP to BOLD sig-
nals while controlling for occurrence frequency,
percentile-based thresholds were applied to each
participant’s sliding correlation vector. Thresholds
ranged from the 15th to the 95th percentile by 10%
increments, ensuring a consistent number of supra-
threshold time windows across individuals. PSTP
strength was calculated as the mean correlation
value of suprathreshold windows at each threshold.
Compared to HC, patients with IGE showed signi-
ficantly increased PSTP strength across all thresholds
(two-sample t-test, p< 0.001).

In addition, to evaluate the contribution of
PSTP to FC, group differences in inter-network
FC were compared before and after regressing out
the PSTP using two-sample t-test. Inter-network
FC statistical results were shown in figures 3(C)–
(E). The upper triangles of all matrices showed
the results before regressing out the PSTP, while
the lower triangles showed the results after regres-
sion. Before PSTP regression (figure 3(E)), wide-
spread differences in FC were observed between
the IGE and control groups. Individuals with IGE
showed significantly stronger connectivity between
DMN and dorsal attention network (DAN), vent-
ral attention network (VAN), and frontal–parietal
network (FPN) (tDMN−DAN = 3.91, p < 0.001;
tDMN−VAN = 2.74, p = 0.007; tDMN−FPN = 4.46,
p < 0.001). Additionally, increased FC was observed
between FPN and limbic network (LN) and visual
network (VN), as well as between DAN and VN, and
between VAN and LN (tFPN−LN = 2.37, p = 0.019;
tFPN−VN= 2.42, p= 0.016; tDAN−VN= 4.69, p< 0.001;
tVAN−LN = 2.31, p = 0.023). In contrast, decreased
FC was found between VAN and VN, VAN and DAN,
and between the sensorimotor network (SMN) and
both DAN and VN (tVAN−VN = 2.32, p = 0.022;
tVAN−DAN = −4.92, p < 0.001; tSMN−DAN = −2.75,
p = 0.007; tSMN−VN = −2.35, p = 0.020). However,
after regressing out PSTP, between-group FC differ-
ences were substantially diminished. Notably, only
the DMN-FPN connectivity remained significantly
elevated in IGE patients (tDMN−FPN = 3.81, p< 0.001)
(figure 3(E)). These findings were consistent with
analyses conducted at the parcel level (N = 360 par-
cels; see figure S4 in supplementary material).
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Figure 2. (A) The fixed spatiotemporal patterns of the controls (left) and IGE (right). The normalized value of T value from
one-sample t-test was displayed. The red border represents default mode network (DMN), and the blue represents the
task-positive network (TPN). (B) Timecourse of the DMN and TPN during spatiotemporal patterns, with the controls shown on
the left and IGE in the middle. Note that each asterisk (∗) represented the average time signal of DMN or TPN at each time point,
and the average signals were normalized by Z-score. The comparison of the square of the differences between DMN and TPN
time courses at each timepoint, both in the controls and IGE (right), was performed using a two-sample t-test. Note that each
diamond represents the square of the differences at each time point, and each asterisk indicates FWE-corrected significance at
p< 0.05. All lines were the result of polynomial fitting. Abbreviations: L: left; R: right; a: anterior; p: posterior.

3.2.2. Temporal characteristics: correlation between
period length and INT in IGE
The left panels of figure 4(A) and (B) showed that
the high INTs were primarily in VN, DMN, and FPN
regions, while low INTs were observed in SMN and
LN, both in HC and IGE groups. Moreover, the cor-
relation between period length and INT within each
group showed significant positive associationsmainly
in the DMN-related and TPN-related brain regions
(FDR-corrected, p < 0.05) (as shown in the right
image of figure 4(A) and (B)). IGE patients exhib-
itedweaker correlations thanHC in higher-order cog-
nitive regions (figure 4(C)) (left hemisphere: 8Av:
p = 0.006; 46 area: p = 0.003; PF: p = 0.025; TE1a:
p = 0.022; right hemisphere: TE2p: p = 0.032; 23d:
p = 0.047; VMV2: p = 0.043; STSva: p = 0.037).
No significantly increased correlationwas observed in
GTCS relative to HC (permutation test, 5000 times).

NeuroSynth meta-analysis [36, 41] further
demonstrated that these impaired correlation regions
were functionally associated with advanced cognitive
processes, including engagement, language, retrieval,
and task performance (figure 4(D)).

3.3. Basic states of the brain
This study characterized the basic states of the
brain of the fixed PSTP. The K = 6 was ultimately
selected (see figure S5 in supplementary material) by

Silhouette coefficient. The patterns of the six cluster
centers (that is, the six basic states of the brain) cor-
responding to the fixed PSTP were shown in figure 5.
Spatially, each state reflected distinct functional net-
work configurations. Importantly, 4 of the 6 states
were grouped into two pairs (state 2 and state 3;
state 5 and state 6), and the correlation coefficient
between state 2 and state 3 was −0.97, and between
state 5 and state 6 was−0.95. Moreover, each pair was
dominated by opposite phase-synchronous modes.
Specifically, state 2 was mainly composed of pos-
itive co-modulation in DMN and FPN, as well as
negative coupling in SMN, VAN, and VN. In other
words, the connections of SMN, VAN, and VN to
DMN and FPN were anti-correlated. State 3 exhib-
ited the inverse pattern. In addition, state 1 consisted
of an in-phase mode including VN/ DMN regions
and VAN/ SMN anti-phase mode. Relatedly, state 5
was like state 1, but in addition to VN and DMN,
the in-phase mode also included FPN. Meanwhile,
state 6 was the opposite of state 5. State 4 was domin-
ated by VN/SMN positive co-modulation and VAN/
FPN negative co-modulation. It was worth noting
that states 2 and 3 were defined as two poles accord-
ing to the goodness-of-fit (supplementary material
for details) with the DMN template, where state 2
was the most advantageous pole of DMN, and state
3 was the opposite pole. The remaining states were
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Figure 3. Quantitative metrics of fixed (A) and individual-tailored (B) periodic spatiotemporal patterns (PSTPs), including
strength, frequency, and interval time. (C) Bottom-left: one-sample t-test of functional connectivity (FC) between networks in
the control group after regression of PSTPs. Top-right: one-sample t-test of FC between networks in the control group before
regression. (D) Bottom-left: the results of FC between networks in the IGE group after regression of PSTPs. Top-right: the FC
between networks in the IGE group before regression. (E) Bottom-left: significant differences in FC between the control and IGE
groups after regression of PSTPs. Top-right: significant differences in FC between the control and IGE group before regression.
The size and color of the circle were consistent with the T value. T values surviving significance thresholds (one-sample: p< 0.05;
two-sample: FDR corrected p< 0.05) were set to 0. Diagonal autocorrelations were denoted by ‘-’. Notes: ∗ p< 0.05; ∗∗ p< 0.01;
∗∗∗ p< 0.001.

considered transition states. Temporally, based on the
propagation mode of DMN to TPN in PSTP, these
six states depicted different moments of DMN and
TPN. Among them, state 2 represented the most act-
ive state of DMN (DMN-active); states 1 and 5 rep-
resented the states before and after the moment of
the DMN-active, namely DMN-pre and DMN-post,
respectively. Similarly, state 3 represented the most
active state of TPN (TPN-active); states 4 and 6 rep-
resented the states before and after the moment of the
TPN-active, namely TPN-pre and TPN-post, respect-
ively. The result of the individual-tailored pattern
was almost consistent with the fixed periodic pattern.

Ultimately, intraclass correlation coefficients of each
corresponding state were greater than 0.96 (spin per-
mutation tests, p< 0.001).

Next, this research explored how epilepsy affects
these basic state features. Mann–Whitney U test
showed that the fraction time and dwell time of state
1 were both decreased (f state 1: z = −3.65, p < 0.001;
dstate 1: z = −3.39, p < 0.001) for fixed PSTPs in
patients, while states 5 and 6 showed increased pres-
ence (f state 5: z = 2.95, p = 0.003; f state 6: z = 2.64,
p= 0.008; dstate 5: z= 2.83, p= 0.005; dstate 6: z= 2.51,
p= 0.012) in figure 6(A). This study also explored the
transition probability from a given state to another
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Figure 4. (A) The results in HC. (B) The results in IGE. Left: intrinsic neural timescales (INT). Right: the correlation between the
period length of individual-tailored PSTP and INT (FDR, p< 0.05). (C) The significant p-value corresponds to the group
differences in the correlation between IGE and HC (permutation test, p< 0.05). The blue represents the decreased r value of IGE
compared with HC. (D) Cognitive terms associated with the regions that exhibited a lower (blue) correlation between the period
length of individual-tailored PSTP and INT. Font size has been scaled to reflect the correlation coefficient between the group
differences map and the meta-analytic map of that term generated by Neurosynth. Abbreviations: INT: intrinsic neural
timescales; left; R: right; a: anterior; p: posterior.

Figure 5. Six basic states of the brain correspond to the fixed periodic spatiotemporal pattern. From a spatial perspective, six basic
states captured the interplay of different cortical networks, i.e. each state was characterized by specific functional networks.
Moreover, 4 of the 6 states were grouped into two pairs (state 2 and state 3; state 5 and state 6). Abbreviations: L: left; R: right; a:
anterior; p: posterior.

state using the Mann–WhitneyU test for inter-group
comparisons. The decreased transition probabilit-
ies from state 1 to states 2 and 3 to state 1 were

discovered in IGE compared with HCs (Tstate 1→2 :
z = −2.62, p = 0.009; Tstate 3→1 : z = −3.01,
p = 0.003). In contrast, an increased probability of
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Figure 6. The characteristics of basic states of the brain. (A) The results correspond to the fixed periodic spatiotemporal pattern
(PSTP). (B) The features correspond to the individual-tailored PSTP. The first column was the result of fraction time and dwell
time, while the second column was the transition probabilities between the six basic states. From a time-domain perspective, the
six states depicted different moments of the default mode network (DMN) and task-positive network (TPN) based on the
propagation pattern of DMN to TPN in PSTP. Among them, state 2 represented the most active state of DMN (DMN-active);
states 1 and 5 represented the states before and after the moment of the DMN-active, namely DMN-pre and DMN-post,
respectively. Similarly, state 3 represented the most active state of TPN (TPN-active); states 4 and 6 represented the states before
and after the moment of the TPN-active, namely TPN-pre and TPN-post, respectively. Notes: ∗ p< 0.05; ∗∗ p< 0.01;
∗∗∗ p< 0.001.

mutual transition was found between states 5 and 6
(Tstate 5→6 : z = 2.85, p= 0.004; Tstate 6→5 : z = 3.28,
p = 0.001) in IGE. The transition probability from
a certain state to itself, also known as self-transition
probability or self-resilience, is caused by the continu-
ous appearance of this state, indicating that this state
is relatively stable in PSTP. In IGE, the self-resilience
in state 1 decreased (Tstate 1→1: z=−3.00, p= 0.003),
while the resilience in state 5 increased (Tstate 5→5:
z = 3.55, p< 0.001).

The results of individual-tailored PSTPs were
similar (figure 6(B)). On this basis, this study also
observed increased time fractions and dwell times in
state 4 (f state 4: z = 2.30, p = 0.021; dstate 4: z = 2.29,
p = 0.022). Furthermore, the self-resilience of state
6 was increased (Tstate 6→6 : z = 2, p = 0.045).
Notably, although the previously observed reduction
in the transition probability from state 1 to state
2 was no longer significant, the transition probab-
ility from state 2 to state 1 decreased (Tstate 2→1 :
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z = −2.09, p = 0.037). Between states 5 and 6, only
the probability of the former to the latter increased
(Tstate 5→6 : z = 2.15, p = 0.031). In addition, this
study also conducted supplementary analyses with
K = 4 and K = 5. When K = 4, it was observed that
only the self-transition probability of DMN-active
in IGE decreased, along with a reduced transition
probability between polar states, while no changes in
transition probabilities between intermediate states
were identified (see supplementary material, figure
S6). Nevertheless, when K = 5, the results were con-
sistent with those observed for K = 6 (figure S7).

3.4. PSTP validation and comparison with
traditional approaches
To verify that the observed PSTP originates from
the intrinsic temporal structure of the data rather
than random statistical phenomena, a surrogate data-
set was simulated. The results showed that once the
temporal structure was disrupted, the fixed PSTP
no longer exhibited a periodic pattern (supplement-
ary material, figure S8). Moreover, none of the
individual-tailored PSTPs across subjects achieved
stable convergence iterative process failed to termin-
ate (see methods section 2.4.4).

Additionally, in HC, both the fixed and
individual-tailored PSTPs demonstrated reduced fre-
quency (fixed PSTP: z=−8.11, p< 0.001; individual-
tailored PSTP: z = −7.45, p < 0.001), but exhibited
higher strength (fixed PSTP: z = 5.81, p < 0.001;
individual-tailored PSTP: z = 5.87, p < 0.001) and
longer interval time (fixed PSTP: z = 8.06, p< 0.001;
individual-tailored PSTP: z = 7.38, p < 0.001)
compared to the original quasi-periodic pattern
(Wilcoxon signed rank test). Similar changes were
observed in IGE (fixed PSTP: frequency: z = −7.52,
p < 0.001; strength: z = 5.81, p < 0.001; interval:
z = 8.06, p < 0.001; individual-tailored PSTP: fre-
quency: z = −7.31, p < 0.001; strength: z = 6.09,
p < 0.001; interval: z = 7.31, p < 0.001). Despite
these within-group changes following algorithm
refinement, the between-group differences remained
consistent with those identified using PSTP. The
quasi- PSTPs of IGE patients consistently exhibited
higher strength and interval, and lower frequency
than HC (Mann–Whitney U test, p < 0.05). Results
based on the original algorithm were presented in
figure S9.

The traditional sliding window method was also
employed to examine the anti-correlation pattern
between the DMN and TPN. However, regardless of
the window length used (10 TRs or 50 TRs), this
approach captured only slow fluctuations between
the networks, lacking a discernible periodic struc-
ture and failing to reveal temporally organized pat-
terns (figure S10). Regarding noise robustness, both
PSTP and the sliding window method demonstrated
high robustness. In the HC group, the periodic length
of individual-tailored PSTPs showed no significant

change before and after adding noise (Wilcoxon
signed rank test, z = 0.84, p = 0.401). The spa-
tial similarity of fixed PSTPs remained high (mean
r = 0.94), and the squared signal difference between
DMN and TPN within PSTPs was similarly stable
(r = 0.93). Similarly, the squared signal differences
obtained from the sliding window method remained
highly consistent before and after noise (r = 0.99 for
both 10 TRs and 50 TRs; Figure S11).

Group-level comparisons using the Mann–
Whitney U test based on the traditional sliding
window method revealed a significant increase in
DMN-TPN anti-correlation strength in IGE patients
(z = 4.99, p < 0.001). However, no significant dif-
ferences were observed in the frequency (z = −1.89,
p = 0.059) or interval time (z = 1.94, p = 0.053) of
the anti-correlation events (figure S12).

3.5. Stability of findings across different time series
lengths
This study verified the reliability of basic states of the
brain corresponding to the fixed PSTP by halving the
length of the timeseries and gradually increasing the
length of the time series. The mean correlation of all
states at each time series length was greater than 0.6,
as shown in supplementary figure S13.

4. Discussion

The study aimed to investigate the PSTP in spon-
taneous BOLD signals to characterize individualized
rhythmic dynamics in patients with IGE. This is the
first study to explore periodic patterns and basic
states in IGE across temporal and spatial dimen-
sions. The study revealed four main findings. First,
robust individual-tailored PSTPs were identified in
HC. Second, DMN-TPN anti-correlation was abnor-
mally decreased during TPN-dominant state in IGE.
Additionally, the correlations between the period
length of the PSTP and INT were reduced in higher-
order cognitive regions, reflecting a diminished capa-
city of these brain regions to sustain informa-
tion. Finally, IGE patients showed greater dynamic
instability, as indicated by more frequent transitions
between transitional states. In summary, these find-
ings offer new insights into the aberrant intrinsic
brain activity in IGE and indicate that PSTP analysis is
a promising approach for understanding the disease.

4.1. Robust PSTPs and the basic states of the brain
The PSTP reflects a dynamic balance of activation and
deactivation between the DMN and TPN, consistent
with previously reported quasi- PSTPs [19]. Notably,
this study identified robust individual-tailored PSTPs
with subject-specific period lengths. The periodic
length reflects the dynamic switching between the
DMN and TPN, while the INT indicates the times-
cale of information processing in brain regions [34].
In HC, the positive correlation between period length
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and INT was observed mainly in cognitive regions,
suggesting that the periodic regulation in cognitive
regions is closely linked to their information integ-
ration functions. Furthermore, this study simulated
surrogate datasets and found that the datasets failed to
reproduce individual-tailored PSTP, suggesting that
the observed PSTP depends on the intrinsic temporal
structure rather than being a spurious pattern. This
study also demonstrated its robustness to Gaussian
noise [42]. PSTP outperformed the traditional slid-
ing window method in temporal resolution, directly
capturing the DMN-TPN anti-correlation dynamics
that were obscured by window-averaging effects [43].

An interesting question is whether there is a spa-
tially invariant basis for dynamic behavior between
brain regions in PSTP. This study identified six robust
basic brain states. Meanwhile, the basic states separ-
ated the large-scale networks at rest. In different dis-
tributed networks, the time processes of basic states
were related to BOLD activation. Furthermore, pre-
vious studies have shown that DMN and TPN con-
sistently exhibit strong anti-correlation activity at rest
and are associated with cognitive changes [27, 44].
The current findings further reveal that DMN-active
and TPN-active represent the most active and inact-
ive poles of DMN, respectively, and play an import-
ant role in the transition between brain states. DMN-
active was themost common state in healthy subjects,
capturing the standard ‘static’ (time-averaged) task-
positive/negative modes, and separating the sensory-
motor-attention network from the DMN and LN
[40]. The remaining four transition states indic-
ate the signal changes of BOLD propagation from
DMN to TPN.

4.2. Disrupted PSTP in IGE patients
PSTPs in IGE patients showed disrupted DMN-
TPN dynamics compared to controls. Specifically,
the anti-correlation between DMN and TPN was
decreased during TPN-dominant states and increased
during DMN-ascending states. Although prior stud-
ies identified elevated DMN-TPN connectivity and
heightened temporal variability in GTCS [45, 46],
these analyses primarily relied on averaged time
series or modular approaches that focused separ-
ately on temporal or spatial domains [47, 48]. The
PSTP of this study extends these results, providing
a complementary explanation in the spatiotemporal
domain. The current study results demonstrate that
DMN dysfunction in IGE exhibits state-dependence,
with a direct association to abnormal BOLD phase
transitions. This also suggests the interruption or
enhancement of FC in IGE might at least partially
reflect the dysfunction in processes that create spati-
otemporal patterns. Notably, the intermittent break-
downs of the anti-correlation could interfere with the
functional and structural disintegration of the cor-
tical network, potentially contributing to recurrent

abnormal discharges in epilepsy [49]. Future work
could use synchronous EEG-fMRI to explore the
relationship between anti-correlation dynamics
across PSTP states and epileptic discharges, offering
new avenues for seizure prediction and behavioral
assessment.

Beyond altered DMN-TPN coupling, the over-
all PSTP profiles differed between groups. In IGE,
PSTP strength was significantly increased, reflecting
enhanced anti-correlation signals [20], which may
indicate greater recruitment and redistribution of
cognitive resources during task-related states. This
heightened demand could be linked to impaired
behavioral performance [50, 51] and alertness [52]
or attentional deficits [53]. Crucially, even when con-
trolling for PSTP frequency, its strength remained
elevated in IGE, suggesting a stronger influence on
intrinsic brain dynamics. Previous studies estab-
lished that spatiotemporal patterns contribute to FC,
especially within pathology-vulnerable regions [42,
54]. Consistent with earlier findings of DMN dys-
function in IGE [9, 55], static FC analysis revealed
increased DMN-TPN connectivity (i.e. reduced anti-
correlation). However, these differences disappeared
after accounting for PSTPs, underscoring their dom-
inant role in shaping FC alterations. Disruption of
PSTPs may thus represent a mechanistic contributor
to disease pathophysiology [54]. Future studies on the
relationship between PSTPs and FC could enhance
understanding of the etiology of IGE. Importantly,
PSTP provided a more comprehensive characteriz-
ation of IGE pathology compared to conventional
dFC approaches. This study shows that conven-
tional dFC with a 50 TR window length can only
detect between-group differences in DMN-TPN anti-
correlation strength. In contrast, PSTP reveals multi-
dimensional abnormalities in IGE, further support-
ing its potential as a disease biomarker.

4.3. Basic states of IGE patient reconfiguration
The patients with IGE tend to remain in transitional
states in the current study, particularly DMN-post
and TPN-post, indicating that the basic states of IGE
patients undergo continuous combination, dissolu-
tion, and reorganization to form adaptive activity
patterns [56]. The decreased probabilities of trans-
ition at two poles indicate dysregulated switching
between intrinsic and extrinsic attention in IGE,
leading to functional disorganization, comprom-
ised cognitive maintenance, and ultimately cognitive
dysfunction [45]. Additionally, meta-analysis decod-
ing usingNeurosynth [36] revealed that the decreased
correlation between period length and INT in IGE
patients could reflect deficits in task-related pro-
cesses such as engagement and retrieval. These results
support that abnormal periodic regulation impairs
information maintenance in higher-order cognit-
ive regions. Taken together, these findings establish
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potential connections between PSTP alterations and
cognitive dysfunction in epilepsy.

4.4. Limitations
Several methodological limitations should be noted.
First, low-frequency fluctuations may originate from
subcortical sources or modulatory ‘driving’ factors
[16], suggesting that subcortical nuclei play a crucial
role in shaping PSTPs. Future studies should incor-
porate subcortical structures to examine their activ-
ation patterns and contributions to epilepsy patho-
physiology. Second, given that antiseizure medica-
tions can significantly alter brain activity, this study
used the Kruskal–Wallis test (p < 0.05) to compare
the strength, frequency, and interval time of PSTP
across HC, medicated patients, and drug-naïve first-
episode patients. Post hoc analyses were conducted
using the Mann–Whitney U test (p < 0.05). The res-
ults showed no significant differences between drug-
naïve andmedicated patients. Moreover, both patient
groups showed similar alterations compared to HCs
(supplementary tables S1 and S2). However, poten-
tial confounds remain: variation in medication type,
dosage, and treatment duration was not controlled,
and antiseizure medications may exert subtle effects
on network dynamics not captured here. Future work
should adopt controlled longitudinal or pharmacolo-
gical designs to characterize the impact of antiseizure
medications more precisely on PSTP.

5. Conclusion

This study proposed a novel tool to identify PSTPs in
patients with IGE, demonstrating abnormal dynamic
rhythms across temporal and spatial domains. The
attenuated DMN-TPN anti-correlation during the
TPN-dominant states suggests disrupted network
switching and a loss of functional balance. The
observed increased PSTP strength in IGE points
to heightened reliance on periodic activity pat-
terns, potentially compromising network regulation
and contributing to cognitive deficits. Furthermore,
the weakened correlations between period length
and INT in higher-order cognitive regions imply
diminished information integration capacity. IGE
patients exhibited a propensity for flexible transitions
between transitional states. Together, these findings
provide new insights into the pathophysiological
mechanisms of IGE, offering potential directions for
future research on epilepsy activity generation and
spread.
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The relationshipbetweenRSTP,RRP, andPSTP

The repeated spatiotemporal pattern (RSTP),
representative repeated pattern (RRP), and peri-
odic spatiotemporal pattern (PSTP) were all
four-dimensional spatiotemporal patterns rep-
resenting repeated fragments in BOLD signals.
This study aimed to identify a stable PSTP.
First, multiple RSTPs were identified for each
participant using the pattern-finding algorithm
(Step 01: Detection of Repeated Spatiotemporal
Patterns). Next, the RRP closest to a DMN-
to-TPN transition was selected from RSTPs
(Step 02: Searching for Representative Repeated
Pattern). Then, the period length of the RRP
was calculated (Step 03: Definition of Period
Length of the RRP). Finally, the parameter W
(the number of timepoints forming each RSTP)
was optimized based on the period length. An
iterative algorithm was applied to refine the RRP
under varying parameters until the period length
stabilized between consecutive RRPs. The final
stabilized RRP was defined as the PSTP (Step 04:
Robust PSTP detection).
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