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Investigating abnormal brain network characteristics in schizophrenia can improve our understanding of disease
mechanisms and help identify potential intervention targets. Graph learning techniques can capture high-dimensional
features of large-scale brain networks and offer inherent advantage for integrating multimodal data. To better
integrate multimodal data and accurately localize network abnormalities associated with the disorder, this study
proposes a channel-based graph neural network (C-GNN) model. First, node embedding of brain regions were
constructed to capture structural connectivity patterns. Second, a branched attention module was introduced to
adaptively identify important brain regions through channel attention. Finally, a graph feature-constraint module was
developed to extract salient features by computing difference scores across feature channels. The C-GNN model
achieved an accuracy of 84.37% in classifying individuals with schizophrenia. Interpretability analysis revealed key
abnormal brain regions (e.g., orbital cortex, temporal fusiform cortex, lingual gyrus) and multimodal metrics (such
as cortical thickness and ReHo) that contributed substantially to the classification. These findings offer insights into
the underlying neural alterations in schizophrenia and may inform the development of targeted intervention strategies.

*
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1. Introduction

Schizophrenia is a debilitating psychiatric condition
characterized by brain network dysconnectivity®?,
affecting more than 20 million individuals worldwide.
However, the underlying mechanisms of brain network
alterations in schizophrenia remain unclear®. Identifying
core features of large-scale brain network organization in
patients may support the development of targeted non-
pharmacological interventions*®. Magnetic resonance
imaging (MRI) has been widely used to examine changes
in brain network topology in schizophrenia™®. At the
whole-brain level, reduced node centrality has been
reported®. At the subnetwork level, key networks such as
the default mode network (DMN)* and central executive
network  (CEN)Y*  show impaired long-range
connectivity'?. Additionally, hub regions supporting
major fiber pathways differ significantly between
patients and healthy controls (HC)®*. Together, these
findings indicate multi-level brain network abnormalities
associated with schizophrenia.

Conventional connectome analyses mainly focus on
network topology while overlooking intrinsic node (brain
region) properties. Deep graph neural networks
(GNNs)** enable learning of node embeddings and
extraction of higher-order features, offering a more
comprehensive means of characterizing brain network
alterations. For example, Chen et al. used sparse brain
graphs modeled from functional Magnetic Resonance
Imaging (fMRI) as input and proposed a novel Sparse
Feature Combination GNN to identify brain regions
crucial for classification, thereby pinpointing all areas
associated with brain diseases®. Zheng et al. developed an
interpretable GNN using prototype learning to analyze
fMRI, effectively distinguish psychotic patients from HC
and identifying biologically meaningful subtypes's.
Thapaliya’ and Zeng’s work established graph neural
networks (GNNs) as a powerful paradigm for decoding
individual cognitive differences from rsfMRI617,

Despite these advances, several challenges remain.
First, different MRI modalities capture distinct
attributes — dynamic signals from fMRI, anatomical
features from sMRI, and microstructural information
from dMRI%*81%—and effective multimodal integration is
needed to enhance GNN performance. Second, regarding
the construction of edge features, functional connectivity
is time-dependent and includes negative connections,

whereas dMRI-based white matter connectivity lacks
stability when constructing long-range tracts®®%; thus,
more robust edge construction strategies are required.
Third, given the high dimensionality of MRI data,
efficient identification of critical disease-related features
remains essential.

To address these issues, this study proposes a
channel-based GNN (C-GNN) that integrates multimodal
MRI features and incorporates a channel attention
mechanism for schizophrenia classification and feature
localization. Specifically, FOCA?2, FCD? and et al. from
fMRI;  cortical thickness and gray  matter
volume(GMV)* from sMRI; and white matter
connectivity from dMRI tractography?®, are used for
graph construction. A graph embedding method is
applied to capture high-order topological features of the
white matter network. A Branch Attention Network
(BAN) module and a Graph Feature Constraint (GFC)
module are then used to identify key nodes and select
salient features. Finally, the high-weight regions and
features identified by the C-GNN are visualized to
provide insights into the potential pathological
mechanisms of schizophrenia.

2. Methods

2.1. Participants

Seventy schizophrenia patients diagnosed based on the
Diagnostic and Statistical Manual of Mental Disorders,
Fourth Edition(DSM-1V) structured clinical
interview?,were recruited from both inpatient and
outpatient. Clinical, psychological, behavioral, and MRI
data were collected from all the patients. Additionally, 73
age-and-gender-matched subjects were recruited as HC
group with MRI data collected. Neuroimaging data were
gathered by using a 3 T MRI scanner (GE Discovery MR
750, USA). During a semi-structured interview, each
patient underwent assessment of psychotic symptoms
using the Positive and Negative Syndrome Scale
(PANSS)?. At the time of the study, all participants were
receiving medication?®. Table 1 shows the demographic

information of all participants.
Table 1. Description of study sample.

Patients HC (Mean/Standard
(Mean/Standard Deviation)
Deviation)

Number of subjects 70 73
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Gender (Male/Female) 51/19 39/34
Years of Education 11.58/2.75 10.69/3.23
Age 40.82/11.25 38.68/9.64
Age Range 16-66 19-56
Duration of Illness 15.82/10.62

Positive Score 12.88/5.73

Negative Score 21.1/6.56

Total Score 28.1/6.10

2.2. Data acquisition parameters

Anatomical MRI Acquisition: The Fast Spoiled Gradient
Echo (FSPGR) three-dimensional T1-weighted (3D-T1)
sequence was employed to acquire high-resolution
anatomical, structural images with repetition time (TR)/
echo time (TE) = 6.008ms/1.984ms, flip angle = 9°,
matrix size = 256x256, isotropic voxel size = 1mm, axial
acquisition, and whole-brain coverage in 152 slices with
slice thickness = 1mm.

Resting-State fMRI (rsfMRI) Acquisition: rsfMRI
images were acquired with participants lying quietly with
eyes closed. The imaging was performed with a standard
T2*-weighted echo-planar imaging (EPI) sequence,
where TR/TE = 2000ms/30ms, flip angle = 90°, FOV =
24x24cm, matrix size = 64x64, and 35 contiguous axial
slices covering the entire brain. Each subject underwent
255 consecutive time points of whole-brain scanning,
totaling 8 minutes and 30 seconds of scan duration. To
enhance data reliability, two sets of rsfMRI images were
acquired for each subject.

dMRI Acquisition: dMRI data were collected in two
parts using diffusion-weighted spin echo EPI sequences.
The primary data included 3 non-diffusion-weighted
images and 64 diffusion-weighted images with specific
parameters: b-value = 1000s/mm2, TR = 8500ms,
frequency encoding direction = left/right, matrix size =
128x128, FOV = 25.6x25.6cm, slice thickness = 2mm,
covering the whole brain with 78 contiguous slices.
Besides, the second part of dMRI data consisted of 6
diffusion-weighted images with frequency encoding
direction = anterior/posterior. The second part of dMRI
data will be used to estimate magnetic susceptibility and
minimize image distortion effects caused by
susceptibility (by using EDDY toolbox of FSL).

2.3. C-GNN model

The framework of the C-GNN model is illustrated in Fig.
1. The methodology encompasses the extraction of node
and edge features, graph construction description, a
branch attention network, and a graph constraint module.

2.3.1. Graph construction

After MRI preprocessing (see Appendix: Data
Preprocessing), the brain was parcellated into 96 regions
based on the Harvard—Oxford cortical atlas. Each region
was treated as a node in the graph, with its neuroimaging
attributes extracted as node features. Embeddings
representing white matter connectivity between regions
were used as edges.

Node features were extracted from fMRI and sMRI.
Functional features included amplitude of low-frequency
fluctuations  (ALFF)/fractional amplitude of low-
frequency  fluctuations (fFALFF) and regional
homogeneity (ReHo), calculated using REST? ; as well
as FOCA, local FCD, global FCD and long-range FCD
obtained using NIT®. Structural features included
cortical thickness, gray matter volume (GMV), and white
matter volume (WMV), extracted using FreeSurfer® and
SPM,

After preprocessing of dMRI, probabilistic
tractography (permutation for 10000 times per seed
voxel) was conducted to estimate fiber connectivity
between brain regions. In this step, distance correction
was applied to account for the decline in connectivity
probability with increasing distance from the seed mask.
After tractography, white matter connectivity matrixes
were computed by the average white matter connectivity
strength between each pair of regions.

To characterize interregional relationships and infer
potential missing connections in the structural
connectivity matrix, the node2vec graph embedding
method was applied. This approach produced
low-dimensional vector representations of brain regions
to better capture their underlying structural associations®.

First, each subject’s white matter connectivity matrix
Cij € R™™ (where C;jrepresents the connection strength
between node i and node j, and n denotes the number of
brain region nodes) was employed as the input.
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Fig. 1. Schematic diagram of the proposed C-GNN model for binary classification of schizophrenia. Multimodal features
are extracted from sMRI and fMRI, and structural connectivity is obtained from DTI (a). Graph edges are constructed
using the Node2vec embedding module (b). The resulting feature matrix and new adjacency matrix are shown (c). The
model then performs feature learning and completes the final classification task (d). The feature-learning component
contains two BGG modules and one GNN module. Each BGG module includes a Branch Attention Network (BAN) for
identifying salient brain regions, a Graph Feature Constraint (GFC) module for selecting salient features, and a GNN
module. The final output consists of two classification categories.

Only the 10 strongest edges for each brain region node
were retained, with the weights of the other edges set to
zero, so that a strongly connected subgraph G € R™"
was obtained, as shown below:

Ci, Ci €T,
G, =1°U” ij i 1

H {0 . otherwise @)

T; ={x € E; | rank(x) < min(10, |E;]) } (2)

In these equations, T; represents the set of the top 10 edge
weights for node i, and rank(x) denotes the ranking of
element x within the edge set E;of the original structural
connectivity matrix C;; when sorted in descending order.

Subsequently, a strategy-based random walk
sampling was performed on graph G, and multiple
random walks were executed for each node to generate
node sequences. The random walk process was
controlled by parameters p and g to balance between
breadth-first search (BFS)3* and depth-first search
(DFS)*. Furthermore, node pairs were extracted from the
generated node sequences by treating the nodes within
each context window as context nodes for the
corresponding target node, thereby yielding a large
number of node pairs. Finally, the skip-gram model was
utilized to optimize the node embedding vectors®, with
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the objective of reducing the distance between adjacent
nodes in the embedding space. After these steps, each
node was represented as a vector v, and the cosine
similarity among these node vectors was calculated to
obtain the graph’s adjacency matrix A;; € R™™, as
shown below:

Ul"li]‘

®3)

Ayj = cos(vyvp) = ogl-llw

At this point, we have accomplished the multimodal
MRI-based graph construction workflow: regional
measurements from fMRI and sMRI function as node
features, with white matter connectivity between regions,
embedded via the node2vec approach, serving as edges.

2.3.2. Branch attention network module

The channel attention mechanism®” was first proposed in
the field of computer vision®%, The Squeeze-and-
Excitation block was proposed, and this block
dynamically adjusted channel-specific feature responses
through explicit modeling. In this module, we designed a
BAN module based on Network-wise attention*® and
SENet*, as presented in Fig. 2. And applied the channel-
wise attention mechanism to graph data to strengthen the
effectiveness of node features.

First, the feature matrix X was processed using
channel-wise max pooling and mean pooling to extract
Xmax € R and X, € R™1,

Secondly, the results obtained by the two pooling
methods were provided as input to MLP1 and MLP2
respectively. SENet's Excitation module was used in
MLP, which includes two full connection (FC)
operations and one activation function operation to
achieve cross-channel learning of features*“%, MLP1 and
MLP2 output X, and X, respectively, as shown
below:

X‘rlnaac = Wamax * relu(Wl,max * Xmax ) 4)
Xave = WZ,ave : relu(Wl,ave 'Xave)l (5)

where, Wi max s Wiave s Womax and Wy 4, are weight
matrices of the FC layer.

Finally, the two outputs were added and summed
element by element, the information obtained by two
different channel learning methods was fused, and the
activation function was used to convert it into an
attention score M (X) € R™*, as shown below:

M(X) = Slngld(X’max @ X’ave)r (6)

Fig. 2. Architecture diagram of the BAN module. The
multimodal feature matrix X e R™™ is used as the input, where
n represents the number of ROIs, and m corresponds to the
number of features (X represents multimodal neuroimaging
features, which are treat as channel in this module).

The branch attention score M(X) calculated above is used
to adaptively adjust each node of the input feature matrix.
Specifically, these attention scores are applied to the
output features of the GNN module through element-
wise multiplication, thereby better capturing the weight

of node features in the graph convolution operation.
Among them, the GNN module is implemented using
spatial graph convolution, as shown below:

F(X)=GNN(AX)= relu(BN(D 24Dz XW)), (7)
S(X) = M(X) O F(X), (8)

where, A represents the adjacency matrix obtained after
graph embedding learning, D represents the degree
matrix, W is the weight matrix, BN is batch normalization,
and F(X) is the feature representation obtained by the
GNN module.

2.3.3. Graph feature constraint

This section proposed a method for feature channel
differentiation scoring. By calculating the feature
channel differentiation score, and weighted learning of
different feature channels based on this score, important
features that contribute to the model were obtained.
Firstly, we calculated the cosine similarity between
the convolutional features of the GNN module and the
original features. Since the dimensions of F(X) and X
were different, we ensured that they were consistent
before calculating the cosine similarity. In this
experiment, we used the channel cropping alignment
method to achieve this. Let F(X) € R™% denote the
convolved feature of the GNN module, where d; > m.
The channels of F(X) were partitioned, and the first m
channels were selected to form F,,.(X) € R™*™. For the



Int. J. Neur. Syst. Downloaded from www.worldscientific.com
by UNIVERSITY OF ELECTRONIC SCIENCE AND TECHNOLOGY OF CHINA on 12/10/25. Re-use and distribution is strictly not permitted, except for Open Access articles.

7 Channel Graph Neural Network Reveals Multimodal Brain Connectivity Abnormalities in Schizophrenia

j channel (j=1,2,3, ...m), the cosine similarity score
s;was calculated as shown below:

cosine(X:,;, Foye(X):,;) = 5, =
Z?:1Xij'Fcut(X)ij

1
\/Z?=1 Xzij‘\/Z?=1 Fcut(X)Zij

©)
where, X;; represents the element in the i-th row and j-th
column of the original feature matrix X, and Fg,¢(X);;
represents the corresponding element in the sliced
convolution feature matrix F, . (X).
Subsequently, the obtained cosine similarity was
used to calculate the difference score among the feature
channels as shown below:

Score = 1— Nor(cosine(X,F(X))), (10)

where, Nor denotes the normalization operation, which
constrains the cosine similarity results within the range
[0,1]. The Score represents the differentiation score.
Finally, based on the differentiation scores, we
filtered the information of the original input feature
channels by element-wise multiplying the differentiation
scores with the original input feature channels, achieving
weighted learning of important features, as shown below:

Z(X) =Score © X (12)
Where X is the original input feature channels,

Score represents the differentiation scores, and ©
indicates the Hadamard product (element-wise
multiplication).

Then, the output of the GFC module was element-
wise added to the output of the BAN moduie to obtain the
final result of the BGG module, as demonstrated below:

H=SX) ®Z(X), (12)

After two layers of BGG module learning and one layer
of GNN module, a total of three layers of learning, the
output was then passed via global average pooling and a
FC layer, and finally the classification result was
obtained via the activation function and the cross-entropy
loss function was used for the binary classification task,
as shown below:

j = sigmoid (FC(GavgPool(GNN(H®))) (13)
L, 7) = = log® + (1 —y) - log(1 - 7)), (14)

where H® is the output of two BGG layers, and
GavgPool averages node features to generate a graph-
level embedding.

2.4. Experimental settings

In the graph embedding method, we employed the
policy-walk mechanism, where the walk length was set
to 20, the number of walks to 10, and hyperparameters p
and g were set to 1 and 0.25, respectively. For node
embedding using the skip-gram approach, the context
window size was set to 8, and the number of iterations
was fixed at 3. For the binary classification task, 78% of
the data was used for training and 22% for testing. The
learning rate was set to 0.0000085, and the batch size to
32. We used the Adamax optimizer, which adaptively
adjusts the learning rate to facilitate more efficient
convergence toward the global minimum.

To avoid parameter redundancy, we employed three
graph convolutional layers and limited the number of
hidden units in each layer to fewer than 64. Ten
multimodal brain imaging metrics (structural MRI and
functional fMRI) were selected as feature inputs to
reduce redundant information. Batch normalization was
applied after each convolutional layer to stabilize
gradients, and dropout was incorporated to further
enhance generalization. L2 regularization was also used
to prevent overfitting.

To provide a comprehensive explanation of the
selected hyperparameters, the related experiments are
presented in the Appendix (Tables A2). The experiments
were conducted on a personal computer equipped with a
13th Gen Intel Core i9-13900HX CPU (2.20 GHz), 16
GB of memory, and a GeForce RTX 4060 GPU. Model
training and testing were performed on the open-source
PyTorch 1.11 framework with torch-geometric 2.4.0.

2.5. Interpretability Analysis

In addition to classifying schizophrenia based on
large-scale network features, this study also aimed to
identify key abnormal brain regions and features in
patients. Therefore, after model training, we performed
visualization and interpretability analyses to further
highlight the model’s potential clinical applicability.

2.5.1. Extraction of significant brain areas

To demonstrate the interpretability of the model, we
applied the UGrad-CAM* visualization technique,
which integrates gradient and feature information to
estimate the contribution weight of each brain-region
node to the model output. To ensure the reliability of the
identified regions, the model was trained 10 times. From
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each training, the top 10 regions with the highest
contributions were recorded. These regions were then
ranked by their frequency of occurrence across all runs,
and the 10 most frequently appearing regions were
identified as significant brain areas.

2.5.2. Statistical analysis of regional features

To further identify brain features that substantially
influence the model and may hold research value, we
applied a gradient-guided interpretability method,
Saliency Map®, after model training to evaluate the
sensitivity of input features and visualize their
contributions to the classification task. After regressing
out confounds such as age and gender, we used the
nonparametric Mann-Whitney U test to assess group
differences in the significant brain features associated
with schizophrenia.

2.5.3. Prediction of symptom severity

To further validate the association between the key brain
regions and clinical symptoms, and to explore their

potential links to schizophrenia symptomatology, we
constructed a symptom-severity prediction model. A
Chebyshev*® graph network was used to extract features
from the ten key brain regions, with the four core PANSS
symptom domains (positive, negative, general
psychopathology ) serving as regression targets. The
model was trained to predict symptom severity for each
participant, and the Pearson correlation coefficient was
used to evaluate the relationship between the predicted
and actual scores.

3. Results

3.1. Overall classification performance of the
model

The overall performance of the model is demonstrated in
Table 2. Metrics including accuracy, sensitivity,
specificity, F1 score, and area under the curve (AUC),
were calculated and compared with those of other GNN
methods. The proposed model achieved the best
performance among all evaluated methods.

Table 2. Performance comparison between the proposed C-GNN model and other GNN algorithms.

Model Acc (%) Sen (%) Spe (%) F1 (%) AUC (%)

MLP4 7266+3.0 7292+32 637545 7272+35 71.88+30
GCN* 7539+26 76.04+£39 7473+53 7549+37 743929
GAT# 73.96+£3.0 75.00+£35 73.62+40 7279+38 7422+238
Chebynet®® 7448 +28 7438+£32 7125+42 7415%+35 726630
GraphSAGE®  74.37+32 75.78+3.7 65.00+50 74.75+4.0 73.44+32
SGCN® 73.75+£35 7422+38 66.25+52 7359+41 7187+35
Graph-Unet®  75.00+27 7552+3.0 79.76+35 78.30+3.2 7595+28
DeeperGCN>  71.88+3.8 7258+35 66.25+4.8 7244+40 71.86+3.7
GCNII% 7438+£29 7532+32 8125+36 7546%+35 7438+29
EGC®6 80.62+25 80.94+28 7500+35 80.64+3.0 80.00+£25
Ours 84.38+23 8750+£29 7875+36 8571+23 8310+31

3.2. Ablation study

The effectiveness of the white matter network embedding
(Node2vec), BAN module, and GFC module was
evaluated through ablation experiments. The results of
these ablation studies are presented in Table 3-5.

In the first comparison, the embedded connectome
generated by the Node2vec method was replaced with the

original white-matter connectome as the graph’s edge
features. As demonstrated in Table 3, the proposed C-
GNN achieved the best classification performance when
the embedded white matter matrix was used as edge
feature, indicating that network embedding helps
enhance the reliability of white-matter connectivity by
capturing global topological properties.
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The performance of the branch attention module is
reported in Table 4. When channel attention was applied
to weight feature channels, the model exhibited
improvements across all performance metrics.

The performance evaluation of the graph feature
constraint module is presented in Table 5. Several
channel-alignment strategies were compared. “Cor”
represents cropping feature channels to align their
dimensions; “Fc” represents dimensionality reduction
through linear transformation; “Inter” represented

Driginal average SC of patients Reconstructed average SC of patients

increasing channel dimensions using linear interpolation;
“C” denotes computing cosine similarity across feature
channels; and “N” denotes cosine similarity across nodes.
The results showed that channel-wise cosine similarity
outperformed node-wise similarity. Among them, the
channel-cropped cosine similarity method (CCroCos)
achieved the best performance and was adopted as the
implementation of the GFC module in this study.

Original average SC of controls Reconstructed average SC of controls

&2 o LS

Fig. 3. Visualization of the original structural connectivity and the structural connectivity after graph embedding learning.

Table 3. Ablation study results for the network embedding method.

Module Acc Sen Spe F1 Auc
GNN 73.126 73.178 58.750 72564 72.884
GNN+ network 79.234 79.390 67.500 79.094 78.078
embedding

Table 4. Ablation study results for the BAN module.

Module Acc Sen Spe F1 Auc
GNN-+Node2vec 79.234 79.390 67.500 79.094 78.078
GNN+Node2vec+BAN  81.142 81.232 72.458 80.404 80.232

Table 5. Ablation study results for the GFC module.

Module Acc Sen Spe F1 Auc

GNN+Node2vec+CSegCos 81.250 81.546 74.782 80.136 80.476
GNN-+Node2vec+CFcCos 79.372 80.468 76.032 79.688 79.026
GNN-+Node2vec+NSegCos 78.748 79.360 70.000 79.490 78.050
GNN-+Node2vec+NFcCos 78.746 79.418 73.750 78.712 78.538
GNN+Node2vec+NInterCos 77.496 78.482 70.000 78.072 77.074
GNN-+Node2vec+GFC( CCroCos )+BAN 84.375 87.500 78.750 85.714 83.097
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3.3. Analysis of significant brain regions and their
features

The UGrad-CAM®” was used to visualize the salient brain
regions. As shown in Fig. 4, high-weight regions were
mainly distributed in the temporo-occipital cortex and
sensorimotor-related areas, including the lingual gyrus,
temporal fusiform cortex, frontal orbital cortex, opercular
regions, planum polare, superior temporal gyrus,
precentral gyrus, and superior parietal lobule. These
regions showed a diffuse cortical distribution with
evident hemispheric laterality.

The top 20 important brain regions identified using
the Harvard-Oxford atlas were mapped onto the Yeo 7
functional networks (Table 6), enabling interpretation of
the model-derived regions within established functional
network architecture relevant to schizophrenia.

Saliency-based feature analysis (Fig. 5, left) showed
that cortical thickness, global FCD, mFOCA, and ReHo
had strong contributions to the model output. Statistical
analyses further revealed significant alterations in these

P precentral gyrus

supenor panetal lobule

infenor frontul gyrus. pars opercularis

A
frontal orbital cortex

features within high-weight regions in patients compared
with controls (Fig. 5, right). Overlap between the two
analyses—such as for cortical thickness and ReHo—
highlights their potential pathophysiological relevance.

3.4. Prediction analysis of symptom severity in
patients with schizophrenia

According to the model-fitting results, the predictions for
general and negative symptoms showed low error (small
MSE, RMSE, and MAE, with MAPE around 10%) and
strong positive correlations with the true values
(correlation coefficients of 0.7195 and 0.6984, both with
significant P values), indicating good predictive
performance for these symptom domains. In contrast, the
prediction of positive symptoms showed large deviations,
with a markedly higher error (MAPE of 42.39%) and a
nonsignificant negative correlation coefficient (-0.3520),
suggesting that the model was unable to effectively
capture the variability of positive symptoms.

central opercular cortex
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Fig. 4. Visualization of the top 10 most significant brain regions.
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groups (right). Bubble size indicates feature significance. Gray bubbles denote no significant group difference. Red bubbles indicate
higher feature values in the patient group compared with HC, while blue bubbles indicate the opposite.
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Table 6. Top 20 brain regions identified by the UGrad-CAM method.

HOA brain area name

Yeo 7 network Relative Weight

lingual gyrus (LG.L) Visual 1.0000
temporal fusiform cortex, anterior division (TFusC-ant.L) Ventral Attention 0.9057
frontal orbital cortex (FOC.L) Limbic 0.6516
inferior frontal gyrus, pars opercularis (IFGop.L) Frontoparietal 0.6131
central opercular cortex (COC.L) Somatomotor 0.4721
planum polare (PP.L) N.A 0.4598
temporal occipital fusiform cortex (TOFusC.R) Ventral Attention 0.4422
superior temporal gyrus, posterior division (STGp.R) Default Mode 0.3367
precentral gyrus (PreCG.R) Somatomotor 0.2650
superior parietal lobule (SPL.R) Dorsal Attention 0.2594
parahippocampal gyrus, anterior division (PHGa.L) Limbic 0.2554
temporal fusiform cortex, posterior division (TFusC-post.L) Ventral Attention 0.2552
insular cortex (INS.R) N.A (Salience) 0.1414
postcentral gyrus (PoCG.R) Somatomotor 0.1161
middle temporal gyrus, temporooccipital part (MTGto.R) Default Mode 0.0995
middle temporal gyrus, anterior division (MTGa.R) Default Mode 0.0856
supracalcarine cortex (SCC.L) Visual 0.0813
superior temporal gyrus, anterior division (STGa.R) Default Mode 0.0176
heschl's gyrus (includes H1 and H2) (HG.L) N.A 0.0061
middle frontal gyrus (MFG.R) Frontoparietal 0.0000
Table 7. Performance of scale prediction models based on significant subnetworks.
Symptom Category MSE RMSE MAE MAPE R P
General Symptoms 8.9019 2.9836 2.7076 0.1004 0.7195 0.0125
Positive Symptoms 38.9161 6.2383 5.3453 0.4239 -0.3520 0.2884
Negative Symptoms 10.5072 3.2415 2.3962 0.1104 0.6984 0.0168

4. Discussion

Inspired by graph neural networks, this study proposed
C-GNN, a deep learning model that integrates
multimodal MRI features. Based on graph embedding
module, the model enables extraction of high-
dimensional features from white matter connectivity. The
BAN and GFC modules were designed to achieve node
and feature selection, respectively, effectively capturing
features on relatively small sample sizes and
distinguishing schizophrenia patients from healthy
controls with an accuracy of 84.375%. Ablation

experiments gave evidence for the effectiveness of the
three modules. Based on model visualization, nodes
(brain regions) with significant importance for
classification were identified, indicating that the intrinsic
features of these brain regions and their information
interaction patterns with other brain regions exhibit
substantial disease effects. Furthermore, statistical
analysis revealed the pattern of feature alterations in core
impaired brain regions, and predictive analysis was
applied to explore the relationship between subnetwork
features formed by these brain regions and clinical
manifestations of the disease.
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4.1. Module Effectiveness

This study systematically validated the contribution of
each  module through ablation  experiments.
Incorporating Node2vec to embed the white matter
connectome as edge features enhanced the representation
of global topological structure. In the branched attention
network, max and average pooling, together with a
multilayer perceptron, generated cross-channel attention
weights that directed the model toward informative brain
regions and feature channels. The graph feature
constraint module further refined channel learning via
channel-differentiation scores. Among the tested
strategies, the cosine-similarity-based channel-cropped
method yielded the best performance by reducing
redundancy and limiting overfitting. Overall, the ablation
results confirmed the essential contribution of each
module to improving model performance and robustness.

4.2. Significant brain regions revealed by C-GNN
model

The default mode network (DMN) demonstrated the
highest frequency of involvement, suggesting its
potential central role in the pathogenesis of
schizophrenia. This results is consistent with previous
research demonstrating the prevalence of DMN
dysfunction in schizophrenia®®. The ventral attention
network and somatomotor network were also highly
represented, reflecting potential abnormalities in
attention regulation and sensory-motor integration in
schizophrenia®®6L,

Frontal regions (e.g., Frontal Orbital Cortex, Inferior
Frontal Gyrus): primarily manifested decreased cortical
thickness and local FCD, with increases in some
indicators (e.g., long-range FCD, fALFF). This pattern
suggests impaired local integration in the frontal lobe,
potentially accompanied by abnormal enhancement of
long-range functional pathways. Given the extensive
involvement of the frontal lobe in cognitive control and
language processing, this pattern may be associated with
executive dysfunction, disorganized thinking, and speech
abnormalities in patients with schizophrenia. Notably,
our model identified the fronto-orbital cortex and the
inferior frontal gyrus as significant regions, consistent
with previous studies showing that schizophrenia
patients with treatment-resistant auditory verbal
hallucinations (SCH-H) exhibited abnormal cortical
folding in the fronto-orhital cortex®? and first-episode
treatment-naive patients with schizophrenia (FES)
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exhibited significantly reduced GMC in the inferior
frontal gyrus®s.

Temporal regions (e.g., Superior Temporal Gyrus,
Planum Polare, Temporal Fusiform Cortex, anterior
division): In these regions, structural atrophy coexisted
with increased functional activity. Specifically, the
Temporal Fusiform Cortex, anterior division, showed
abnormally increased function, suggesting possible
abnormalities in social perception and semantic
processing. Our model further supported the involvement
of the superior temporal gyrus and the fusiform gyrus,
two regions that had been repeatedly implicated in
schizophrenia®45,

The parietal area (Superior Parietal Lobule) showed
decreased cortical thickness and ReHo, but increased
FCD and fALFF. This suggests a network imbalance in
the parietal lobe involved in multimodal integration and
attention, potentially leading to abnormalities in
perceptual and attentional processing®. Although less
explored in the schizophrenia literature, our findings
suggested that the superior parietal lobule may hold
potential for research.

Occipital/Visual Cortex (Lingual Gyrus, Temporal
Occipital Fusiform Cortex): The lingual gyrus showed
significant decreases in nearly all features, potentially
related to visual processing deficits and hallucinations.
The fusiform gyrus at the occipito-temporal junction
showed both structural and functional decreases, further
supporting the idea of impaired visual semantic
processing®’. Previous studies have also reported reduced
gray matter volume in the fusiform gyrus and lingual
gyrus in patients with first-episode schizophrenia®. The
similar changes we observed in chronic patients suggest
that these brain regions may be persistently affected
during the course of the disease, supporting their
important role in the pathogenesis of schizophrenia.

Insular cortex (Central Opercular Cortex): Multiple
indicators were decreased, suggesting severe impairment
in speech perception and integration, potentially
explaining auditory hallucinations and language-related
symptoms.

Motor cortex (Precentral Gyrus): Decreased cortical
thickness but increased fALFF suggest coexisting
structural damage and excessive spontaneous activity,
potentially related to the patient's motor abnormalities or
medication sensitivity.

Overall, patients with schizophrenia exhibit
widespread abnormalities across multiple brain regions
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and features. These abnormalities manifest themselves in
both significant decreases in structural measures (such as
cortical thickness and GMV) and abnormal increases or
decreases in functional measures (such as FCD and Alff).
Cortical thickness decreased in nearly all brain regions,
consistent with our previous research using sSMRI to
investigate cortical atrophy during schizophrenia
progression®®. Some brain regions recurred across
different characteristic dimensions, suggesting that these
regions may be core affected nodes of the disease (such
as the lingual gyrus, central opercular cortex, inferior
frontal gyrus, and pars opercularis). Furthermore, the
pattern of structural decreases and functional increases
observed in multiple brain regions may reflect potential
compensatory mechanisms or overactivation of neural
networks.

4.3. Limitations

Although our model provides some visual insights and
biologically meaningful interpretations, it has several
limitations.

First, the majority of patients with schizophrenia
included in this study were taking antipsychotic
medications during the imaging period. Medication may
suppress positive symptoms while leaving prominent
negative symptoms, and the high heterogeneity and
temporal fluctuation of positive symptoms further
complicate  their  prediction.  Medication-related
alterations in brain structure and function may also
confound imaging—pathophysiology relationships, and
such effects cannot be fully excluded.

Second, the study employed a cross-sectional design,
which limits causal inference regarding the relationship
between identified neuroimaging features and disease
progression.

Third, the dataset was derived from a specific cohort
with a modest sample size, and thus the generalizability
of the model to broader populations requires further
validation.

5. Conclusion

This study developed a C-GNN model using multimodal
features that achieved 84.37% accuracy in detection of
schizophrenia patients. The model incorporated novel
BAN and GFC modules, demonstrating superior
efficiency and robustness under limited sample
conditions. Subsequent model analysis elucidated
disease-related brain nodes and their distinctive

characteristics. Node-level functional metrics (FCD,
ALFF, ReHo) and cortical thickness exhibited significant
abnormalities in patients, reflecting functional and
structural disruptions. Several key regions were
highlighted as critical nodes potentially linked to altered
language, memory, perception, and social cognition.
Previously understudied regions such as planum polare
and central opercular cortex contributed strongly to
classification, indicating their potential as novel
biomarkers for schizophrenia.
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Appendix A.

Data Preprocessing

Since multimodal data require preprocessing and feature
extraction, several software packages were used,
including fMRIPrep, Statistical Parametric Mapping
(SPM), FMRIB Software Library (FSL), Neuroscience
Information Toolbox (NIT), and the Resting-State fMRI
Data Analysis Toolkit (REST). Specifically:

Structure MRI : FreeSurfer 7.3.2 was used for
anatomical MRI processing. The “recon-all” pipeline
performed motion correction, intensity normalization,
brain inflation, spherical mapping, and cortical
parcellation. After preprocessing, vertex-wise cortical
thickness and voxel-wise gray and white matter volumes
were extracted and used for subsequent graph
construction.

Functional MRI: Resting-state fMRI data were
preprocessed using SPM12 and fMRIPrep (21.0.0). The
first five frames were removed, followed by slice-timing
and head-motion correction. Confound regressors
included motion parameters, white-matter and CSF
signals, linear drift, and global signals. fMRI data were
aligned to the structural space for surface smoothing and
then registered to MNI space. Scans with framewise
displacement > 2mm or rotation > 1° were excluded.

Functional features were extracted according to the
Harvard-Oxford atlas. ALFF, fALFF, and ReHo were
calculated using REST, while functional connectivity
density (FCD) and four-dimensional (spatiotemporal)
consistency of local neural activities (FOCA) were
computed using NIT. All features were averaged within
each region and used as node attributes in the graph
neural network.

Diffusion MRI: Diffusion MRI data (UESTC dataset)
were preprocessed using the FSL pipeline (v6.0.4)
following our previous procedures. Steps included
correction for eddy currents, motion, and susceptibility
distortions; rigid alignment of the b0 image to the
structural image using FLIRT; nonlinear registration to
MNI152 space with FNIRT; and computation of forward
and reverse warp fields between diffusion and structural
spaces. Diffusion parameters were estimated voxel-wise
using MCMC sampling, modeling up to two fiber
populations after 2000 iterations. Quality control
included inspection of structural and b0 images and
registration outputs. Data were excluded if the
signal-to-noise ratio of structural or b0 images was < 800
or if framewise displacement exceeded 2 mm.

Table Al.

List of preprocessing software tools.

Software Main Function

SPM12 Statistical Analysis

fMRIPrep Standard fMRI automated preprocessing
Tissue segmentation, dMRI

FSL preprocessing, and probabilistic fiber
tracking.
Cortical reconstruction, volume

FreeSurfer extraction, and cortical thickness
extraction.

REST Calculation of ALFF and fALFF.

NIT Calculation of functional connectivity

metrics such as FCD, FOCA, and ReHo.

Table A2. Analysis of learning rate selection for the C-CNN
model; the best result is highlighted in bold.

Lr Batch Acc Sen

Spe F1  AUC

0.0001 32

0.00001 32

0.0000085 32

0.000005 32

0.000001 32

74.500 75.000 56.250 78.950 75.000

79.372 80.685 74.376 80.214 78.746

84.375 87.500 78.750 85.714 83.097

81.250 81.876 79.998 80.867 80.937

69.376 70.002 76.875 76.907 69.376




