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Investigating abnormal brain network characteristics in schizophrenia can improve our understanding of disease 

mechanisms and help identify potential intervention targets. Graph learning techniques can capture high-dimensional 

features of large-scale brain networks and offer inherent advantage for integrating multimodal data. To better 

integrate multimodal data and accurately localize network abnormalities associated with the disorder, this study 

proposes a channel-based graph neural network (C-GNN) model. First, node embedding of brain regions were 

constructed to capture structural connectivity patterns. Second, a branched attention module was introduced to 

adaptively identify important brain regions through channel attention. Finally, a graph feature-constraint module was 

developed to extract salient features by computing difference scores across feature channels. The C-GNN model 

achieved an accuracy of 84.37% in classifying individuals with schizophrenia. Interpretability analysis revealed key 

abnormal brain regions (e.g., orbital cortex, temporal fusiform cortex, lingual gyrus) and multimodal metrics (such 

as cortical thickness and ReHo) that contributed substantially to the classification. These findings offer insights into 

the underlying neural alterations in schizophrenia and may inform the development of targeted intervention strategies. 
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1. Introduction 

Schizophrenia is a debilitating psychiatric condition 

characterized by brain network dysconnectivity1,2, 

affecting more than 20 million individuals worldwide. 

However, the underlying mechanisms of brain network 

alterations  in schizophrenia remain unclear3. Identifying 

core features of large-scale brain network organization in 

patients may support the development of targeted non-

pharmacological interventions4–6. Magnetic resonance 

imaging (MRI) has been widely used to examine changes 

in brain network topology in schizophrenia7,8. At the 

whole-brain level, reduced node centrality has been 

reported9. At the subnetwork level, key networks such as 

the default mode network (DMN)10 and central executive 

network (CEN)11 show impaired long-range 

connectivity12. Additionally, hub regions supporting 

major fiber pathways differ significantly between 

patients and healthy controls (HC)13. Together, these 

findings indicate multi-level brain network abnormalities 

associated with schizophrenia. 

Conventional connectome analyses mainly focus on 

network topology while overlooking intrinsic node (brain 

region) properties. Deep graph neural networks 

(GNNs)14 enable learning of node embeddings and 

extraction of higher-order features, offering a more 

comprehensive means of characterizing brain network 

alterations. For example, Chen et al. used sparse brain 

graphs modeled from functional Magnetic Resonance 

Imaging (fMRI)  as input and proposed a novel Sparse 

Feature Combination GNN to identify brain regions 

crucial for classification, thereby pinpointing all areas 

associated with brain diseases3. Zheng et al. developed an 

interpretable GNN using prototype learning to analyze 

fMRI, effectively distinguish psychotic patients from HC 

and identifying biologically meaningful subtypes15. 

Thapaliya’ and Zeng’s work established graph neural 

networks (GNNs) as a powerful paradigm for decoding 

individual cognitive differences from rsfMRI16,17. 

Despite these advances, several challenges remain. 

First, different MRI modalities capture distinct 

attributes — dynamic signals from fMRI, anatomical 

features from sMRI, and microstructural information 

from dMRI18,19—and effective multimodal integration is 

needed to enhance GNN performance. Second, regarding 

the construction of edge features, functional connectivity 

is time-dependent and includes negative connections, 

whereas dMRI-based white matter connectivity lacks 

stability when constructing long-range tracts20,21; thus, 

more robust edge construction strategies are required. 

Third, given the high dimensionality of MRI data, 

efficient identification of critical disease-related features 

remains essential. 

To address these issues, this study proposes a 

channel‑based GNN (C‑GNN) that integrates multimodal 

MRI features and incorporates a channel attention 

mechanism for schizophrenia classification and feature 

localization. Specifically, FOCA22, FCD23 and et al. from 

fMRI; cortical thickness and gray matter 

volume(GMV)24 from sMRI; and white matter 

connectivity from dMRI tractography25, are used for 

graph construction. A graph embedding method is 

applied to capture high‑order topological features of the 

white matter network. A Branch Attention Network 

(BAN) module and a Graph Feature Constraint (GFC) 

module are then used to identify key nodes and select 

salient features. Finally, the high‑weight regions and 

features identified by the C‑GNN are visualized to 

provide insights into the potential pathological 

mechanisms of schizophrenia. 

2. Methods 

2.1. Participants 

Seventy schizophrenia patients diagnosed based on the 

Diagnostic and Statistical Manual of Mental Disorders, 

Fourth Edition(DSM-IV) structured clinical 

interview26,were recruited from both inpatient and 

outpatient. Clinical, psychological, behavioral, and MRI 

data were collected from all the patients. Additionally, 73 

age-and-gender-matched subjects were recruited as HC 

group with MRI data collected. Neuroimaging data were 

gathered by using a 3 T MRI scanner (GE Discovery MR 

750, USA). During a semi-structured interview, each 

patient underwent assessment of psychotic symptoms 

using the Positive and Negative Syndrome Scale 

(PANSS)27. At the time of the study, all participants were 

receiving medication28. Table 1 shows the demographic 

information of all participants. 

Table 1.  Description of study sample. 

 Patients 

(Mean/Standard 

Deviation) 

HC (Mean/Standard 

Deviation) 

Number of subjects  70 73 
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Gender (Male/Female) 51/19 39/34 

Years of Education 11.58/2.75 10.69/3.23 

Age 40.82/11.25 38.68/9.64 

Age Range 16-66 19-56 

Duration of Illness 15.82/10.62  

Positive Score 12.88/5.73  

Negative Score 21.1/6.56  

Total Score 28.1/6.10  

2.2. Data acquisition parameters 

Anatomical MRI Acquisition: The Fast Spoiled Gradient 

Echo (FSPGR) three-dimensional T1-weighted (3D-T1) 

sequence was employed to acquire high-resolution 

anatomical, structural images with repetition time (TR)/ 
echo time (TE) = 6.008ms/1.984ms, flip angle = 9°, 

matrix size = 256×256, isotropic voxel size = 1mm, axial 

acquisition, and whole-brain coverage in 152 slices with 

slice thickness = 1mm.  

Resting-State fMRI (rsfMRI) Acquisition: rsfMRI 

images were acquired with participants lying quietly with 

eyes closed. The imaging was performed with a standard 

T2*-weighted echo-planar imaging (EPI) sequence, 

where TR/TE = 2000ms/30ms, flip angle = 90°, FOV = 

24×24cm, matrix size = 64×64, and 35 contiguous axial 

slices covering the entire brain. Each subject underwent 

255 consecutive time points of whole-brain scanning, 

totaling 8 minutes and 30 seconds of scan duration. To 

enhance data reliability, two sets of rsfMRI images were 

acquired for each subject.  

dMRI Acquisition: dMRI data were collected in two 

parts using diffusion-weighted spin echo EPI sequences. 

The primary data included 3 non-diffusion-weighted 

images and 64 diffusion-weighted images with specific 

parameters: b-value = 1000s/mm², TR = 8500ms, 

frequency encoding direction = left/right, matrix size = 

128×128, FOV = 25.6×25.6cm, slice thickness = 2mm, 

covering the whole brain with 78 contiguous slices. 

Besides, the second part of dMRI data consisted of 6 

diffusion-weighted images with frequency encoding 

direction = anterior/posterior. The second part of dMRI 

data will be used to estimate magnetic susceptibility and 

minimize image distortion effects caused by 

susceptibility (by using EDDY toolbox of FSL). 

2.3. C-GNN model 

The framework of the C-GNN model is illustrated in Fig. 

1. The methodology encompasses the extraction of node 

and edge features, graph construction description, a 

branch attention network, and a graph constraint module. 

2.3.1.  Graph construction 

After MRI preprocessing (see Appendix: Data 

Preprocessing), the brain was parcellated into 96 regions 

based on the Harvard–Oxford cortical atlas. Each region 

was treated as a node in the graph, with its neuroimaging 

attributes extracted as node features. Embeddings 

representing white matter connectivity between regions 

were used as edges. 

Node features were extracted from fMRI and sMRI. 

Functional features included amplitude of low-frequency 

fluctuations (ALFF)/fractional amplitude of low-

frequency fluctuations (fALFF) and regional 

homogeneity (ReHo), calculated using REST29； as well 

as FOCA, local FCD, global FCD and long-range FCD 

obtained using NIT30. Structural features included 

cortical thickness, gray matter volume (GMV), and white 

matter volume (WMV), extracted using FreeSurfer31 and 

SPM32. 

After preprocessing of dMRI, probabilistic 

tractography (permutation for 10000 times per seed 

voxel) was conducted to estimate fiber connectivity 

between brain regions. In this step, distance correction 

was applied to account for the decline in connectivity 

probability with increasing distance from the seed mask. 

After tractography, white matter connectivity matrixes 

were computed by the average white matter connectivity 

strength between each pair of regions.  

To characterize interregional relationships and infer 

potential missing connections in the structural 

connectivity matrix, the node2vec graph embedding 

method was applied. This approach produced 

low‑dimensional vector representations of brain regions 

to better capture their underlying structural associations33. 

First, each subject’s white matter connectivity matrix 

𝐶𝑖𝑗 ∈ 𝑅𝑛∗𝑛 (where 𝐶𝑖𝑗represents the connection strength 

between node i and node j, and n denotes the number of 

brain region nodes) was employed as the input. 
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Fig. 1. Schematic diagram of the proposed C-GNN model for binary classification of schizophrenia. Multimodal features 
are extracted from sMRI and fMRI, and structural connectivity is obtained from DTI (a). Graph edges are constructed 
using the Node2vec embedding module (b). The resulting feature matrix and new adjacency matrix are shown (c). The 
model then performs feature learning and completes the final classification task (d). The feature-learning component 
contains two BGG modules and one GNN module. Each BGG module includes a Branch Attention Network (BAN) for 
identifying salient brain regions, a Graph Feature Constraint (GFC) module for selecting salient features, and a GNN 
module. The final output consists of two classification categories. 

Only the 10 strongest edges for each brain region node 

were retained, with the weights of the other edges set to 

zero, so that a strongly connected subgraph 𝐺 ∈  𝑅𝑛∗𝑛 

was obtained, as shown below: 

𝐺𝑖𝑗 = {
𝐶𝑖𝑗  ,      𝐶𝑖𝑗  ∈  𝑇𝑖

0，     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                    (1) 

𝑇𝑖 = { 𝑥 ∈ 𝐸𝑖 ∣∣ 𝑟𝑎𝑛𝑘(𝑥) ≤ min(10, |𝐸𝑖|) }              (2) 

In these equations, 𝑇𝑖  represents the set of the top 10 edge 

weights for node i, and rank(x) denotes the ranking of 

element x within the edge set 𝐸𝑖of the original structural 

connectivity matrix 𝐶𝑖𝑗 when sorted in descending order. 

 

Subsequently, a strategy-based random walk 

sampling was performed on graph G, and multiple 

random walks were executed for each node to generate 

node sequences. The random walk process was 

controlled by parameters p and q to balance between 

breadth-first search (BFS)34 and depth-first search 

(DFS)35. Furthermore, node pairs were extracted from the 

generated node sequences by treating the nodes within 

each context window as context nodes for the 

corresponding target node, thereby yielding a large 

number of node pairs. Finally, the skip-gram model was 

utilized to optimize the node embedding vectors36, with 
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the objective of reducing the distance between adjacent 

nodes in the embedding space. After these steps, each 

node was represented as a vector v, and the cosine 

similarity among these node vectors was calculated to 

obtain the graph’s adjacency matrix 𝐴𝑖𝑗 ∈ 𝑅𝑛∗𝑛 , as 

shown below: 

 𝐴𝑖𝑗 = 𝑐𝑜𝑠( 𝑣𝑖 , 𝑣𝑗) =
𝑣𝑖⋅𝑣𝑗

∥𝑣𝑖∥⋅∥𝑣𝑗∥
 (3) 

At this point, we have accomplished the multimodal 

MRI-based graph construction workflow: regional 

measurements from fMRI and sMRI function as node 

features, with white matter connectivity between regions, 

embedded via the node2vec approach, serving as edges. 

2.3.2.  Branch attention network module 

The channel attention mechanism37 was first proposed in 

the field of computer vision38,39. The Squeeze-and-

Excitation block was proposed, and this block 

dynamically adjusted channel-specific feature responses 

through explicit modeling. In this module, we designed a 

BAN module based on Network-wise attention40 and 

SENet41, as presented in Fig. 2. And applied the channel-

wise attention mechanism to graph data to strengthen the 

effectiveness of node features. 

First, the feature matrix X was processed using 

channel-wise max pooling and mean pooling to extract 

𝑋max ∈ 𝑅𝑛∗1 and 𝑋ave ∈ 𝑅𝑛∗1.  

Secondly, the results obtained by the two pooling 

methods were provided as input to MLP1 and MLP2 

respectively. SENet's Excitation module was used in 

MLP, which includes two full connection (FC) 

operations and one activation function operation to 

achieve cross-channel learning of features42,43. MLP1 and 

MLP2 output 𝑋𝑚𝑎𝑥
′  and 𝑋ave

′ respectively, as shown 

below: 

𝑋𝑚𝑎𝑥
′ = 𝑊2,𝑚𝑎𝑥 ∙ 𝑟𝑒𝑙𝑢(𝑊1,𝑚𝑎𝑥 ∙ 𝑋𝑚𝑎𝑥),         (4) 

𝑋ave
′ = 𝑊2,ave ⋅ 𝑟𝑒𝑙𝑢( 𝑊1,ave ⋅ 𝑋ave),            (5) 

where, 𝑊1,𝑚𝑎𝑥 , 𝑊1,𝑎𝑣𝑒 , 𝑊2,𝑚𝑎𝑥 and 𝑊2,𝑎𝑣𝑒 are weight 

matrices of the FC layer.  

Finally, the two outputs were added and summed 

element by element, the information obtained by two 

different channel learning methods was fused, and the 

activation function was used to convert it into an 

attention score 𝑀(𝑋) ∈ 𝑅𝑛∗1, as shown below: 

𝑀(𝑋) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑( 𝑋′max ⊕ 𝑋′ave),           (6) 

 

 
 

Fig. 2.  Architecture diagram of the BAN module. The 

multimodal feature matrix X ϵ Rn*m is used as the input, where 

n represents the number of ROIs, and m corresponds to the 

number of features (X represents multimodal neuroimaging 

features, which are treat as channel in this module). 

 

The branch attention score M(X) calculated above is used 

to adaptively adjust each node of the input feature matrix. 

Specifically, these attention scores are applied to the 

output features of the GNN module through element-

wise multiplication, thereby better capturing the weight  

of node features in the graph convolution operation. 

Among them, the GNN module is implemented using 

spatial graph convolution, as shown below: 

F(𝑋)=GNN(A,X)= relu(BN(𝐷̃−
1

2𝐴𝐷̃−
1

2 𝑋𝑊)),     (7) 

S(𝑋) = M(𝑋)  ⊙ F(𝑋),                      (8) 

where, A represents the adjacency matrix obtained after 

graph embedding learning, D represents the degree 

matrix, W is the weight matrix, BN is batch normalization, 

and F(X) is the feature representation obtained by the 

GNN module.  

2.3.3.  Graph feature constraint 

This section proposed a method for feature channel 

differentiation scoring. By calculating the feature 

channel differentiation score, and weighted learning of 

different feature channels based on this score, important 

features that contribute to the model were obtained.  

Firstly, we calculated the cosine similarity between 

the convolutional features of the GNN module and the 

original features. Since the dimensions of F(X) and X 

were different, we ensured that they were consistent 

before calculating the cosine similarity. In this 

experiment, we used the channel cropping alignment 

method to achieve this. Let 𝐹(𝑋) ∈ 𝑅𝑛∗𝑑1  denote the 

convolved feature of the GNN module, where 𝑑1 > 𝑚. 

The channels of F(X) were partitioned, and the first m 

channels were selected to form 𝐹𝑐𝑢𝑡(𝑋) ∈ 𝑅𝑛×𝑚. For the 
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j channel (j=1,2,3, …m), the cosine similarity score 

𝑠𝑗was calculated as shown below: 

𝑐𝑜𝑠𝑖𝑛𝑒(𝑋: ,𝑗 , 𝐹𝑐𝑢𝑡(𝑋): ,𝑗 ) = 𝑠𝑗 =
∑ 𝑋𝑖𝑗⋅𝐹𝑐𝑢𝑡(𝑋)𝑖𝑗

𝑛
𝑖=1

√∑ 𝑋2
𝑖𝑗

𝑛
𝑖=1 ⋅√∑ 𝐹𝑐𝑢𝑡(𝑋)2

𝑖𝑗
𝑛
𝑖=1

 , 

                                           (9) 

where, 𝑋𝑖𝑗 represents the element in the i-th row and j-th 

column of the original feature matrix X, and 𝐹𝑐𝑢𝑡(𝑋)𝑖𝑗 

represents the corresponding element in the sliced 

convolution feature matrix 𝐹𝑐𝑢𝑡(𝑋). 

Subsequently, the obtained cosine similarity was 

used to calculate the difference score among the feature 

channels as shown below: 

𝑆𝑐𝑜𝑟𝑒 =  1 − 𝑁𝑜𝑟(𝑐𝑜𝑠𝑖𝑛𝑒(𝑋, 𝐹(𝑋))),         (10) 

where, Nor denotes the normalization operation, which 

constrains the cosine similarity results within the range 

[0,1]. The Score represents the differentiation score. 

Finally, based on the differentiation scores, we 

filtered the information of the original input feature 

channels by element-wise multiplying the differentiation 

scores with the original input feature channels, achieving 

weighted learning of important features, as shown below: 

𝑍(𝑋) = 𝑆𝑐𝑜𝑟𝑒 ⊙ 𝑋                     (11) 

Where 𝑋 is the original input feature channels, 

𝑆core represents the differentiation scores, and ⊙ 

indicates the Hadamard product (element-wise 

multiplication). 

Then, the output of the GFC module was element-

wise added to the output of the BAN module to obtain the 

final result of the BGG module, as demonstrated below: 

𝐻 = 𝑆(𝑋) ⊕ 𝑍(𝑋),                       (12) 

After two layers of BGG module learning and one layer 

of GNN module, a total of three layers of learning, the 

output was then passed via global average pooling and a 

FC layer, and finally the classification result was 

obtained via the activation function and the cross-entropy 

loss function was used for the binary classification task, 

as shown below: 

 𝑦̃ = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝐹𝐶(𝐺𝑎𝑣𝑔𝑃𝑜𝑜𝑙(𝐺𝑁𝑁(𝐻(2))))     (13) 

  L(𝑦, 𝑦̃) = −(𝑦 ∙ log(𝑦̃) + (1 − 𝑦) ∙ log(1 − 𝑦̃)), (14) 

where 𝐻(2)  is the output of two BGG layers, and 

GavgPool averages node features to generate a graph-

level embedding.  

2.4. Experimental settings 

In the graph embedding method, we employed the 

policy-walk mechanism, where the walk length was set 

to 20, the number of walks to 10, and hyperparameters p 

and q were set to 1 and 0.25, respectively. For node 

embedding using the skip-gram approach, the context 

window size was set to 8, and the number of iterations 

was fixed at 3. For the binary classification task, 78% of 

the data was used for training and 22% for testing. The 

learning rate was set to 0.0000085, and the batch size to 

32. We used the Adamax optimizer, which adaptively 

adjusts the learning rate to facilitate more efficient 

convergence toward the global minimum.  

To avoid parameter redundancy, we employed three 

graph convolutional layers and limited the number of 

hidden units in each layer to fewer than 64. Ten 

multimodal brain imaging metrics (structural MRI and 

functional fMRI) were selected as feature inputs to 

reduce redundant information. Batch normalization was 

applied after each convolutional layer to stabilize 

gradients, and dropout was incorporated to further 

enhance generalization. L2 regularization was also used 

to prevent overfitting. 

To provide a comprehensive explanation of the 

selected hyperparameters, the related experiments are 

presented in the Appendix (Tables A2). The experiments 

were conducted on a personal computer equipped with a 

13th Gen Intel Core i9‑13900HX CPU (2.20 GHz), 16 

GB of memory, and a GeForce RTX 4060 GPU. Model 

training and testing were performed on the open‑source 

PyTorch 1.11 framework with torch‑geometric 2.4.0. 

2.5. Interpretability Analysis 

In addition to classifying schizophrenia based on 

large‑scale network features, this study also aimed to 

identify key abnormal brain regions and features in 

patients. Therefore, after model training, we performed 

visualization and interpretability analyses to further 

highlight the model’s potential clinical applicability. 

2.5.1.  Extraction of significant brain areas 

To demonstrate the interpretability of the model, we 

applied the UGrad-CAM44 visualization technique, 

which integrates gradient and feature information to 

estimate the contribution weight of each brain-region 

node to the model output. To ensure the reliability of the 

identified regions, the model was trained 10 times. From 
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each training, the top 10 regions with the highest 

contributions were recorded. These regions were then 

ranked by their frequency of occurrence across all runs, 

and the 10 most frequently appearing regions were 

identified as significant brain areas. 

2.5.2.  Statistical analysis of regional features 

To further identify brain features that substantially 

influence the model and may hold research value, we 

applied a gradient‑guided interpretability method, 

Saliency Map45, after model training to evaluate the 

sensitivity of input features and visualize their 

contributions to the classification task. After regressing 

out confounds such as age and gender, we used the 

nonparametric Mann–Whitney U test to assess group 

differences in the significant brain features associated 

with schizophrenia.  

2.5.3.  Prediction of symptom severity 

To further validate the association between the key brain 

regions and clinical symptoms, and to explore their 

potential links to schizophrenia symptomatology, we 

constructed a symptom‑severity prediction model. A 

Chebyshev46 graph network was used to extract features 

from the ten key brain regions, with the four core PANSS 

symptom domains (positive, negative, general 

psychopathology ) serving as regression targets. The 

model was trained to predict symptom severity for each 

participant, and the Pearson correlation coefficient was 

used to evaluate the relationship between the predicted 

and actual scores. 

3. Results 

3.1. Overall classification performance of the 

model 

The overall performance of the model is demonstrated in 

Table 2. Metrics including accuracy, sensitivity, 

specificity, F1 score, and area under the curve (AUC), 

were calculated and compared with those of other GNN 

methods. The proposed model achieved the best 

performance among all evaluated methods. 

 

Table 2. Performance comparison between the proposed C‑GNN model and other GNN algorithms. 

Model Acc (%) Sen (%) Spe (%) F1 (%) AUC (%) 

MLP47 72.66 ± 3.0 72.92 ± 3.2 63.75 ± 4.5 72.72 ± 3.5 71.88 ± 3.0 

GCN48 75.39 ± 2.6 76.04 ± 3.9 74.73 ± 5.3 75.49 ± 3.7 74.39 ± 2.9 

GAT49 73.96 ± 3.0 75.00 ± 3.5 73.62 ± 4.0 72.79 ± 3.8 74.22 ± 2.8 

Chebynet50 74.48 ± 2.8 74.38 ± 3.2 71.25 ± 4.2 74.15 ± 3.5 72.66 ± 3.0 

GraphSAGE51 74.37 ± 3.2 75.78 ± 3.7 65.00 ± 5.0 74.75 ± 4.0 73.44 ± 3.2 

SGCN52 73.75 ± 3.5 74.22 ± 3.8 66.25 ± 5.2 73.59 ± 4.1 71.87 ± 3.5 

Graph-Unet53 75.00 ± 2.7 75.52 ± 3.0 79.76 ± 3.5 78.30 ± 3.2 75.95 ± 2.8 

DeeperGCN54 71.88 ± 3.8 72.58 ± 3.5 66.25 ± 4.8 72.44 ± 4.0 71.86 ± 3.7 

GCNII55 74.38 ± 2.9 75.32 ± 3.2 81.25 ± 3.6 75.46 ± 3.5 74.38 ± 2.9 

EGC56 80.62 ± 2.5 80.94 ± 2.8 75.00 ± 3.5 80.64 ± 3.0 80.00 ± 2.5 

Ours 84.38 ± 2.3 87.50 ± 2.9 78.75 ± 3.6 85.71 ± 2.3 83.10 ± 3.1 

 

 

3.2. Ablation study 

The effectiveness of the white matter network embedding 

(Node2vec), BAN module, and GFC module was 

evaluated through ablation experiments. The results of 

these ablation studies are presented in Table 3-5. 

In the first comparison, the embedded connectome 

generated by the Node2vec method was replaced with the 

original white‑matter connectome as the graph’s edge 

features. As demonstrated in Table 3, the proposed C-

GNN achieved the best classification performance when 

the embedded white matter matrix was used as edge 

feature, indicating that network embedding helps 

enhance the reliability of white‑matter connectivity by 

capturing global topological properties. 
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The performance of the branch attention module is 

reported in Table 4. When channel attention was applied 

to weight feature channels, the model exhibited 

improvements across all performance metrics. 

The performance evaluation of the graph feature 

constraint module is presented in Table 5. Several 

channel-alignment strategies were compared. “Cor” 

represents cropping feature channels to align their 

dimensions; “Fc” represents dimensionality reduction 

through linear transformation; “Inter” represented 

increasing channel dimensions using linear interpolation; 

“C” denotes computing cosine similarity across feature 

channels; and “N” denotes cosine similarity across nodes. 

The results showed that channel-wise cosine similarity 

outperformed node-wise similarity. Among them, the 

channel-cropped cosine similarity method (CCroCos) 

achieved the best performance and was adopted as the 

implementation of the GFC module in this study. 

 

 

 
 

Fig. 3. Visualization of the original structural connectivity and the structural connectivity after graph embedding learning. 

 

Table 3. Ablation study results for the network embedding method. 

Module Acc Sen Spe F1 Auc 

GNN 73.126 73.178 58.750 72.564 72.884 

GNN+ network 

embedding 
79.234 79.390 67.500 79.094 78.078 

 

Table 4. Ablation study results for the BAN module. 

Module Acc Sen Spe F1 Auc 

GNN+Node2vec 79.234 79.390 67.500 79.094 78.078 

GNN+Node2vec+BAN 81.142 81.232 72.458 80.404 80.232 

 
Table 5. Ablation study results for the GFC module. 

 

 

 

 

 

 

 

 

 

 

Module Acc Sen Spe F1 Auc 

GNN+Node2vec+CSegCos 81.250 81.546 74.782 80.136 80.476 

GNN+Node2vec+CFcCos 79.372 80.468 76.032 79.688 79.026 

GNN+Node2vec+NSegCos 78.748 79.360 70.000 79.490 78.050 

GNN+Node2vec+NFcCos 78.746 79.418 73.750 78.712 78.538 

GNN+Node2vec+NInterCos 77.496 78.482 70.000 78.072 77.074 

GNN+Node2vec+GFC( CCroCos )+BAN 84.375 87.500 78.750 85.714 83.097 

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in ĲNS

In
t. 

J.
 N

eu
r.

 S
ys

t. 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
E

L
E

C
T

R
O

N
IC

 S
C

IE
N

C
E

 A
N

D
 T

E
C

H
N

O
L

O
G

Y
 O

F 
C

H
IN

A
 o

n 
12

/1
0/

25
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



 Channel Graph Neural Network Reveals Multimodal Brain Connectivity Abnormalities in Schizophrenia 

 

 

9 

3.3. Analysis of significant brain regions and their 

features 

The UGrad-CAM57 was used to visualize the salient brain 

regions. As shown in Fig. 4, high‑weight regions were 

mainly distributed in the temporo‑occipital cortex and 

sensorimotor‑related areas, including the lingual gyrus, 

temporal fusiform cortex, frontal orbital cortex, opercular 

regions, planum polare, superior temporal gyrus, 

precentral gyrus, and superior parietal lobule. These 

regions showed a diffuse cortical distribution with 

evident hemispheric laterality. 

The top 20 important brain regions identified using 

the Harvard-Oxford atlas were mapped onto the Yeo 7 

functional networks (Table 6), enabling interpretation of 

the model-derived regions within established functional 

network architecture relevant to schizophrenia. 

Saliency-based feature analysis (Fig. 5, left) showed 

that cortical thickness, global FCD, mFOCA, and ReHo 

had strong contributions to the model output. Statistical 

analyses further revealed significant alterations in these 

features within high-weight regions in patients compared 

with controls (Fig. 5, right). Overlap between the two 

analyses—such as for cortical thickness and ReHo—

highlights their potential pathophysiological relevance. 

3.4. Prediction analysis of symptom severity in 

patients with schizophrenia 

According to the model‑fitting results, the predictions for 

general and negative symptoms showed low error (small 

MSE, RMSE, and MAE, with MAPE around 10%) and 

strong positive correlations with the true values 

(correlation coefficients of 0.7195 and 0.6984, both with 

significant P values), indicating good predictive 

performance for these symptom domains. In contrast, the 

prediction of positive symptoms showed large deviations, 

with a markedly higher error (MAPE of 42.39%) and a 

nonsignificant negative correlation coefficient (-0.3520), 

suggesting that the model was unable to effectively 

capture the variability of positive symptoms. 

 

 
Fig. 4. Visualization of the top 10 most significant brain regions. 

 

 

 

 
Fig. 5. Saliency-based feature gradient heatmap (left) and bubble plot of significant brain-region features between the HC and patient 

groups (right). Bubble size indicates feature significance. Gray bubbles denote no significant group difference. Red bubbles indicate 

higher feature values in the patient group compared with HC, while blue bubbles indicate the opposite. 
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Table 6. Top 20 brain regions identified by the UGrad-CAM method.  

HOA brain area name Yeo 7 network  Relative Weight 

lingual gyrus (LG.L) Visual 1.0000   

temporal fusiform cortex, anterior division (TFusC-ant.L) Ventral Attention 0.9057   

frontal orbital cortex (FOC.L) Limbic 0.6516   

inferior frontal gyrus, pars opercularis (IFGop.L) Frontoparietal 0.6131   

central opercular cortex (COC.L) Somatomotor 0.4721   

planum polare (PP.L) N.A 0.4598   

temporal occipital fusiform cortex (TOFusC.R) Ventral Attention 0.4422   

superior temporal gyrus, posterior division (STGp.R) Default Mode 0.3367   

precentral gyrus (PreCG.R) Somatomotor 0.2650   

superior parietal lobule (SPL.R) Dorsal Attention 0.2594   

parahippocampal gyrus, anterior division (PHGa.L) Limbic 0.2554   

temporal fusiform cortex, posterior division (TFusC-post.L) Ventral Attention 0.2552   

insular cortex (INS.R) N.A (Salience) 0.1414   

postcentral gyrus (PoCG.R) Somatomotor 0.1161   

middle temporal gyrus, temporooccipital part (MTGto.R) Default Mode 0.0995   

middle temporal gyrus, anterior division (MTGa.R) Default Mode 0.0856   

supracalcarine cortex (SCC.L) Visual 0.0813   

superior temporal gyrus, anterior division (STGa.R) Default Mode 0.0176   

heschl's gyrus (includes H1 and H2) (HG.L) N.A 0.0061   

middle frontal gyrus (MFG.R) Frontoparietal 0.0000   

 

Table 7. Performance of scale prediction models based on significant subnetworks. 

 

 

 

 

 

 

4. Discussion 

Inspired by graph neural networks, this study proposed 

C-GNN, a deep learning model that integrates 

multimodal MRI features. Based on graph embedding 

module, the model enables extraction of high-

dimensional features from white matter connectivity. The 

BAN and GFC modules were designed to achieve node 

and feature selection, respectively, effectively capturing 

features on relatively small sample sizes and 

distinguishing schizophrenia patients from healthy 

controls with an accuracy of 84.375%. Ablation 

experiments gave evidence for the effectiveness of the 

three modules. Based on model visualization, nodes 

(brain regions) with significant importance for 

classification were identified, indicating that the intrinsic 

features of these brain regions and their information 

interaction patterns with other brain regions exhibit 

substantial disease effects. Furthermore, statistical 

analysis revealed the pattern of feature alterations in core 

impaired brain regions, and predictive analysis was 

applied to explore the relationship between subnetwork 

features formed by these brain regions and clinical 

manifestations of the disease. 

Symptom Category MSE RMSE MAE MAPE R P 

General Symptoms 8.9019 2.9836 2.7076 0.1004 0.7195 0.0125 

Positive Symptoms 38.9161 6.2383 5.3453 0.4239 -0.3520 0.2884 

Negative Symptoms 10.5072 3.2415 2.3962 0.1104 0.6984 0.0168 
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4.1. Module Effectiveness 

This study systematically validated the contribution of 

each module through ablation experiments. 

Incorporating Node2vec to embed the white matter 

connectome as edge features enhanced the representation 

of global topological structure. In the branched attention 

network, max and average pooling, together with a 

multilayer perceptron, generated cross-channel attention 

weights that directed the model toward informative brain 

regions and feature channels. The graph feature 

constraint module further refined channel learning via 

channel-differentiation scores. Among the tested 

strategies, the cosine-similarity-based channel-cropped 

method yielded the best performance by reducing 

redundancy and limiting overfitting. Overall, the ablation 

results confirmed the essential contribution of each 

module to improving model performance and robustness. 

4.2. Significant brain regions revealed by C-GNN 

model 

The default mode network (DMN) demonstrated the 

highest frequency of involvement, suggesting its 

potential central role in the pathogenesis of 

schizophrenia. This results is consistent with previous 

research demonstrating the prevalence of DMN 

dysfunction in schizophrenia58,59. The ventral attention 

network and somatomotor network were also highly 

represented, reflecting potential abnormalities in 

attention regulation and sensory-motor integration in 

schizophrenia60,61. 

Frontal regions (e.g., Frontal Orbital Cortex, Inferior 

Frontal Gyrus): primarily manifested decreased cortical 

thickness and local FCD, with increases in some 

indicators (e.g., long-range FCD, fALFF). This pattern 

suggests impaired local integration in the frontal lobe, 

potentially accompanied by abnormal enhancement of 

long-range functional pathways. Given the extensive 

involvement of the frontal lobe in cognitive control and 

language processing, this pattern may be associated with 

executive dysfunction, disorganized thinking, and speech 

abnormalities in patients with schizophrenia. Notably, 

our model identified the fronto-orbital cortex and the 

inferior frontal gyrus as significant regions, consistent 

with previous studies showing that schizophrenia 

patients with treatment-resistant auditory verbal 

hallucinations (SCH-H) exhibited abnormal cortical 

folding in the fronto-orbital cortex62 and first-episode 

treatment-naïve patients with schizophrenia (FES) 

exhibited significantly reduced GMC in the inferior 

frontal gyrus63. 

Temporal regions (e.g., Superior Temporal Gyrus, 

Planum Polare, Temporal Fusiform Cortex, anterior 

division): In these regions, structural atrophy coexisted 

with increased functional activity. Specifically, the 

Temporal Fusiform Cortex, anterior division, showed 

abnormally increased function, suggesting possible 

abnormalities in social perception and semantic 

processing. Our model further supported the involvement 

of the superior temporal gyrus and the fusiform gyrus, 

two regions that had been repeatedly implicated in 

schizophrenia64,65. 

The parietal area (Superior Parietal Lobule) showed 

decreased cortical thickness and ReHo, but increased 

FCD and fALFF. This suggests a network imbalance in 

the parietal lobe involved in multimodal integration and 

attention, potentially leading to abnormalities in 

perceptual and attentional processing66. Although less 

explored in the schizophrenia literature, our findings 

suggested that the superior parietal lobule may hold 

potential for research. 

Occipital/Visual Cortex (Lingual Gyrus, Temporal 

Occipital Fusiform Cortex): The lingual gyrus showed 

significant decreases in nearly all features, potentially 

related to visual processing deficits and hallucinations. 

The fusiform gyrus at the occipito-temporal junction 

showed both structural and functional decreases, further 

supporting the idea of impaired visual semantic 

processing67. Previous studies have also reported reduced 

gray matter volume in the fusiform gyrus and lingual 

gyrus in patients with first-episode schizophrenia68. The 

similar changes we observed in chronic patients suggest 

that these brain regions may be persistently affected 

during the course of the disease, supporting their 

important role in the pathogenesis of schizophrenia. 

Insular cortex (Central Opercular Cortex): Multiple 

indicators were decreased, suggesting severe impairment 

in speech perception and integration, potentially 

explaining auditory hallucinations and language-related 

symptoms.  

Motor cortex (Precentral Gyrus): Decreased cortical 

thickness but increased fALFF suggest coexisting 

structural damage and excessive spontaneous activity, 

potentially related to the patient's motor abnormalities or 

medication sensitivity. 

Overall, patients with schizophrenia exhibit 

widespread abnormalities across multiple brain regions 
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and features. These abnormalities manifest themselves in 

both significant decreases in structural measures (such as 

cortical thickness and GMV) and abnormal increases or 

decreases in functional measures (such as FCD and Alff). 

Cortical thickness decreased in nearly all brain regions, 

consistent with our previous research using sMRI to 

investigate cortical atrophy during schizophrenia 

progression69. Some brain regions recurred across 

different characteristic dimensions, suggesting that these 

regions may be core affected nodes of the disease (such 

as the lingual gyrus, central opercular cortex, inferior 

frontal gyrus, and pars opercularis). Furthermore, the 

pattern of structural decreases and functional increases 

observed in multiple brain regions may reflect potential 

compensatory mechanisms or overactivation of neural 

networks. 

4.3. Limitations 

Although our model provides some visual insights and 

biologically meaningful interpretations, it has several 

limitations.  

First, the majority of patients with schizophrenia 

included in this study were taking antipsychotic 

medications during the imaging period. Medication may 

suppress positive symptoms while leaving prominent 

negative symptoms, and the high heterogeneity and 

temporal fluctuation of positive symptoms further 

complicate their prediction. Medication‑related 

alterations in brain structure and function may also 

confound imaging–pathophysiology relationships, and 

such effects cannot be fully excluded. 

Second, the study employed a cross-sectional design, 

which limits causal inference regarding the relationship 

between identified neuroimaging features and disease 

progression. 

Third, the dataset was derived from a specific cohort 

with a modest sample size, and thus the generalizability 

of the model to broader populations requires further 

validation. 

5. Conclusion 

This study developed a C-GNN model using multimodal 

features that achieved 84.37% accuracy in detection of 

schizophrenia patients. The model incorporated novel 

BAN and GFC modules, demonstrating superior 

efficiency and robustness under limited sample 

conditions. Subsequent model analysis elucidated 

disease-related brain nodes and their distinctive 

characteristics. Node‑level functional metrics (FCD, 

ALFF, ReHo) and cortical thickness exhibited significant 

abnormalities in patients, reflecting functional and 

structural disruptions. Several key regions were 

highlighted as critical nodes potentially linked to altered 

language, memory, perception, and social cognition. 

Previously understudied regions such as planum polare 

and central opercular cortex contributed strongly to 

classification, indicating their potential as novel 

biomarkers for schizophrenia.  
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Appendix A. 

Data Preprocessing 

Since multimodal data require preprocessing and feature 

extraction, several software packages were used, 

including fMRIPrep, Statistical Parametric Mapping 

(SPM), FMRIB Software Library (FSL), Neuroscience 

Information Toolbox (NIT), and the Resting-State fMRI 

Data Analysis Toolkit (REST). Specifically: 

Structure MRI ： FreeSurfer 7.3.2 was used for 

anatomical MRI processing. The “recon-all” pipeline 

performed motion correction, intensity normalization, 

brain inflation, spherical mapping, and cortical 

parcellation. After preprocessing, vertex-wise cortical 

thickness and voxel-wise gray and white matter volumes 

were extracted and used for subsequent graph 

construction. 

Functional MRI: Resting‑state fMRI data were 

preprocessed using SPM12 and fMRIPrep (21.0.0). The 

first five frames were removed, followed by slice‑timing 

and head‑motion correction. Confound regressors 

included motion parameters, white‑matter and CSF 

signals, linear drift, and global signals. fMRI data were 

aligned to the structural space for surface smoothing and 

then registered to MNI space. Scans with framewise 

displacement > 2mm or rotation > 1° were excluded. 

Functional features were extracted according to the 

Harvard‑Oxford atlas. ALFF, fALFF, and ReHo were 

calculated using REST, while functional connectivity 

density (FCD) and four-dimensional (spatiotemporal) 

consistency of local neural activities (FOCA) were 

computed using NIT. All features were averaged within 

each region and used as node attributes in the graph 

neural network. 

Diffusion MRI: Diffusion MRI data (UESTC dataset) 

were preprocessed using the FSL pipeline (v6.0.4) 

following our previous procedures. Steps included 

correction for eddy currents, motion, and susceptibility 

distortions; rigid alignment of the b0 image to the 

structural image using FLIRT; nonlinear registration to 

MNI152 space with FNIRT; and computation of forward 

and reverse warp fields between diffusion and structural 

spaces. Diffusion parameters were estimated voxel‑wise 

using MCMC sampling, modeling up to two fiber 

populations after 2000 iterations. Quality control 

included inspection of structural and b0 images and 

registration outputs. Data were excluded if the 

signal‑to‑noise ratio of structural or b0 images was < 800 

or if framewise displacement exceeded 2 mm. 

Table A1. List of preprocessing software tools. 

Software Main Function 

SPM12 Statistical Analysis 

fMRIPrep Standard fMRI automated preprocessing 

FSL 

Tissue segmentation, dMRI 

preprocessing, and probabilistic fiber 

tracking. 

FreeSurfer 

Cortical reconstruction, volume 

extraction, and cortical thickness 

extraction. 

REST Calculation of ALFF and fALFF. 

NIT 
Calculation of functional connectivity 

metrics such as FCD, FOCA, and ReHo. 

 
Table A2. Analysis of learning rate selection for the C‑CNN 

model; the best result is highlighted in bold. 

 

Lr Batch Acc Sen Spe F1 AUC 

0.0001 32 74.500 75.000 56.250 78.950 75.000 

0.00001 32 79.372 80.685 74.376 80.214 78.746 

0.0000085 32 84.375 87.500 78.750 85.714 83.097 

0.000005 32 81.250 81.876 79.998 80.867 80.937 

0.000001 32 69.376 70.002 76.875 76.907 69.376 
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