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ARTICLE INFO ABSTRACT
Keywords: Background: Electroencephalography (EEG) overcomes the subjectivity inherent in questionnaire-based and
EEG observational assessments. However, most existing EEG-based evaluation methods still impose discrete cate-

Attention assessment
Normative modeling
Multi-site data
Regression models

gorical states onto continuously varying neural dynamics, thereby neglecting the continuity of states. With the
rise of neuroscience alliances, challenges such as batch-effects across datasets and inconsistencies introduced by
diverse EEG electrode montages have become increasingly prominent. Therefore, a robust assessment framework
that accommodates large-scale, multi-site EEG data is expected.

Methods: A normative model-based assessment framework was developed for large-scale, multi-site EEG data,
with attention assessments used as illustrative examples. Normative models are first constructed using EEG
features from 1212 young individuals, and quantile ranks are computed. Next, feature selection is performed,
and elastic net regression and support vector regression are used to model distributed attention (DA) and focused
attention (FA). The results from normative model-based features are compared with original features to
demonstrate the advantage of quantile rank features. Finally, the model’s test-retest reliability and generaliz-
ability are assessed.

Results: The framework identifies statistical differences (g < 0.05) in attention performance between the top and
bottom 20 % participants on attention scales. EEG features demonstrated specific patterns related to accuracy
and reaction time in both DA and FA tasks. The normative model outperformed in predictive tasks, showing
enhanced stability and interpretability. Additionally, the framework demonstrates strong test-retest reliability
and robust generalizability (ICC > 0.9).

Conclusion: In conclusion, we proposed a normative model-based framework that harmonizes large-scale,
multi-site EEG data, enabling efficient and reliable attention assessment while demonstrating promise for
broader EEG-based applications.

1. Introduction assessment tools, which rely heavily on questionnaires and observa-
tional records, often exhibit limitations including insufficient quantita-

Electroencephalography (EEG)-based assessment methods have been tive accuracy and vulnerability to individual state variations (Price
extensively applied in various fields such as cognition and emotion with et al., 2003; Van Voorhees et al., 2010). In contrast, as a non-invasive,
the continuous advancement of neuroscientific techniques (Li et al., portable, and cost-effective neuroimaging technique with high tempo-

2022; Wan et al., 2021; Kant et al., 2022). Traditional subjective ral resolution, EEG provides objective and refined physiological signal
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data to effectively overcome uncertainties introduced by subjective
feedback methods (Yao, 2024).

Current EEG-based assessment approaches commonly segment
continuously varying neural activities into predefined fixed categories
or states. For instance, dividing attention into different levels (Wan
et al., 2021), evaluating cognitive load based on predetermined tasks
(Zanetti et al., 2022), or defining emotion as discrete states (Li et al.,
2022). Although such discretization strategies simplify data processing,
their limitations are evident: fixed cutoff values frequently fail to
adequately capture inter-individual physiological differences and
nonlinear characteristics, potentially neglecting subtle changes of states
(Hany et al., 2024; Chervyakov et al., 2016; Rosenberg et al., 2013). This
consequently limits the accuracy and sensitivity of assessment out-
comes. In comparison, regression methods are capable of comprehen-
sively capturing data features, yet they face significant challenges in
application, including the nonlinear age dependency of raw EEG fea-
tures, individual heterogeneity obscuring biologically meaningful de-
viations, and model sensitivity to extreme values (Smit et al., 2016;
Verdonck et al., 2024).

The emergence of neuroscience alliances has ushered in a new era of
large-scale multisite cohort studies, exemplified by international
collaborative initiatives such as the Enhancing Neurolmaging Genetics
through Meta-Analysis (ENIGMA) consortium spanning 43 countries/
regions (Thompson et al., 2020), the Adolescent Brain Cognitive
Development (ABCD) study encompassing over 10,000 participants
across 21 research sites (Casey et al., 2018), and major open-access
databases like the Temple University Hospital EEG (TUH-EEG) corpus
containing more than 30,000 clinical electroencephalography re-
cordings (Obeid and Picone, 2016). These efforts have significantly
advanced neuroimaging research through standardized protocols.
However, they remain challenged by batch-effects, particularly differ-
ences in EEG recording device configurations and electrode mon-
tages—a key confounding factor that not only affects multi-site studies
but also poses a formidable barrier to individual researchers attempting
cross-database integration (Markiewicz et al., 2021). A more effective
framework for mining these big EEG data is expected for assessing
outcomes in applications.

Normative modeling is a statistical framework that enables statistical
inferences at the individual level concerning expected patterns
(Rutherford et al., 2022). By mapping quantitative measurements to
relevant variables, normative models can identify variations within
large-scale cohorts, providing a method for quantifying and describing
deviations between individuals and expected patterns, as well as among
individuals themselves. Brain charts developed from normative models
serve as essential tools for analyzing brain development and aging
processes, with quantile rank mapping being a key analytical approach
(Zhang et al., 2022). Currently, quantile rank features derived from
normative models have been widely applied to MRI data (Habes et al.,
2021; Frangou et al., 2022). Although EEG-based normative modeling
studies are relatively limited, existing research suggests that quantile
rank features in EEG data hold promising application potential (Taylor
et al., 2022; Janiukstyte et al., 2023). Furthermore, despite the avail-
ability of standardized EEG processing pipelines (e.g., EEGLAB (Delorme
and Makeig, 2004) and WeBrain (Dong et al., 2021a)), unified electrode
montages and batch-effect correction methods, systematic integration of
these preprocessing techniques with normative modeling assessments
remains limited. This lack of integration may contribute to inconsistent
outcomes across different laboratories and complicate the integration of
multi-center datasets. Therefore, developing a unified framework that
integrates EEG preprocessing techniques with normative modeling as-
sessments is critically needed.

In this study, a normative model-based assessment framework was
developed for large-scale, multi-site EEG data, with distributed attention
(DA) and focused attention (FA) serving as illustrative examples. To our
knowledge, this is the first large-scale, multi-site assessment framework
based on EEG normative modeling in the healthy population. The
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framework consists of several key steps. First, EEG electrode montages
were unified, and batch effects across multiple sites were corrected.
Next, normative models were constructed using resting-state EEG brain
network metrics from 1212 healthy young adults, and quantile ranks of
the EEG dataset under assessment were evaluated. Finally, the effec-
tiveness and robustness of the framework in predicting DA and FA were
tested through feature selection and regression models. Overall, this
framework provides a novel approach for EEG-based assessment, facil-
itating efficient and reliable attention assessments in large-scale, multi-
site EEG studies.

2. Materials and methods
2.1. Participants

In this study, resting-state eyes-closed EEG data were collected from
1212 and 189 right-handed healthy young adults to construct the
normative model database (NMD, Table 1) and the mapping relationship
database (MRD, Table 2), respectively. Databases 1-8 of NMD and the
MRD were sourced from the University of Electronic Science and
Technology of China (UESTC), while Databases 9-16 of NMD were ob-
tained from public datasets. Prior to the collection of MRD, participants
completed DA tests to measure reaction time (DA-RT) and accuracy (DA-
AQ), as well as FA tests to measure reaction time (FA-RT) and accuracy
counts (FA-AC). The experimental paradigm is illustrated in Supple-
mentary Figure S1, and more detailed information can be found at
http://www.dweipsy.com:8082/lattice/latticeUl/index.html#/home.
The study was approved by the Ethics Committee of the Department of
Life Science and Technology at the UESTC. All participants provided
written informed consent prior to participation.

2.2. EEG acquisition and preprocessing

The EEG acquisition parameters and channel location diagrams are
provided in Supplementary Table S1 and Supplementary Figure S2,
respectively. All data were quality-assessed and preprocessed using the
preprocessing pipeline of the WeBrain platform (https://webrain.uestc.

Table 1
Demographic Information of NMD.
Dataset Sample  Age Mean Age Source
Range Age SD

Database 1 66 17 - 20 18.71 0.65 UESTC

Database 2 39 21-28 23.90 1.64 UESTC

Database 3 86 17 - 26 20.95 2.29 UESTC

Database 4 33 18 - 24 20.30 1.72 UESTC

Database 5 98 17 - 20 18.72 0.67 UESTC

Database 6 245 18 -24 19.61 0.99 UESTC

Database 7 146 18 -27 22.46 1.83 UESTC

Database 8 203 18-27 21.30 2.26 UESTC

Database 9 30 18 -22 19.57 1.14 Alexander et al.,

2017

Database 52 18 - 28 19.92 1.75 Duan et al., 2021
10

Database 62 18-25 19.79 1.48 Pavlov et al., 2022
11

Database 60 18-28 20.02 1.88 Wang et al., 2022
12

Database 37 18 -23 20.38 1.46 Xiang et al., 2024
13

Database 19 18-28 20.63 2.61 Kasanov et al., 2024
14

Database 19 18 -22 18.79 1.27 Cavanagh et al.,
15 2019a

Database 17 18 -30 23.00 3.77 Cavanagh et al.,
16 2019b

Total 1212 17 -30 20.54 2.12

NMD: Normative Model Database, UESTC: EEG data collected by the University
of Electronic Science and Technology of China.
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Table 2

Demographic Information of MRD.
Group Sample Age Range Mean Age Age SD Source
MRD 189 18-22 19.59 0.97 UESTC

MRD: Mapping Relationship Database, UESTC: EEG data collected by the Uni-
versity of Electronic Science and Technology of China.

edu.cn/) (Dong et al., 2021a). The main procedures included: 1) A
quality assessment (QA) method (Zhao et al., 2023) was used to detect
bad channels with different types of artifacts (detecting constant or
NaN/Inf signals, unusually high or low amplitudes, high or power fre-
quency noises, and low correlation signals); 2) EEG signals were sub-
jected to bandpass filtering in the range of 1-60 Hz, with the addition of
50 Hz or 60 Hz notch filters to eliminate power-line interference; 3) the
ICA-based MARA algorithm was used to remove artifacts, with a con-
servative threshold of 0.7 (Auger et al., 2022); 4) Reference Electrode
Standardization Interpolation Technique (RESIT) (Dong et al., 2021b)
was applied to interpolate the bad channels and to transform the
reference electrode to an idealized zero potential point at infinity using
the reference electrode standardization technique (REST) (Dezhong,
2001); 5) The channel distributions were harmonized to the 32-channel
electrode montage (Supplementary Figure S2(a)) by REST (Dong et al.,
2024).

2.3. Assessment framework

The framework includes the following steps: 1) Functional connec-
tivity networks were computed using clean EEG data; 2) To mitigate
batch effects arising from multicenter data acquisition, the ComBat
harmonization method was applied to the functional connectivity net-
works while effectively preserving inter-individual variability associ-
ated with age; 3) Normative models were established using functional
connectivity features from the NMD. For each MRD participant, con-
nectivity measures were transformed into quantile ranks within these
models; 4) Regression models were constructed by replacing the original
EEG-based functional connectivity features with their quantile rank
values. These quantile features were then used for training and evalu-
ation, enabling a normative-model-based regression analysis and
prediction.

2.3.1. Phase Synchronization Index (PSI)

Functional connectivity networks were derived from the PSI after
channel harmonization. PSI were calculated as follows (Jose et al.,
2004):

PSI = /< cos(Ag(t)) >2+ < sin(Ap(t) ) >2

where Ag(t) is the instantaneous phase difference between two EEG
signals for a particular frequency, and < e> means the temporal
average. Analyses were performed within the delta (1-4 Hz), theta
(4-8 Hz), alpha (8-12.5 Hz), beta (12.5-25 Hz), high beta (25-30 Hz),
gammal (30-40 Hz), gamma2 (40-60 Hz).

2.3.2. Batch effect removal

Batch-related differences introduce non-biological variations in
multicenter studies. To remove these effects while retaining age-related
effects, the ComBat method, a statistical method used to correct for
batch effects in data, particularly in genomics and imaging studies, was
used (Fortin et al., 2017):

_yijc = Qc +Xijﬂc + Yic + 5ic€ijc

where q. is the overall PSI, X includes age covariates, v, i, &jc
represent additive and multiplicative batch effects on PSI, respectively.
The ComBat employs least squares for initial parameter estimation and
uses empirical Bayesian techniques to adjust for batch effects. To eval-
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uate the effect of removing batch effects, 20 participants were randomly
selected from 4 independent datasets to compare alpha-band PSI before
and after removal, and a one-way ANOVA was subsequently performed
to test the statistical differences among the groups.

2.3.3. Normative modeling

EEG normative models were developed using the Generalized Ad-
ditive Models for Location, Scale and Shape (GAMLSS) package in
RStudio. This regression method fits distributions with up to four pa-
rameters (location, scale, skewness, kurtosis), allowing each parameter
to be modeled as a function of explanatory variables or nonparametric
smoothing functions. The model is expressed as:

Y: = D(y;, 01,14, 71)

J1

&) =m =Xip+ Y _silxy)
7

Ja
&(0) =1 = XoPy+ ) s(x3)
j

J3
W) = N3 =Xafa+ Y _ s3i(xs)
7

Jq
g(0) =y = XaPy+ Y s4i(xy)
j

where Y; denotes the PSL; y, o, v, and 7 represent the mean, standard
deviation, skewness, and kurtosis of PSI, respectively; X are the design
matrices; f§, are the coefficients; g(.) are monotonic link functions; s.;
are nonparametric smooth functions applied to X;;. Model fitting was
conducted using the Box—Cox t (BCT) distribution with cubic spline
smoothing for all four parameters, and the final model parameters were
selected according to the Akaike Information Criterion (AIC).

2.3.4. Feature selection and predictive models

The framework employed filter-based feature stability feature se-
lection before constructing predictive models to enhance the model’s
robustness in applications. Specifically, within the MRD dataset, random
subsets of 152 samples (matching the training size for five-fold cross-
validation) were selected and resampled 50 times using the bootstrap
method. For each resample, Spearman rank correlation coefficients be-
tween features and behavioral indicators were computed. Features
surpassing a predefined correlation threshold and appearing in more
than 90 % of the resamples were retained. This process was executed 50
times over 31 thresholds (defined as the mean absolute correlation £1.5
standard deviations (SD), with a step size of 0.1), and the normalized
Percentage of Overlapping Genes (nPOG) index was used to determine
the optimal threshold (Gopakumar et al., 2015; Sen et al., 2021). In
addition, potential multicollinearity was addressed by clustering highly
correlated features and averaging the features within each cluster (Ge
et al., 2019).

For predictive models, linear regression based on the elastic net
regression (ENR) algorithm was primarily employed (Shen et al., 2021).
Hyperparameters were optimized using the grid search method on the
MRD. Specifically, the a value ranged from 0.1 to 1 in increments of 0.1,
and the 1 value ranged from 0.001 to 1 in increments of 0.001. Model
performance was initially assessed using the mean squared error (MSE)
from five-fold cross-validation. Subsequently, 20 iterations of five-fold
cross-validation assessed MSE and correlation coefficient. Addition-
ally, to evaluate the adaptability of nonlinear methods within the
framework proposed in this study, support vector regression (SVR) with
a radial basis function (RBF) kernel was tested using similar grid search
tuning (Quitadamo et al., 2017). It is worth noting that, unless otherwise
specified, the regression models used in this study are all based on the
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ENR method.
2.4. Framework validation

The framework’s validity was assessed by comparing the top 20 %
and bottom 20 % performers on each scale using t-tests. Additionally,
the evaluation method was applied to all participants in the NMD as a
reference. A comprehensive analysis compared top and bottom 20 %
performers across all four scales, and t-tests (based on Pearson correla-
tion and MSE) were used to contrast results from quantile rank features
and PSI features. To further assess generalizability, the framework was
applied to various connectivity metrics, including the Phase Lag Index
(PLI), Pearson correlation (COR), and Coherence (COH) for attention
evaluation (Lee and Hsieh, 2014; Stam et al., 2007).

Test-retest reliability was examined using 50 randomly selected MRD
participants, each with over 6 min of recording. Each recording was
divided into five overlapping 2-minute segments (with a maximum 1-
minute overlap). For each segment, the evaluation framework
computed DA-AC, DA-RT, FA-AC, and FA-RT scores. Reliability was
quantified by the intra-class correlation coefficient (ICC) and the cor-
relation between segment scores and the original evaluation scores
(Suarez-Revelo et al., 2015). Normative models were generated using
RStudio (version 2024.04.1), and additional analyses were performed
using MATLAB (version 2020b). Multiple comparisons were controlled
using the Benjamini-Hochberg false discovery rate correction, with g
values representing FDR-adjusted p values and significance defined at q
< 0.05.

Multi-site EEG Data

Batch Effect Removal
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3. Results
3.1. Assessment framework

3.1.1. Batch effect removal

The Combat algorithm was applied to harmonize the PSI metric
across datasets. Figs. 2(a) and 2(b) illustrate this process using the alpha
band from four randomly selected NMD datasets. Fig. 2(a) (left) shows
that PSI distributions among 20 participants varied significantly across
datasets, with statistical differences evident (right). After harmonization
(Fig. 2(b)), the PSI distributions became more consistent with no sig-
nificant differences among datasets.

3.1.2. Normative models

Fig. 3 presents normative models for the C3-CP2 theta and C3-CP5
beta bands. In the C3-CP2 theta model, PSI values decrease with age,
with a maximum value below 0.8. Conversely, the C3-CP5 beta model
shows PSI values increasing with age, with a maximum exceeding 1.1.
Additionally, regions with denser data points display narrower percen-
tile intervals, whereas regions with sparser data exhibit wider intervals.

3.1.3. Feature selection

As shown in Fig. 4(a), when the correlation threshold falls within the
range of the mean + 1.5 SD, both the average feature stability and the
number of selected features first increase and then decrease as the
threshold changes. The nPOG index reached its peak when the threshold
was set at the mean - 0.4 SD, after which it plateaued and began to
decline around the mean. Considering that fewer features are preferred
when stability levels are comparable, the mean value was ultimately
selected as the optimal threshold for feature filtering. Fig. 4(b) illustrates
the distribution of selected PSI features in all MRD samples using the
mean as the threshold. In DA-RT, the majority of features were identified
in the high beta band, primarily located between the fronto-parietal and
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effect removal and the ANOVA results, PSI: phase synchronization index, *: ¢ < 0.05, n.s.: no statistical significance.
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fronto-occipital regions, and these features exhibited a negative corre-
lation with the scale. For DA-AC, most features were concentrated in the
alpha band, with their functional connectivity strengths generally
showing negative correlations with the scale. In FA-AC, a large pro-
portion of features were derived from the gammal and gamma2 bands,
which displayed positive correlations with the scale. As for FA-RT, most
features were negatively correlated with the scale, predominantly
distributed in the beta band, and located between the frontal and pari-
etal regions.

3.2. Framework validation

Fig. 5(a) displays ENR scatter plots, revealing a positive correlation
between AC and scale scores and a negative correlation between RT and
scale scores. Specifically, DA-AC showed a correlation of 0.5697, while
FA-RT had -0.4434, and the regression results based on PSI features are

beta band normative model, and their corresponding PSI values at different

provided in Supplementary Figure S3. Regression models using SVR
(Supplementary Figures S4 and S5) confirmed these significant corre-
lations. Moreover, assessment results for the top 20 % versus the bottom
20 % of scale scores (Fig. 5(b)) indicate that individuals with higher
scores generally achieve superior evaluations, with statistical tests
supporting this trend (Fig. 5(c)). Radar charts (Fig. 5(d)) demonstrate
that although DA and FA accuracy did not significantly differ between
high and low performers, RT scores were significantly higher in high
performers. Finally, assessments based on connectivity metrics COR and
COH paralleled the PSI results, whereas evaluations using PLI features
were significantly lower (Supplementary Figure S6).

Fig. 6 compares assessment performance based on quantile rank and
PSI features. For both ENR (Figs. 6(a) and 6(b)) and SVR (Figs. 6(c) and 6
(d)) evaluations, quantile rank features consistently outperformed PSI
features; however, the differences were not statistically significant (g >
0.05), likely due to limited sample size. When combining ENR and SVR
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attention reaction time, FA-AC: focused attention accuracy counts, FA-RT: focused attention reaction time, Corr.: correlation between PSI and the scales.

outcomes, the correlations for quantile rank features were significantly
higher (q < 0.05), and the MSE values were significantly lower (Figs. 6
() and 6(g)).

In addition, Supplementary Figure S7(a) illustrates that, across all
scales, assessment results for most individuals remained stable with
minimal fluctuations across different segments. The ICC calculated in
combination with the initial results indicates that the ICC values for all
scales exceeded 0.9, reaching an excellent level. Additionally, the
average Pearson correlation between each segment and the initial re-
sults was greater than 0.65.

4. Discussion
4.1. Framework methodology

This study proposes a normative model-based attention assessment
framework for large-scale, multi-site EEG data. First, electrode coordi-
nate transformation was performed using the REST method to unify
channel distribution, followed by employing the ComBat algorithm to
eliminate batch effects. Next, EEG-derived normative models were
established, and quantile ranks of MRD within these models were
calculated. Finally, a regression model was developed using selected
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Fig. 5. Framework validation. (a) scatter plots of ENR assessment results based on quantile rank features, (b) assessment results of the top 20 % and bottom 20 % of
each scale, (c) t-test results for assessment results of the top 20 % and bottom 20 % of each scale, (d) radar plot of comprehensive assessment results for the top 20 %
and bottom 20 %. ENR: elastic net regression, DA-AC: accuracy of distributed attention, DA-RT: reaction time of distributed attention, FA-AC: accuracy counts of
focused attention, FA-RT: reaction time of focused attention, *: g < 0.05.



Q. Dong et al.
a b
( ) ENR - Correlation ( )
q=0.1184
06 1 _—
c
S 057
k] o O
g = °
S 04
o
03
(C) SVR - Correlation (d)
=0.1184
05 | _9=-77%
S 047 -
L]
3
S 03¢t $
©
0.2
ENR and SVR - Correlation
G (g)
: q=0.234
05 r
= R [
s -
: ~ $ 5
e 04 2
3
.
03 r ([
[
0.2

Brain Research Bulletin 231 (2025) 111546

ENR - MSE
1 =0.1184
q=0. Quantile Rank Feature
13 o
@ PSI Feature
12
w
g 1.1 = e
> o
1 +
09
0.8
SVR - MSE
1 L q=0.1208
— _@®
B 09 - ¢
=
~ [
0.8 +
ENR and SVR - MSE
13 | q=0.234 ®
12 1
11 - a
P O
17 [ ]
09 r = e
— [
0.8
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results of SVR, (d) MSE results of SVR, (e) correlation results of ENR and SVR, (f) MSE results of ENR and SVR. PSI: phase synchronization index, ENR: elastic net

regression, SVR: support vector regression, MSE: mean square error.

features to assess attention.

Considering the high-dimensional nature of EEG feature spaces,
feature selection is crucial to achieve dimensionality reduction, which
directly impacts the interpretability and generalizability of regression
models. To assess this, the study evaluated the stability of feature se-
lection across different threshold parameters using the nPOG index,
based on 50 bootstrap resampling iterations. As illustrated in Fig. 3(a),
the stability metrics displayed a pronounced non-monotonic pattern
with increasing threshold levels, first rising and then declining. These
results were attributed to the inherent high noise levels and redundancy
issues present in EEG signals. At lower threshold levels, more redundant
or noise-related features were preserved; although this permitted the
capture of additional information to some extent, it also introduced
unnecessary instability. Conversely, when excessively high thresholds
were applied, some critically contributive features were lost, which led
to a decrease in stability. These findings are consistent with the stability-
accuracy trade-off principle in feature selection theory (Khaire and
Dhanalakshmi, 2022). Notably, a stability index between 0.4 and 0.75 is
generally considered intermediate to good (Nogueira et al., 2018). In
this study, we selected a threshold of 0.70 based on the dimensionality of
the features, suggesting that the chosen feature set exhibits high
stability.

Quantile rank features constructed using the GAMLSS normative
model demonstrated superior predictive performance compared to raw
PSI features, as presented in Fig. 6. Specifically, in separate ENR and
SVR analyses, quantile rank features yielded stronger correlations with
scale scores and lower MSE. When the two regression models were

combined, this advantage reached statistical significance. Several
mechanisms underlie these findings. First, by mapping raw features to
percentile space, the GAMLSS model dynamically adjusts for age-related
nonlinear effects while constraining extreme values, thereby attenuating
the impact of outliers (Borghi et al., 2006). Second, quantile ranks
capture individual variability as interpretable deviations by reflecting
each individual’s relative position within the population, enhancing the
quantification of heterogeneity (Marquand et al., 2019). Third, using
percentiles improves comparability across disparate features or groups,
enabling the model to detect latent patterns more effectively (Agelink
van Rentergem et al., 2017). Critically, expressing features as
age-adjusted percentiles links deviations to lifespan trajectories (span-
ning development through aging): values near the 10th percentile
indicate a level below age-expected norms—consistent with delayed
maturation in youth or accelerated decline in older adults—whereas
values near the 90th percentile indicate advanced or preserved expres-
sion relative to age-matched peers. This converts raw numerical differ-
ences into age-anchored, clinically interpretable deviations along
normative brain trajectories (Marquand et al., 2016; Bethlehem et al.,
2022).

The framework’s test-retest reliability was also evaluated, with re-
sults indicating a high level of consistency. All scales surpassed an ICC
value of 0.9, meeting the benchmark for excellent reliability (Liljequist
et al.,, 2019). The average correlation between the assessment results
from all segmented data and the original data exceeded 0.65, demon-
strating robust reproducibility. Moreover, the minimum sample size for
normative modeling analysis (Supplementary Figure S8) indicated that,
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relative to a 150-participant reference per age group in healthy young
adults, models constructed with only 50 individuals per age group still
achieved 85.0 % consistency with the reference evaluation, thereby
demonstrating the robustness of GAMLSS-based normative models and
underscoring their feasibility for practical application in large-scale
research and clinical contexts.

4.2. Attention-based framework validation

EEG resting-state activity can be regarded as a baseline state that
reflects the brain’s underlying information-processing capacity
(Ramos-Loyo et al., 2004). The neurophysiological patterns identified
through our framework corroborate established attention mechanisms.
For the DA scale, a larger number of features were selected in the high
beta frequency band, which were negatively correlated with accuracy.
This finding is consistent with previous studies, suggesting that weaker
intrinsic long-range connections enhance the network’s reconfiguration
ability, thereby better meeting the demands of attention tasks (Rogala
et al., 2020; Santarnecchi et al., 2014). Additionally, the RT-related
features of the DA scale were primarily concentrated in the alpha fre-
quency band and were inversely proportional to reaction time, indi-
cating that better performance is associated with weaker functional
connectivity in the alpha band. This may reflect a decrease in
resting-state alpha connectivity, signifying a reduction in the topological
properties of default mode network (DMN) nodes, which affects infor-
mation processing speed and leads to decreased attention levels (Wu
et al., 2021; Wantzen et al., 2022). For the FA scale, accuracy was pri-
marily positively correlated with functional connectivity in the gammal
and gamma2 bands, which may be associated with the link between
gamma band connectivity and the ventral attention network (VAN)
(Titone et al., 2022). The reaction time of FA was mainly negatively
correlated with functional connectivity in the beta frequency band,
indicating that better performance is associated with weaker beta band
connectivity. This result aligns with previous studies and further sup-
ports the notion that individuals with higher network reconfiguration
ability in the beta band perform better (Wu et al., 2021; Gross et al.,
2004). Therefore, the main patterns identified in this study are consis-
tent with findings from prior research, further validating the effective-
ness of the feature selection method used.

The assessment results showed systematic stratification between
participants scoring in the top 20 % and bottom 20 % on the scales. In
both ENR and SVR analyses, individuals in the top 20 % exhibited
significantly stronger AC performance, while those in the bottom 20 %
had significantly poorer RT performance—both differences were sta-
tistically significant. Among participants with higher overall scores, no
notable differences in AC were observed between DA and FA. However,
the RT measure displayed highly significant differences, aligning with
the clinical neuropsychological consensus that reaction time is a pivotal
indicator of cognitive processing efficiency (Miller and Ulrich, 2013).
Consequently, these findings support the framework’s effectiveness in
assessing individual attention.

Beyond validation in healthy adults, this framework also holds
promise for clinical applications. Patients with psychiatric or neuro-
logical disorders often show systematic alterations in resting-state EEG,
such as elevated slow-wave power, reduced alpha coherence, or atypical
long-range connectivity. If such deviations shift the underlying distri-
bution relative to the healthy reference, direct use of the existing
normative percentiles may misrepresent an individual’s position within
the population. To address this, the framework can be adapted by
recalibrating percentiles using age- and sex-matched control samples, or
by building disorder-specific extensions of the normative model
(Rutherford et al., 2022). This strategy has been applied in previous EEG
test-retest and normative modeling studies, and could improve sensi-
tivity to clinically relevant deviations while preserving comparability
with the healthy baseline.
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4.3. Limitations

This study has several limitations. First, the sample was mainly
healthy individuals, leaving its generalizability to clinical populations
uncertain. Second, the analysis focused on specific frequency bands and
connectivity metrics; future research should consider additional EEG
features (e.g., phase-amplitude coupling, microstates) or advanced
signal processing methods. Finally, although the GAMLSS model
accounted for age-related effects, covariates such as gender, education,
and medication use were not integrated. More comprehensive modeling
will be necessary to further elucidate attention processes across diverse
populations.

5. Conclusion

In conclusion, this study proposes and validates a novel normative
model-based attention assessment framework for large-scale, multi-site
EEG data. By combining REST coordinate transformation, ComBat-
based harmonization, GAMLSS-based normative modeling, and
stability-oriented feature selection, the framework achieved strong
predictive performance and reliable reproducibility. Furthermore, our
findings highlight the potential of EEG-based quantile rank features for
accurate, stable, and scalable attention assessment. These findings
establish the framework as a reliable approach for attention assessment,
with potential generalization to other EEG-based evaluations and clear
value for future research and clinical applications.
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